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A modified version of a previously elaborated multiconfiguration perturbation theorysMCPTd
fRolik et al. J. Chem. Phys.119, 1922 s2003dg is presented. In the modified formulation size
consistency is ensured at second order in energy, by omitting projectors from the zero order
Hamiltonian operator. This MCPT formulation is abbreviated as SC2-MCPTssize consistent at
second orderd. To ensure proper separability, we also require that energy denominators are
constructed as differences of some one-particle energies. A similar choice for energy denominators
also renders the well-known multireference Møller–PlessetsMRMPd energy size consistent at
second order. The same thing applies to the related multireference perturbation theory by Witek,
Nakano, and Hirao. ©2005 American Institute of Physics. fDOI: 10.1063/1.1862235g

I. INTRODUCTION

Description of molecules at a wide range of atomic con-
figurations, including stretched or dissociating bonds, contin-
ues to be a challenge for theory. To account for electron
correlation all over the molecular potential surface in a well
balanced manner, it is necessary to use multiconfiguration
sMCd wave functions, built of several Slater determinants. A
usual way to get such a wave function is to select a subspace
of one-electron orbitals, called the active space, and deter-
mine a reference state containing excitations within the ac-
tive space. Due to the unadvantageous scaling with increas-
ing number of active orbitals and/or electrons of these
procedures, there is no way to describe electron correlation
with sufficient accuracy based on solely approaches like this.

Still, a MC function corresponding to a relatively small
active space can describe the molecular potential surface
qualitatively correctly and represents a good starting point
for other, cheaper methods that can account for dynamical
correlation, such as configuration interaction, coupled clus-
ter, or perturbation theorysPTd.

One of the simplest of the above families of methods is
PT, which has the advantage over CI that possible size-
consistent character of the reference MC function is not nec-
essarily destroyed. Since it is not as straightforward to de-
velop a PT treatment for a MC function, as it is for one
single determinant, numerous formulations of multireference
PT sMRPTd schemes have been elaborated. An important
aspect of orientation among MRPT methodologies is
whether or not PT corrections are obtained from the eigen-
value problem of an effective Hamiltonian operator. The so
called “perturb then diagonalize” approaches fall into the
former category, such as works by Robb and co-workers,1

Freed and co-workers,2 Nakano,3 Davidson,4 Malrieu and
co-workers,5 works by Mukherjee and co-workers,6–9

Finley,10 Angeli et al.,11 and others. Examples for schemes
operating without an effective operator are several studies by
Davidson,12–14 PT formulations worked out by Wolinski and
co-workers,15 Murphy and Messmer,16 the complete active
space PTsCASPTd methodology by Roos and co-workers,17

studies by Werner,18 Dyall,19 Mitrushenkov,20 the MRMP
methodology of Hirao and co-workers,21 works by Rosta and
Surján,22 Rassolovet al.,23 the PT framework of Angeliet
al.24 and several others. Recently yet another MRPT scheme
falling into the latter category has been proposed in our labo-
ratory that was termed multiconfiguration perturbation
theory, abbreviated as MCPT.25

The essence of MCPT is that perturbative corrections
can be derived to an arbitrary referenceszero orderd function,
through the definition of virtual excited states. This way, no
special character of the reference function is required; it does
not have to be a CAS function, for instance. At the same
time, the formulation of the theory remains simple; one does
not need to apply a numerical orthogonalization procedure
neither solve a linear system of equations to get the correc-
tions. One more noteworthy feature of this scheme is the
presence of free parameters that can tune the zero order op-
erator. In other words, the partitioning in MCPT is not fixed
a priori.25–27It is therefore rather a framework than one defi-
nite method that becomes well specified at the moment
where free parameters—zero order excited state energies—
get fixed.

There are some common difficulties that most MRPT
formulations are faced with; the fulfillment of the criterion of
size-consistency is one of such. Even though Rayleigh–
Schrödinger perturbation theory may give size-consistent
corrections at every finite order,28 an unfortunate specifica-
tion of the zero order Hamiltonian may destroy this behavior.
This is the case with MRPT formulations that use projectors
to define the zero order Hamiltonian.16,18,29 The size-
consistency issue of such MRPT methods has been discussed
in more detail by Van Lenthe and co-workers,30 pointing that

the use of projectors inĤ0 need not necessarily violate size
consistency. Initiated by their numerical experiences, Pulay
and co-workers arrived to design a zero order Hamiltonian
operator—through the application of projectors which corre-
spond to excited subspaces sufficiently separated—that
proved to give size-consistent results even if dissociating a
system for open-shell fragments.31 Complete elimination of

THE JOURNAL OF CHEMICAL PHYSICS122, 114104s2005d

0021-9606/2005/122~11!/114104/12/$22.50 © 2005 American Institute of Physics122, 114104-1

Downloaded 29 Mar 2005 to 157.181.193.158. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1862235


projection operators from the zero order Hamiltonian does
not solve the problem in itself, see, e.g., theories.12,20 On the
other hand, careful selection of the zero order quantities can
result in a size-consistent theory, such as that of Rosta and
Surján,22 Rassolov,23 or Angeli et al.24 The approaches of
Heully et al.32 and Mukherjee and co-workers33 also arrive to
size-consistent PT corrections via well designed effective
Hamiltonian operators.

Our recent MCPT formulation25 has been shown to be
slightly size inconsistent. In this study we present a reformu-
lation of MCPT theory, so that size consistency of the initial
function and energy is conserved at the first nonvanishing
order. Energy corrections from third order on and wave func-
tion corrections from second order on remain consistency
violating. This version of the theory will be referred to as
SC2-MCPT.

We also show that by a careful selection of zero order
excited energies, a similar situation can be achieved in the
MRPT theory of Witeket al.34 and in the closely related
MRMP method of Hirao.21

II. THEORY

A. Multiconfiguration PT

According to the multiconfiguration perturbation theory
described in Ref. 25, one starts with a functionu0l that can
be written as a weighted sum of a principal determinantuHFl
and several other Slater determinantsukl:

u0l = dHFuHFl + o
kÞHF

dkukl,

where the casedHF=0 is to be excluded.
In the spirit of perturbation theory, we consideru0l as the

zero order ground state function and seek for perturbation
corrections to it. For this end we define a formal zero order
Hamiltonian

Ĥ0 = E0u0lk0u + o
kÞHF

Ekuk8lkk̃8u, s1d

wherehuk8lukÞHFj is an overlapping set of excited determi-
nants from which the ground stateu0l has been projected out:

uk8l = P̂ukl = ukl − dku0l,

the projectorP̂ being

P̂ = 1 − u0lk0u.

The metric matrix of the projected excited determinants is

Sk8l8 = kkuP̂ull = dkl − dkdl , s2d

and vectorskk8̃u are biorthogonal tohuk8lukÞHFj:

kk8̃u = o
lÞHF

Sk8l8
−1 kl8u = kk8u + o

lÞHF

dkdl

dHF
2 kl8u = kku −

dk

dHF
kHFu.

s3d

We used the shorthandSk8l8
−1 to denote the elements of the

inverse of the metric matrixs2d. This inverse can be given

analytically due to the simple structure ofSk8l8. Tildes are
used to denote reciprocalsbiorthogonald vectors throughout
this work.

The zero order ground state energy is most practically

chosen asE0=k0uĤu0l, while the zero order excited energies
Ek-s are parameters of the theory.

The perturbation operator is defined as

Ŵ= Ĥ − Ĥ0

and the second order PT correction looks:

E2 = − o
kÞHF

k0uĤuk8lkk8̃uĤu0l
Ek − E0

. s4d

The MCPT framework as detailed here is inherently size
inconsistent. The main source of size inconsistency is the

appearance of projectorP̂ in the zero order operators1d that

induces a coupling inĤ0 between noninteracting subsystems,
similar to the problem encountered in the CASPT scheme.29

B. Reformulation of MCPT: SC2-MCPT

In order to diminish consistency violation of the MCPT
framework one needs to redefine the zero order Hamiltonian

so that projectorP̂ is excluded. To reach this goal, let us use

unprojected Slater determinantsukl instead ofuk8l in Ĥ0:

ĤSC2
0 = E0u0lk0̃u + o

kÞHF
Ekuklkk̃u. s5d

Vectorsk0̃u and kk̃u now stand for the reciprocalsbiorthogo-
nald vectors of the overlapping sethu0ljø hukl ukÞHFj. To
construct the tilded vectors, let us build the metric matrix of
the overlapping set:

Skl = dkl + dkdl0s1 − dk0d + dldk0s1 − dl0d. s6d

sCasek=0 designates the multiconfiguration reference state
u0l.d The inverse of metrics6d can be expressed by the closed
formula

Skl
−1 = dkl − dk0dl0 + ekel , s7d

with e0=dHF
−1, ei =−didHF

−1 for i Þ0, andSkl
−1 being a shorthand

for the elements of the inverse of the metric matrixs6d. In-
verses7d results the reciprocal vectors

k0̃u =
1

dHF
kHFu

and

kk̃u = kku −
dk

dHF
kHFu.

It is interesting to compare the direct and reciprocal ex-
pansion states of MCPT and SC2-MCPTssee Table Id. We
see that bra excited vectors turn out to be the same in both
formalisms. Thus, there is a difference in the ground state
between the bra vectors, while the set of zero order ket vec-
tors agree only in the ground state between the two versions.

The zero order ground state energy in this scheme is
most practically taken as
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E0 = k0̃uĤu0l,

so thatE1 vanishes. The zero order excited energiesEk-s are
still free parameters.

The reduced resolvent corresponding to the zero order
Hamiltonians5d is diagonal in the biorthogonal formulation:

Q̂SC2= o
kÞHF

uklkk̃u
Ek − E0

.

Corrections tou0l and E0 in the SC2 variant of MCPT are
straightforward to construct according to standard biorthogo-
nal perturbation theory:

kCSC2
1 u = − o

kÞHF

k0̃uĤukl
Ek − E0

kk̃u,

ESC2
2 = − o

kÞHF

k0̃uĤuklkk̃uĤu0l
Ek − E0

, s8d

etc.
Comparison of the second order formula Eq.s4d and Eq.

s8d reveals that the latter is computationally cheaper than the
former, since a sum for excited configurations is present in

k0u not like in k0̃u. This might also give a warning that for-
mula s8d may yield smaller corrections than Eq.s4d—this
however is not found in our numerical tests presented in Sec.
III.

A common property of both SC2-MCPT and MCPT is
the noninvariance with respect to the choice of the Fermi
vacuumuHFl. In cases where there is a dominant determinant
in u0l it is natural to pick this asuHFl. If two or more deter-
minants havesnearlyd equal weight inu0l the choice is more
arbitrary.

C. Consistency at second order

In order to discuss size consistency, let us consider two
systemsA andB with no interaction in between:

ĤAB = ĤAÎB + ÎAĤB,

where ÎA and ÎB stand for the unit operator in the Hilbert
space corresponding to systemA and B, respectively. Size
consistency, as used by Pople,35 requires additive separability
of the energy over noninteracting partners,

EAB = EA + EB,

while the wave function has to be multiplicatively separable:

CAB = CACB.

It has been shown28,30 that any finite order PT correction
to the energy is size consistent, provided that the zero order
operator is additive over independent subsystems, i.e.,

ĤAB
0 = ĤA

0 ÎB + ÎAĤB
0 . s9d

In terms of zero order quantities, this requires additivity of
zero order eigenvalues and multiplicative separability of zero
order wave functions.sIn the following discussion we will

consider unit operatorsÎA andÎB as self-understood, and omit
them to simplify formula.d

To examine the consistent or inconsistent nature of the
SC2 variant of MCPT, let us look first at the zero order
quantities for the joint systemAB. We suppose that the ref-
erence function is product separable:

u0l = u0A0Bl

just like its reciprocal vector

k0̃u =
kHFAHFBu
dHFA

dHFB

= k0Ã0B̃u

giving rise to the additively separable zero order ground state
energy

E0,AB = k0Ã0B̃uĤA + ĤBu0A0Bl = E0,A + E0,B.

Zero order excited state ket vectors are excited determi-
nants, where the excitation may take place on one system, or
the other, or both:uHFAkBl, or ukAHFBl, or ukAlBl. Unfortu-
nately neitheruHFAkBl nor ukAHFBl is a product of a zero
order vector on systemA and another on systemB, since the
vector uHFl is not contained in the expansion setfcf. Eq. s5d
and Table Ig. This has unfavorable consequences on the con-
sistency property of the energy from third order on.

Looking at zero order excited bra vectors, one finds:

kHFAkB̃u = kHFAkBu −
dkB

dHFB

kHFAHFBu = kHFAkB̃u

similarly

kkAHFB̃u = kkÃHFBu

and

kkAlB̃u = kkAlBu −
dkA

dlB

dHFA
dHFB

kHFAHFBu Þ kkÃlB̃u.

Apart from the constantdHFA
, kHFAkB̃u is the product of zero

order functionsk0Ãu and kkB̃u, which is desirable. However,

this is not the case forkkAlB̃u.
Zero order excited energies are considered in the form

Ek = E0 + Dk, s10d

with Dk being constructed of one-particle energies that char-
acterize the excitation taking fromuHFl to ukl. By this

TABLE I. Comparison of bra and ket expansion vectors used to construct

Ĥ0 in MCPT and SC2-MCPT scheme. Slater determinants different from the
Fermi vacuum are denoted byk. Number 0 stands for the multiconfigura-
tional reference.

ket vectors bra vectors

Ground state Excited states Ground state Excited states

MCPT u0l ukl−dku0l k0u kku l−
dk

dHF
kHFu

SC2-MCPT u0l ukl
1

dHF
kHFu kku l−

dk

dHF
kHFu
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Møller–PlessetsMPd type construction one can avoid emer-
gence of a coupling between independent subsystems in the
energy denominators, since excited state energies then look:

EHFAkB
= E0 + DkB

,

EkAHFB
= E0 + DkA

,

and

EkAlB
= E0 + DkA

+ DlB
.

Using the above zero order functions and energies it is
easy to see that the zero order Hamiltonians5d is not additive
over subsystemsA andB. Full size consistency of the SC2-
MCPT scheme therefore cannot be expected. Still, we shall
show that first nonvanishing corrections behave correctly.
Let us start with the first order wave function:

kCAB
1 u = − o

kÞHF

k0Ã0B̃uĤA + ĤBukAHFBl
DkA

kkÃHFBu

+ hA ↔ Bj.

sNote that the contribution ofukAlBl is zero at this order.d
Sincek0ÃukAl=0, this formula simplifies to:

kCAB
1 u = − o

kÞHF

k0ÃuĤAukAlk0B̃uHFBl
DkA

kkÃHFBu + hA ↔ Bj.

Integral k0B̃uHFBl givesdHFB

−1 , leading to:

kCAB
1 u = − o

kÞHF

k0ÃuĤAukAl
DkA

kkÃ0B̃u + hA ↔ Bj.

The first order wave function therefore can be written as

kCAB
1 u = kCA

10B̃u + k0ÃCB
1u,

that is just the behavior required.sNote that this does not
mean product separability ofkCAB

1 u.d
Looking at the second order energy

EAB
2 = kCA

10B̃uĤA + ĤAu0A0Bl + hA ↔ Bj

and using the fact thatkkÃu0Al=0 for all kÞHF, one gets

EAB
2 = kCA

1uĤAu0Alk0B̃u0Bl + hA ↔ Bj,

that is

EAB
2 = EA

2 + EB
2 , s11d

sincek0B̃u0Bl=1. This proves size consistency of the second
order energy correction.

It is easy to check that the first order wave function
correction written as a ket vector is already ill behaved from
the point of view of size consistency. This is due to that
determinantukAlBl shows up inuC1l with the corresponding
energy denominatorDkA

+DlB
that couples systemsA andB.

Still, the second order energy as derived fromuC1l matches
Eq. s11d:

kC1uĤu0l = k0̃uĤuC1l.

D. Consistency violation at higher orders

Stepping to the next nonvanishing order, one recovers
the unadvantageous consequence of the fact that certain zero
order vectors are products of not exactly those vectors that
would be needed. Inspecting the third order energy one gets:

EAB
3 = o

k,lÞHF

k0Ã0B̃uĤABukAHFBlkkÃHFBuŴABulAHFBlkl̃AHFBuĤABu0A0Bl
DkA

DlA

s12d

+ o
k,lÞHF

k0Ã0B̃uĤABukAHFBlkkÃHFBuŴABuHFAlBlkHFAl̃BuĤABu0A0Bl
DkA

DlB

+ hA ↔ Bj s13d

with ŴAB=ĤA+ĤB−ĤAB
0 .

Let us analyze the second bracket in the numerators of

terms s12d and s13d. Since bothulAHFBl and kkÃHFBu are

eigenvectors of the zero order HamiltonianĤAB
0 , for term

s12d we get

kkÃHFBuŴABulAHFBl = kkÃuĤAulAl + dklskHFBuĤBuHFBl

− DkA
− E0,A − E0,Bd. s14d

In the second bracket of Eq.s13d ĤA andĤAB
0 has zero con-

tribution, askHFBu lBl=0 andkkÃHFBuHFAlBl=0, but ĤB re-
sults the nonvanishing integral

kkÃHFBuŴABuHFAlBl = kkÃuHFAlkHFBuĤBulBl. s15d

The points where consistency is violated are apparent in

formulass14d ands15d. First,kHFBu ĤBuHFBl does not cancel
E0,B on the right-hand sidesrhsd of Eq. s14d, which would be

necessary. Second, the integralkkÃHFBuŴABuHFAlBl estab-
lishes a coupling between independent zero order excited

vectorskkÃHFBu and uHFAlBl, which is not allowed.
Let us note that both problems would disappear if inter-

nally contracted excitations were used for zero-order excited
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functions, just like in the CASPT2 scheme.29 In this case
however, the metric matrix would become too complicated to
invert analytically.

It is further interesting to mention that redefiningE0

=kHFuĤuHFl does not solve the problem of Eq.s14d, since in

this case k0̃uŴu0lÞ0, and an additional termk0̃uŴu0̃l
3k0̃uĤQ̂2Ĥu0l appears inE3 that brings a coupling between
subsystemsA and B. The fact that alteration ofE0 cannot
possibly have any consequence on PT corrections is also
clear from the invariance of Rayleigh–Schrödinger theory
against any shift of the zero point of the energy scale.

E. Consistency issue of the MRPT scheme of Witek,
Nakano, and Hirao

We have seen in the previous sections that the exclusion
of the projector from the zero order Hamiltonian facilitates
the second order PT correction to become size consistent.
This experience raises the question of whether multirefer-
ence PT approaches where no projection operators appear
show the same property. In a recent multireference Epstein–
Nesbet study by Witek, Nakano, and Hirao34 sWNHd—that
lacks any reference to projection operators—size-consistency
violation has been observed numerically. In this section we
show that in the approach of WNH size inconsistency of the
second order energy originates in the zero order excited en-
ergies and can be easily cured by using Møller–Plesset type
energy denominators instead of the Epstein–Nesbet partition-
ing.

A multireference PT formalism in the Epstein–Nesbet
partitioning, similar to the WNH approach,34,36was first pro-
posed by Davidson,12 then Mitrushenkov20 and was used by
several others. Zero order eigenvectors of this theory are
multireference functions denoted byuF0l , uF1l ,… that result
from the diagonalization of the matrix of the Hamiltonian in
a restricted reference space. This set is augmented by the
nonredundant set of configurational state functionssCSFd
uq1l , uq2l ,… that arise by applying single, double, etc. exci-
tations to the CSF spanning the reference space. With the use
of these vectors, a zero order Hamiltonian is defined in the
form:

ĤWNH
0 = o

i

EikuFilkFiu + o
i

Eqi
uqilkqiu. s16d

Zero order energiesEi are the eigenvalues of the restricted

diagonalization, whileEqi
’s are taken asEqi

=kqiuĤuqil, in the
spirit of the Epstein–Nesbet partitioning.

We would like to see how the second order energy cor-
rection

EWNH
2 = − o

i

kF0uĤuqilkqiuĤuF0l
Eqi

− E0
s17d

behaves, given two noninteracting subsystemsA and B. In
this case excited CSFuqil may emerge as the product
uqj ,Akl,Bl, or ukj ,Aql,Bl, or uqj ,Aql,Bl, where ukil denotes CSF
that belong to the reference space. Supposing that the zero
order ground state function is product separable

uF0l = uF0,AF0,Bl,

and making use of the orthogonality ofkF ju to uqil, it is easy
to see that no interaction occurs betweenkF0u and uqj ,Aql,Bl,

kF0,AF0,BuĤA + ĤBuqj ,Aql,Bl = 0

while the interaction betweenkF0u and uqj ,Akl,Bl looks:

kF0,AF0,BuĤA + ĤBuqj ,Akl,Bl = kF0,AuĤAuqj ,AlkF0,Bukl,Bl,

andkF0,AF0,BuĤA+ĤBukj ,Aql,Bl is completely analogous. This
leads to the second order energy correction:

EWNH
2 = − o

l

ukF0,Bukl,Blu2o
j

ukF0,AuĤAuqj ,Alu2

Eqj ,Akl,B
− E0

+ hA ↔ Bj. s18d

Supposing thatF0,B is normalized, we haveolukF0,Bukl,Blu2

=1. From Eq.s18d it is then apparent thatEWNH
2 would be

additive if the energy denominator on the rhs of Eq.s18d was
independent of indexl. This can be achieved by choosing
zero order excited energies as

FIG. 1. Dissociation potential curve of the N2 molecule in STO-3G basis
set. sad Total energy curves.sbd Difference curves of various PT formula-
tions with respect to FCI.
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Eqi
= E0 + Dqi

, s19d

whereDqi
depends only on the one-particle excitation indices

that produceuqil out of a ukml, such as in the Møller–Plesset
partitioning. In principle, auqil can be obtained from every
ukml by appropriate excitation, there are therefore many ways
of picking up such aDqi

for a given levelqi.
To do this in anl-independent manner one can, e.g.,

specify a “principal determinant” ofu0l to count the excita-
tions from. Alternatively, one can fixDqi

uniquely by select-
ing the smallest possible excitation level and MP-type exci-
tation energy with respect toukml’s belonging to the CAS
space.sIn the latter case unphysically small denominators
can be cured by, e.g., appropriate level shifts as proposed in
Ref. 37.d

By any of the above choices the zero order excited en-
ergy becomes

Eqj ,Akl,B
= E0 + Dqj ,A

s20d

and Eq.s18d can be brought to the additively separable form:

EWNH
2 = − o

j

ukF0,AuĤAuqj ,Alu2

Dqj ,A

+ hA ↔ Bj. s21d

Similar to SC2-MCPT, the above choice for the energy
denominators does not help the size inconsistency at the third
oder. Inspecting

EWNH
3 = o

ijlm

kF0,AF0,BuĤABuqi,Akl,Blkqi,Akl,BuŴABuqj ,Akm,Blkqj ,Akm,BuĤABuF0,AF0,Bl
Dqi,A

Dqj ,A

s22d

+ o
ijlm

kF0,AF0,BuĤABuqi,Akl,Blkqi,Akl,BuŴABukm,Aqj ,Blkkm,Aqj ,BuĤABuF0,AF0,Bl
Dqi,A

Dqj ,B

+ hA ↔ Bj, s23d

and analyzing the second integral in termss22d ands23d one
gets

kqi,Akl,BuŴABuqj ,Akm,Bl = dijkkl,BuĤBukm,Bl

+ dlmkqi,AuĤAuqj ,Al − dijdlmsE0,A

+ E0,B + Dqi,A
d s24d

for term s22d and

kqi,Akl,BuŴABukm,Aqj ,Bl = 0

for term s23d. In the latter case orthogonality ofkqiu to ukll
was utilized.

One can observe that a direct coupling between indepen-
dent excitations on different subsystems is not established

throughŴAB in the WNH formulation, at difference with the
third order formula of SC2-MCPTfcf., Eq. s15dg. There ap-
pear, however, consistency violating cross terms in Eq.s22d
due to the fact thatdijkkBuĤBulBl does not canceldijdklE0,B on
the rhs of Eq.s24d. At this point the third order energy of
Witek et al. shows a similarity with that of the SC2-MCPT
schemefcf. Eq. s14dg. Choosing the excited state energies
according to Eq.s20d therefore ensures size consistency only
at the first nonvanishing order in this MRPT formulation as
well.

F. Consistency issue of Hirao’s MRMP

The well-known multireference MRMP methodology
worked out by Hirao21,37–40is closely related to the method

discussed in the preceding section. Though the zero order
Hamiltonian of MRMP theory is defined with the use of
projection operators, it can be easily rewritten to exclude any
appearance of projectors, these therefore cannot spoil size
consistency. Zero order eigenvectors in MRMP are the same
as those discussed in Sec. II E, moreover, the spectral form
of HMRMP

s0d in the first order interacting subspacesi.e., in the
space ofuqil’sd also matches the corresponding part of Eq.
s16d. The second order energy correction in MRMP conse-
quently has exactly the same form as Eq.s17d. This is a
favorable situation since only the energy denominatorsEqi
−E0 have to be investigated, if one wishes to see whether
size consistency is ensured at second order in MRMP.

Due to the Møller–Plesset type partitioning, explicit ex-
pressions forE0 andEqi

are already different in MRMP from
what was discussed in Sec. II E. Let us consider again two
noninteracting subsystemsA and B. In this case the zero
order ground state energy in MRMP has the form

E0 = o
ieA

ei
ADii

A + o
ieB

ei
BDii

B

with Dii =osk0uais
+ ais u0l and ei’s being orbital energies de-

fined according to the MRMP recipe. According to Ref. 37,
the zero order excited state energy for a state where the ex-
citation has taken place on subsystemA looks

Eqi,Akl,B
= o

i

occqi

ei
A + o

i

occkl

ei
B.

Unfortunately the differenceEqi,Akl,B
−E0 apparently depends

on orbital indices belonging to subsystemB, which spoils
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size consistency of MRMP2. Just like in the case of the
WNH approach, choices19d for the zero order excited state
energies ensures the size-consistent second order energy for-
mula s21d. The fact that by redefinition of excitation energies
Eqi

the very same formula is resulted from both MRMP and
the WNH approach emphasizes that the second order energy
of these theories are related by simple level shifts affecting
zero order eigenvalues. For this reason choices19d does not
ensure size consistency of the third order energy neither if
starting from MRMP.

III. EXAMPLES

Illustrative applications reported in this section serve
two purposes. Performance of the MCPT and SC2-MCPT
schemes are compared on the dissociation potential curve of
biatomic molecules N2 and F2, and on the example of the
insertion of a Be atom in between two H atoms to form a
BeH2 molecule. Numerical check of size consistency is re-
ported for both formulations using two noninteracting Be
atoms and two noninteracting H2 molecules with somewhat
distorted geometry.

We investigate two partitionings in the following ex-

amples. In the case of dissociation potential curves orbital
energies used to construct the Møller–Plesset-like energy de-
nominatorsDk, e.g.,

Di,a = ea − ei, i [ occ, a [ virt

are simply taken as the diagonal element of the Fock opera-
tor corresponding to the reference determinantuHFl,

ei = hii + o
j

occ

kij uuij l. s25d

In the case of the BeH2 molecule and in size-consistency
calculations we also checked the effect of using the diago-
nals of the generalized Fock operator

ei = hii + o
jk

kij uuiklPkj, s26d

with

Pkj = k0uaj
+aku0l.

This choice is, in principle, better suited to a multiconfigu-
rational based PT approach, however it usually has only a
slight effect in terms of numerical results, as we will see
below.

FIG. 2. Dissociation potential curve of the N2 molecule in 6-311G** basis
set. sad Potential curve displayed in a wide range of diatomic distance.sbd
Potential curve displayed at around equilibrium geometry.

FIG. 3. Dissociation potential curve of the F2 molecule in 6-311G** basis
set. sad Potential curve displayed in a wide range of diatomic distance.sbd
Potential curve displayed at around equilibrium geometry.
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A. Dissociation potential curves

The case of the N2 molecule is presented in Figs. 1 and
2. Basis sets used are STO-3GsFig. 1d and 6-311G**sFig.
2d. Reference functions serving as starting point of the per-
turbation procedures are antisymmetrized product of strongly
orthogonal geminalssAPSGd in both cases.41,42 Two orbitals
were assigned to each noncore geminal in both basis sets,
producing generalized valence bondsGVBd type reference
states. Corrections by MCPT and SC2-MCPT are plotted at
second at third order, using the diagonals of the ordinary
Fock operator as orbital energies. Full configuration interac-
tion sFCI, Full CId curve is shown for comparison in Fig. 1
while a state-selective multiconfigurational coupled-cluster
sSS-MRCCd sRef. 43d energy was computed at some geom-
etries in 6-311G** basissFig. 2d.

The F2 molecule was also treated in the 6-311G** basis.
Here, as no full CI reference was affordable, we computed a
multireference average quadratic coupled-clustersMR
AQCCd to test the perturbative results. Curves corresponding
to the reference energies MCPT-0 and SC2-MCPT-0 are
missing from the plot for purpose: they lie too far from the

PT corrected lines to be displayed together in one plot. For
the F2 molecule we used simples2, 2d CAS functions as zero
order ground state reference.

Apart from the MCPT and SC2-MCPT formulations, the
second order result obtained by the PT scheme of Rosta and
Surján22 is also shown in Fig. 2, labeled as APSG-PT2. In
this method, following Dyall’s idea,19 a two-body zero order
Hamiltonian is applied, whose eigenvectors are the APSG
states. In Fig. 1sbd parallelity of the PT curves is plotted.
Instead of a parallelity curve a zoom into the region at
around equilibrium geometry helps to see the situation more
clearly in Figs. 2sbd and 3sbd.

Examining Figs. 1 and 2 one can observe that zero order
energies in MCPT and SC2-MCPT formulations do not differ
significantly in numerical terms. Second and third order re-
sults in the MCPT formulation lie close to each other in both
basis sets. Third order MCPT slightly improves upon second
order in the minimal basis set example, while it slightly
worsens the second order in Fig. 2. On the other hand, SC2-
MCPT second and third order curves differ significantly in
both basis sets. Third order SC2-MCPT is worse than second
order in both figures, showing a bump at around 2 Å. If

TABLE II. Total energies in atomic units for the BeH2 system in 6-31G** basis, at various nuclear arrange-
ments. See geometry in text. Methods applied are MCPT and SC2-MCPT up to third order as well as the
APSG-PT formalism. Partitioning in MCPT and SC2-MCPT is defined by either Eq.s25d or Eq. s26d. Full CI
energies are given for comparison.

ei-s come from

Eq. s25d Eq. s26d Eq. s25d Eq. s26d Eq. s25d Eq. s26d

Method Point A Point B Point C

MCPT-0 215.803 140 215.770 403 215.706 863
SC2-MCPT-0 215.803 139 215.770 401 215.706 850
MCPT-2 215.819 808 215.819 849 215.787 995 215.788 038 215.723 334 215.723 415
MCPT-3 215.823 266 215.823 284 215.791 982 215.792 002 215.726 046 215.726 076
SC2-MCPT-2 215.820 944 215.820 986 215.789 580 215.789 625 215.725 533 215.725 621
SC2-MCPT-3 215.823 041 215.823 049 215.791 852 215.791 858 215.725 905 215.725 898
APSG-PT2 215.824 415 215.793 091 215.726 117
FCI 215.831 097 215.800 286 215.731 878

Point D Point E Point F

MCPT-0 215.650 441 215.616 101 215.615 634
SC2-MCPT-0 215.650 414 215.616 067 215.615 637
MCPT-2 215.666 955 215.667 110 215.632 959 215.633 184 215.641 700 215.643 665
MCPT-3 215.669 425 215.669 487 215.636 205 215.636 316 215.646 599 215.647 344
SC2-MCPT-2 215.669 167 215.669 323 215.634 720 215.634 928 215.642 592 215.643 769
SC2-MCPT-3 215.668 983 215.668 981 215.635 277 215.635 301 215.645 930 215.648 995
APSG-PT2 215.668 916 215.635 444 215.646 696
FCI 215.675 800 215.649 202 215.656 667

Point G Point H Point I

MCPT-0 215.693 772 215.734 123 215.754 844
SC2-MCPT-0 215.693 781 215.734 123 215.754 843
MCPT-2 215.706 482 215.706 708 215.746 723 215.746 874 215.765 852 215.765 969
MCPT-3 215.709 577 215.709 705 215.749 833 215.749 927 215.768 906 215.768 990
SC2-MCPT-2 215.708 610 215.708 825 215.749 235 215.749 413 215.768 595 215.768 749
SC2-MCPT-3 215.710 417 215.710 444 215.751 134 215.751 128 215.770 403 215.770 399
APSG-PT2 215.709 671 215.750 019 215.769 933
FCI 215.716 702 215.757 323 215.777 481
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comparing the second order of the two MCPT formulations,
we see a notable decrease in energy stepping from MCPT2 to
SC2-MCPT2. In STO-3G basis set the MCPT2 curve is
about the same quality as the SC2-MCPT2 curve, deviating
from full CI in the opposite direction at around equilibrium.
In the triple z polarized basis overshooting of the SC2-
MCPT2 curve is not seen, it represents a significant improve-
ment upon the MCPT2 potential curve. The second order
SC2-MCPT2 lies very close to APSG PT2 in this example at
around equilibrium. This is remarkable taking into account
that APSG-PT applies a more sophisticated zero order
Hamiltonian than SC2-MCPT. Unfortunately APSG-PT2
starts to deviate from the good shape at around 2 Å due to
the quasidegenerate character of the reference function that
slowly builds up upon dissociation.

The example of F2 molecule shown in Fig. 3 is some-
what different from the case of the N2 molecule. Here we see
a rather big deviation of MCPT second and third order re-
sults, third order improving on both the shape and the mini-
mum value of the second order curve. In the case of SC2-
MCPT, second order is hard to distinguish from MR AQCC
at around equilibrium, but it gets worse as the dissociation
takes place. Again at difference with the example of the N2

molecule, third order SC2-MCPT does not simply worsen

second order result, we see a better shaped curve at third
order than at second, though the minimum is far better at
second than at third order.

B. BeH2 system

TheC2v insertion of a Be atom in between two H atoms
with a simultaneous increase of the H–H distance presents
various difficulties at different regions along the insertion
path and has been a good test case of numerous multirefer-
ence theories.3,44–46Nuclear arrangementsspoints A–Id along
this path were borrowed from the work of Purvis and
Bartlett.47 The Be atom is put at the origins0, 0, 0d, the two
H atoms lie symmetric to thez axis, with coordinates in
atomic unitss0, 62.54, 0d, s0, 62.08, 1.0d, s0,61.62, 2.0d,
s0, 61.39, 2.5d, s0, 61.275, 2.75d, s0, 61.16, 3.0d, s0,
60.93, 3.5d, s0, 60.70, 4.0d, and finally s0, 67.70, 6.0d at
points A, B, C, D, E, F, G, H, and finally I.

Basis set applied for this system was 6-31G**. We again
used an APSG type zero order reference: three orbitals were
assigned to both valence geminals, and the core geminal was
left uncorrelated. Perturbation theory corrections to this
function are collected in Table II, together with FCI results
for comparison. Partitionings applying the diagonals of ei-
ther the ordinary Fock operatorfEq. s25dg or the generalized

TABLE III. Energy differences in millihartrees between FCI and various PT formulations for the BeH2 system
in 6-31G** basis. Points A to I refer to the nuclear arrangement, see text for coordinates. Methods applied are
MCPT and SC2-MCPT up to third order as well as the APSG-PT formalism. Partitioning in MCPT and
SC2-MCPT is defined by either Eq.s25d or Eq. s26d.

ei-s come from

Eq. s25d Eq. s26d Eq. s25d Eq. s26d Eq. s25d Eq. s26d

Method Point A Point B Point C

MCPT-0 27.96 29.88 25.01
SC2-MCPT-0 27.96 29.89 25.03
MCPT-2 11.29 11.25 12.29 12.25 8.54 8.46
MCPT-3 7.83 7.81 8.30 8.28 5.83 5.80
SC2-MCPT-2 10.15 10.11 10.71 10.66 6.35 6.26
SC2-MCPT-3 8.06 8.05 8.43 8.43 5.97 5.98
APSG-PT2 6.68 7.20 5.76

Point D Point E Point F

MCPT-0 25.36 33.10 41.03
SC2-MCPT-0 25.39 33.13 41.03
MCPT-2 8.84 8.69 16.24 16.02 14.97 13.00
MCPT-3 6.37 6.31 13.00 12.89 10.07 9.32
SC2-MCPT-2 6.63 6.48 14.48 14.27 14.08 12.90
SC2-MCPT-3 6.82 6.82 13.93 13.90 10.74 7.67
APSG-PT2 6.88 13.76 9.97

Point G Point H Point I

MCPT-0 22.93 23.20 22.64
SC2-MCPT-0 22.92 23.20 22.64
MCPT-2 10.22 9.99 10.60 10.45 11.63 11.51
MCPT-3 7.13 7.00 7.49 7.40 8.58 8.49
SC2-MCPT-2 8.09 7.88 8.09 7.91 8.89 8.73
SC2-MCPT-3 6.29 6.26 6.19 6.19 7.08 7.08
APSG-PT2 7.03 7.30 7.55
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onefEq. s26dg as orbital energies were computed. In Table III
deviation of these numbers from the FCI value are listed, in
millihartrees. Energy errors of the PT corrected values, for
partitioning corresponding to Eq.s26d, are also plotted in
Fig. 4 for a better overview.

Zero order energies MCPT-0 and SC2-MCPT-0 shown in
Table II are very close to each other at each geometry, the
largest difference between the two values is only 0.034 mhar-
trees, at point E. Errors of MCPT-0 and SC2-MCPT-0 vary
between 20 and 30 mhartree along the sampling path, except
for the peak of the barrier, points E and F. At these points the
system shows a significant open-shell character that cannot
be described by the APSG function,41,42 hence the sudden
increase of the error to around 40 mhartree.

Interestingly the largest error of PT corrected values is
seen at point E, even though the zero order ground state

energy is the worst at point F. Along the path from A to I
MCPT-2 and SC2-MCPT-2 follow a similar trend, the SC2
variant being closer to the exact result typically by about a
milliHartree. This does not hold for point F: here the two
second order energies agree within 0.1 mhartree. Third or-
ders improve upon second orders both in MCPT and SC2-
MCPT, except for point E. Difference between the two vari-
ants of MCPT is smaller at third order than at second. The
ordering of third orders changes along the path, at points
from A to D MCPT-3 is slightly better than SC2-MCPT-3, at
points from E to I this is just reversed, with the difference
between SC2-MCPT-3 and MC-PT-3 becoming somewhat
larger.

As expected, the second order of APSG-PT outperforms
second orders of both MCPT formalism at most points. At
points A, B, and C it is even better than either MCPT-3 or
SC2-MCPT-3.

At most geometries it makes only a slight difference
whether orbital energies building the energy denominators
are related to the usual or the generalized Fock operator: Eq.
s26d represents an improvement upon Eq.s25d only by a few
tenths of a millihartree. Point F is again an exception, here
Eq. s26d performs better than Eq.s25d by 1–3 mhartree. This
behavior agrees with expectations, regarding that the multi-
reference nature of the wave function is most expressed at
point F, consequently the difference between the Hartree–
Fock and the exact density matrix is the biggest at this ge-
ometry.

C. Size-consistency studies

Two Be atoms and two H2 molecules were selected for
numerical size-consistency check. Internuclear distance of
the H2 molecules was 1.0 Å, noninteracting systems were put
100 Å away from each other. We used 6-311G** basis set in

TABLE IV. Total energies of one single H2 molecule and two H2 molecules forming a rectangle. For geometry
see text. Energies obtained by PT in the MCPT and SC2-MCPT formulations, up to order three. Basis set
applied was 6-311G**. The full CI solution is shown as reference. Size-inconsistency is tabulated in the last
column.

Method Energyshartreed
Energy difference

smillihartreed

EH2
EH2…H2

EH2…H2
−2EH2

MCPT-0 21.128 780 22.257 559 0.000
SC2-MCPT-0 21.128 780 22.257 559 0.000

Eq. s25d for ei-s

MCPT-2 21.139 049 22.277 914 0.184
MCPT-3 21.141 042 22.281 932 0.152
SC2-MCPT-2 21.140 832 22.281 664 0.000
SC2-MCPT-3 21.141 863 22.283 528 0.198

Eq. s26d for ei-s

MCPT-2 21.139 113 22.278 043 0.183
MCPT-3 21.141 069 22.281 989 0.149
SC2-MCPT-2 21.140 906 22.281 812 0.000
SC2-MCPT-3 21.141 860 22.283 519 0.201
FCI 21.141 748

FIG. 4. Errors of total energies in millihartrees of the BeH2 system obtained
by MCPT, SC2-MCPT, and APSG-PT in 6-31G** basis. Labels A to I refer
to the geometry, for coordinates see text.
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both examples. The reference function was a valence CAS
with two active electrons and four active orbitals for a single
Be atom, and correspondingly we used four active electrons
and eight active orbitals for the noninteracting dimer. A
simple s2, 2d CAS was computed as reference for the
stretched H2 molecule ands4, 4d CAS for the noninteracting
dimer. Geometry of H4 was a rectangle, the longer edge be-
ing 100 Å. Results collected in Tables IV and V include
MCPT and SC2-MCPT corrections in two partitionings: we
used the diagonals of either the ordinary or the generalized
Fock operator to construct orbital energiesei.

Numbers tabulated in Tables V and IV show that there is
hardly any difference between zero order energies of formu-
lations MCPT and SC2-MCPT, similar to the situation appar-
ent in Figs. 1–3. Second and third order corrections are
closer to the FCI value in the SC2-MCPT formulation than
by MCPT. Second order in SC2-MCPT represents a signifi-
cant improvement upon MCPT-2, while third orders in the
two formulations are of similar quality. Third order of SC2-
MCPT overshoots in both examples; this effect is not shown
by MCPT-3. Still, the absolute value of the error of SC2-
MCPT-3 is slightly smaller than that of MCPT-3. Partitioning
with orbital energies taken from Eq.s26d performs slightly
better than Eq.s25d. However, this effect touches the num-
bers not at the relevant digit: while the error is in millihartree
at second order, this choice improves only by a few hun-
dredths of a millihartree.

Size inconsistency is of the order of magnitude of a tenth
of a millihartree. It diminishes stepping from MCPT-2 to
MCPT-3. Interestingly, size-consistency violation of the third
order of the SC2-MCPT formulation is a little larger than
size inconsistency of MCPT-2. Size-consistency violation as
a function of the order of PT is plotted in Fig. 5 for the case
of the H2 molecules. Here one sees that consistency violation
of the SC2-MCPT scheme remains slightly larger than that of
MCPT at every order from third order on. Size inconsistency

of the MCPT scheme diminishes faster, still the violation of
the two schemes fall into the same order of magnitude at the
third and higher orders.

IV. SUMMARY

A modified formulation of the previously introduced
multireference perturbation theory has been presented. In the
modified theory the projector to the one-dimensional refer-
ence space has been left out from the zero order Hamil-
tonian. This has the consequence, that the first nonvanishing
terms of the PT series, i.e., the first order wave function and
the second order energy is strictly size consistent, provided
that the zero order wave function is size consistent. Higher
orders of this series, however, violate the size-consistency
requirement.

TABLE V. Total energies of one single Be atom and two Be atoms 100 Å apart. Energies obtained by PT in the
MCPT and SC2-MCPT formulations are given up to order three. Basis set applied was 6-311G**. The full CI
solution is shown as reference. Size inconsistency is tabulated in the last column.

Method Energyshartreed
Energy difference

smillihartreed

EBe EBe…Be EBe…Be−2EBe

MCPT-0 214.615 608 229.231 216 0.000
SC2-MCPT-0 214.615 608 229.231 216 0.000

Eq. s25d for ei-s

MCPT-2 214.631 011 229.261 810 0.212
MCPT-3 214.632 906 229.265 688 0.123
SC2-MCPT-2 214.632 479 229.264 957 0.000
SC2-MCPT-3 214.633 773 229.267 322 0.224

Eq. s26d for ei-s

MCPT-2 214.631 069 229.261 934 0.205
MCPT-3 214.632 935 229.265 753 0.118
SC2-MCPT-2 214.632 577 229.265 155 0.000
SC2-MCPT-3 214.633 725 229.267 214 0.236
FCI 214.633 376

FIG. 5. Size inconsistency of MCPT and SC2-MCPT schemes on the ex-
ample of two stretched H2 molecules. For geometry see text. Numbers dis-
played are in millihartrees, basis set used is 6-311G**. Inconsistency is
computed asEH2…H2

−2EH2
.

114104-11 Multiconfiguration perturbation theory J. Chem. Phys. 122, 114104 ~2005!

Downloaded 29 Mar 2005 to 157.181.193.158. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Numerical examples show that size-consistency viola-
tion of the MCPT and SC2-MCPT from third order on in
energy fall into the same range. Violation of SC2-MCPT
formulation at third and higher orders is slightly larger than
that of MCPT. Second order energy of SC2-MCPT performs
significantly better than MCPT-2 on the examples studied.

We have also shown that, by a special choice of the
energy denominators, the second order formula of the recent
MRPT formalism of Witek, Nakano, and Hirao can be also
brought to be size consistent, just like Hirao’s MRMP. Simi-
larly to SC2-MCPT, this modification of the partitioning
does not cure size-consistency violation of higher orders of
these formalisms.
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