MTMT author ID 10002898
Researcher ID H-3272-2011
ORCID ID orcid.org/0000-0001-7376-2637
Scopus ID 6603837073
Google Scholar ID uWA5mqYAAAAJ
Scientific papers

  1. P. R. Surján, Á. Szabados: Damping of perturbation corrections in quasidegenerate situations, J. Chem. Phys. 104, 3320-3324 (1996).

  2. P. R. Surján, Á. Szabados: Damping in perturbation theory, Acta Univ. Debreceniensis XXX/2, 97-111 (1995).

  3. P. R. Surján, Á. Szabados, F. Bogár, J. Ladik: Calculation of correlation-corrected band structures of polymers in the case of quasi-degeneracy, Solid State Communications 103, 639-644 (1997).

  4. P. R. Surján, Á. Szabados: Dyson-corrected orbital energies for the perturbative treatment of electron correlation, Int. J. Quantum Chem. 69, 713-719 (1998).

  5. P. R. Surján, M. Kállay, Á. Szabados: Non-conventional partitioning of the many-body Hamiltonian for studying correlation effects, Int. J. Quantum Chem. 70, 571-581 (1998).

  6. Gy. Schultz, Á. Szabados, Gy. Tarczay and K.Zauer: Molecular Structure of 1,2,4,5-Tetracyanobenzene from Gas-Phase Electron Diffraction and Theoretical Calculations, Struct. Chem. 10, 149-155 (1999).

  7. Á. Szabados, P. R. Surján: Optimized partitioning in Rayleigh-Schrödinger perturbation theory, Chem. Phys. Letters 308, 303-309 (1999).

  8. P. R. Surján, Á. Szabados: Optimized partitioning in perturbation theory: comparison to related approaches, J. Chem. Phys. 112, 4438-4446 (2000).

  9. Zs. Szekeres, Á. Szabados, M. Kállay, P. R. Surján: On the "killer condition" in the equation-of-motion method: ionization potentials from multi-reference wave functions, Phys. Chem. Chem. Phys. 3, 696-701 (2001).

  10. Á. Szabados, X. Assfeld, P. R. Surján: Near-degeneracy corrections for second-order perturbation theory: comparison of two approaches, Theor. Chem. Acc. 105, 408-412 (2001).

  11. J. Noga, Á. Szabados, P. R. Surján: On the Use of Connected Moments Expansion with Coupled Cluster Reference, Int. J. Mol. Sci. 3, 508-521 (2002).

  12. P. R. Surján, Á. Szabados: Constant Denominator Perturbative Schemes and the Partitioning Technique, Int. J. Quantum Chem. 90, 20-26 (2002).

  13. P. R. Surján, Á. Szabados, Zs. Szekeres: Nonsymmetric Perturbation Theory for improving Coupled Cluster wave functions, Int. J. Quantum Chem. 90, 1309-1320 (2002).

  14. Á. Szabados, P. R. Surján: Optimized partitioning in PT: application for the equation of motion describing ionization processes, Int. J. Quantum Chem. 92, 160-167 (2003).

  15. P. R. Surján, D. Kőhalmi, Á. Szabados: Optimized quasiparticle energies in many-body perturbation theory, Coll. Czech. Chem. Comm. 68, 331-339 (2003).
    If you do not have access to the full text via the link above, the article is accessible as preprint .

  16. Á. Szabados, M. Hargittai: Molecular Structure of Carbene Analogues: A Computational Study, J. Phys. Chem. A 107, 4314-4321 (2003).

  17. Z. Rolik, Á. Szabados, P. R. Surján: On the perturbation of multiconfiguration wave functions, J. Chem. Phys. 119, 1922-1928 (2003).

  18. P. R. Surján, A. Lázár, Á. Szabados: Laplace-transformed denominators in perturbation theory: Linear-scaling second order treatment of weakly interacting nanostructures, Phys. Rev. A 68, 062503 (2003).

  19. P. R. Surján, Á. Szabados: Convergence enhancement in perturbation theory, Coll. Czech. Chem. Comm. 69, 105-120 (2004).
    If you do not have access to the full text via the link above, the article is accessible as preprint .

  20. P. R. Surján, Z. Rolik, Á. Szabados and D. Kőhalmi: Partitioning in multiconfiguration perturbation theory, Ann. Phys. (Leipzig) 13, 223-231 (2004).
    If you do not have access to the full text via the link above, the article is accessible as preprint .

  21. P. R. Surján, Á. Szabados: Appendix to "Studies in Perturbation Theory": the problem of partitioning, in: Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per-Olov Löwdin, Vol. III. , 129--185, editors: E. J. Brändas and E. S. Kryachko, Kluwer, Dordrecht, (2004).

  22. Á. Szabados, P. R. Surján: On the size-dependence of Feenberg scaling, Int. J. Quantum Chem. 101 , 287-290 (2005).

  23. Á. Szabados, Z. Rolik, G. Tóth and P. R. Surján: Multiconfiguration perturbation theory: size-consistency at second order, J. Chem. Phys. 122 , 114104 (2005).

  24. R. K. Chaudhuri, K. Freed, G. Hosé, P. Piecuch, K. Kowalsi, M. Wloch, S. Chattopadhyay, D. Mukherjee, Z. Rolik, Á. Szabados, G. Tóth and P. R. Surján: Comparison of low-order multireference many-body perturbation theories, J. Chem. Phys. 122 , 134105 (2005).

  25. D. Kőhalmi, Á. Szabados and P. R. Surján: Idempotency-conserving iteration scheme for the one-electron density matrix, Phys. Rev. Lett. 95 , 013002 (2005).

  26. Kőhalmi D., Lázár A., Szabados Á. és Surján P: Szén nanocsövek közötti kölcsönhatások, Magyar kémiai folyóirat 111 , 12-17 (2005).

  27. Á. Szabados, L. P. Bíró and P. R. Surján: Intertube interactions in carbon nanotube bundles, Phys. Rev. B 73 , 195404 (2006).

  28. Á. Szabados: Theoretical interpretation of Grimme's spin-component-scaled second order Moller-Plesset theory J. Chem. Phys. 125 , 214105 (2006).

  29. Z. Rolik, Á. Szabados, D. Kőhalmi and P. R. Surján: Coupled-cluster theory and the method of moments, J. Mol. Struct. THEOCHEM 768 , 17-23 (2006).

  30. V. Zólyomi, Á. Rusznyák, J. Kürti, Á. Gali, F. Simon, H. Kuzmany, Á. Szabados and P. R. Surján: Semiconductor-to-metal transition of double walled carbon nanotubes induced by inter-shell interaction, phys. stat. sol. (b) 243 , 3476-3479 (2006).

  31. P. R. Surján, D. Kőhalmi, Z. Rolik and Á. Szabados: Frozen localized molecular orbitals in electron correlation calculations -- Exploiting the Hartree-Fock density matrix, Chem. Phys. Lett. 450 , 400-403 (2007).

  32. Z. Rolik, Á. Szabados and P. R. Surján: A sparse matrix based Full-CI algorithm, J. Chem. Phys. 128 , 144101 (2008).

  33. V. Zólyomi, J. Koltai, Á. Rusznyák, J. Kürti, Á. Gali, F. Simon, H. Kuzmany, Á. Szabados, and P. R. Surján: Intershell interaction in double walled carbon nanotubes: Charge transfer and orbital mixing, Phys. Rev. B 77 , 245403 (2008).

  34. T.A. Rokob, Á. Szabados and P.R. Surján: A note on the symmetry properties of Löwdin's orthogonalization schemes, Coll. Czech. Chem. Commun. 73 , 937-944 (2008).
    If you do not have access to the full text via the link above, the article is accessible as preprint .

  35. Z. Rolik and Á. Szabados: Multipartitioning Moller--Plesset perturbation theory: size-extensivity at third order and symmetry conservation, Int. J. Quantum Chem. , 109 , 2554-2563 (2009).

  36. Á. Szabados and P.R. Surján: Fermi-vacuum invariance in multiconfiguration perturbation theory, Advances in the Theory of Atomic and Molecular Systems: Conceptual and Computational Advances in Quantum Chemistry, Progress in Theoretical Chemistry and Physics , Vol. 19 , 257-269, editors: P. Piecuch, J. Maruani, G. Delgado-Barrio and S. Wilson, Springer, Dordrecht, (2009).

  37. M. R. Hoffmann, D. Datta, S. Das, D. Mukherjee, Á. Szabados, Z. Rolik and P. R. Surján: Comparative study of multireference perturbative theories for ground and excited states J. Chem. Phys. 131 , 204104 (2009).

  38. M. Kobayashi, Á. Szabados, H. Nakai and P. R. Surján: Generalized Møller−Plesset Partitioning in Multiconfiguration Perturbation Theory J. Chem. Theory. Comput. 6 , 2024-2034 (2010).

  39. P.R. Surján and Á. Szabados: On the Coupled-Cluster Equations. Stability Analysis and Nonstandard Correction Schemes Recent Progress in Coupled Cluster Methods, Theory and Applications , Vol. 11 , 513-534, editors: P. Carsky, J. Paldus and J. Pittner, Springer, Dordrecht, (2010).

  40. P. Szakács, Á. Szabados and P. R. Surján: Zero-field-splitting in triplet-state nanotubes Chem. Phys. Letters , 498 , 292-295 (2010).

  41. Á. Szabados and P. Nagy: Spin Component Scaling in Multiconfiguration Perturbation Theory J. Phys. Chem. A , 115 , 523-534 (2011).
    If you do not have access to the full text via the link above, the article is accessible through the ACS Articles on Request service . Downloading via this latter link, requires logging in to the Publications website using your ACS ID. The number of downloads is maximized in 50 within a year.

  42. P.R. Surján and Á. Szabados: Perturbative approximations to avoid matrix diagonalization Linear-Scaling Techniques in Computational Chemistry and Physics , Vol. 13 , 83-95, editors:R. Zalesny, M.G. Papadopoulos, P.G. Mezey and J. Leszczynski, Springer, Dordrecht, (2011).

  43. Á. Szabados: Sensitivity analysis of state-specific multireference perturbation theory J. Chem. Phys. , 134 , 174113 (2011).
    Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
    Click here to access the article via the aip homepage.

  44. Á. Szabados, P. Jeszenszki and P.R. Surján: Efficient iterative diagonalization of the Bose–Hubbard model for ultracold bosons in a periodic optical trap Chem. Phys. 401 , 208 (2012).

  45. Szalay P., Szabados Á., Surján P., Jeszenszki P. és Fogarasi G.: Szemelvények az ELTE Elméleti Kémiai Laboratórium újabb eredményeiből Magyar Kémiai Folyóirat 118 , 79 (2012).

  46. P. R. Surján, Á. Szabados, P. Jeszenszki and T. Zoboki: Strongly orthogonal geminals: size-extensive and variational reference states J. Math. Chem. 50 , 534-551 (2012).
    If you do not have access to the full text via the link above, the article is accessible as preprint .

  47. P. R. Nagy, P. R. Surján and Á. Szabados: Mayer’s orthogonalization: relation to the Gram-Schmidt and Löwdin’s symmetrical scheme Theor. Chem. Acc. 131 , 1109 (2012).
    If you do not have access to the full text via the link above, the article is accessible as preprint .

  48. P. R. Nagy and Á. Szabados: Unitary perturbation theory applied to multiconfigurational reference functions Int. J. Quant. Chem. 113 , 230 (2013) DOI: 10.1002/qua.24103.
    If you do not have access to the full text via the link above, the article is accessible as preprint .
    An e-offprint is available upon request to the author.

  49. P. Jeszenszki, P. R. Surján and Á. Szabados: Spin-adaptation and redundancy in state-specific multireference perturbation theory J. Chem. Phys. 138 , 124110 (2013).
    Supplementary Material to "Spin-adaptation..."
    Copyright (2013) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
    Click here to access the article via the aip homepage.

  50. T. Zoboki, Á. Szabados and P. R. Surján: Linearized Coupled Cluster Corrections to Antisymmetrized Product of Strongly Orthogonal Geminals: Role of Dispersive Interactions J. Chem. Theory. Comput. 9 , 2602 (2013) DOI: 10.1021/ct400138m.
    If you do not have access to the full text via the link above, the article is accessible as preprint .
    An e-offprint is available upon request to the author.

  51. P. R. Nagy, P. R. Surján and Á. Szabados: Vibrational optical activity of chiral carbon nanoclusters treated by a generalized pi-electron method J. Chem. Phys. 140 , 044112 (2014).
    Copyright (2014) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
    Click here to access the article via the aip homepage .

  52. P. Jeszenszki, P. R. Nagy, T. Zoboki, Á. Szabados and P. R. Surján: Perspectives of APSG-based multireference perturbation theories Int. J. Quant. Chem. 114 , 1048 (2014).
    If you do not have access to the full text via the link above, the article is accessible as preprint .
    An e-offprint is available upon request to the author.

  53. Á. Szabados and Zs. Tóth: Löwdin's bracketing function revisited J. Math. Chem. 52 , 2210 (2014).
    If you do not have access to the full text via the link above, the article is accessible as preprint .
    An e-offprint is available upon request to the author.

  54. P.R. Nagy, L. Biró, J. Koltai, P.R. Surján, Á. Szabados and J. Kürti: Theoretical vibrational optical activity of chiral carbon nanoparticles: Fullerenes and carbon nanotubes, phys. stat. sol. (b) 251 , 2451-2456 (2014).
    An e-offprint is available upon request to the author.

  55. P. Jeszenszki, V. Rassolov, P.R. Surján and Á. Szabados: Local Spin from Strongly Orthogonal Geminal Wavefunctions Mol. Phys. 113 , 249 (2015).
    If you do not have access to the full text via the link above, free access is provided via this link, for the first 50 visitors.
    The article is also accessible as preprint . An e-offprint is available upon request to the author.

  56. P. Jeszenszki, P.R. Surján and Á. Szabados: Spin Symmetry and Size Consistency of Strongly Orthogonal Geminals J. Chem. Theory Comput. 11, 3096 (2015).
    If you do not have access to the full text via the link above, free access is provided via this link, for the first 50 visitors. Please note that you may have to use ACS ID credentials in order to access the free re-prints. Registration for an ACS ID at this internet address is free of charge.
    The article is also accessible as preprint . An e-offprint is available upon request to the author.

  57. P.R. Surján, P. Jeszenszki and Á. Szabados: Role of triplet states in geminal-based perturbation theory Mol. Phys. 113, 2960 (2015).
    If you do not have access to the full text via the link above, free access is provided via this link, for the first 50 visitors.
    The article is also accessible as preprint . An e-offprint is available upon request to the author.

  58. Zs. Tóth, P.R. Nagy, P. Jeszenszki and Á. Szabados: Novel orthogonalization and biorthogonalization algorithms Theor. Chem. Acc. 134 , 100 (2015).
    If you do not have access to the full text via the link above, the article is accessible as preprint . An e-offprint is available upon request to the author.

  59. Zs. Tóth and Á. Szabados: Energy error bars in direct configuration interaction iteration sequence J. Chem. Phys. 143 , 084112 (2015).
    Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
    Click here to access the article via the aip homepage .

  60. P. R. Nagy, J. Koltai, P. R. Surján, J. Kürti and Á. Szabados: Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes J. Phys. Chem. A 120 5527–5538 (2016).
    If you do not have access to the full text via the link above, the article is accessible through the ACS Articles on Request service . The number of downloads via this latter link is maximized in 50 within a year.
    The article is also accessible as preprint . An e-offprint is available upon request to the author.

  61. Á. Szabados: Perturbation Theory: Time-Independent Aspects of the Theory Applied in Molecular Electronic Structure Description
    Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering doi:10.1016/B978-0-12-409547-2.11467-2 published online: 28-Jan-2017

    If you do not have access to the full text via the link above, an e-offprint is available upon request to the author.

  62. P. R. Surján, Á. Szabados and Zs. É. Mihálka: Effect of partitioning on the convergence properties of the Rayleigh-Schrödinger perturbation series J. Chem. Phys. , 146 , 124121 (2017).
    Copyright (2017) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
    Click here to access the article via the aip homepage.

  63. Á. Szabados and Á. Margócsy: Ring coupled-cluster doubles correction to geminal wavefunctions
    Mol. Phys. DOI: 10.1080/00268976.2017.1317111

    If you do not have access to the full text via the link above, the article is accessible as preprint . An e-offprint is available upon request to the author.