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Multiconfiguration perturbation theory: Size consistency at second order
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A modified version of a previously elaborated multiconfiguration perturbation th@d@PT)

[Rolik et al. J. Chem. Phys.119, 1922 (2003] is presented. In the modified formulation size
consistency is ensured at second order in energy, by omitting projectors from the zero order
Hamiltonian operator. This MCPT formulation is abbreviated as SC2-MG#®Ze consistent at
second order To ensure proper separability, we also require that energy denominators are
constructed as differences of some one-particle energies. A similar choice for energy denominators
also renders the well-known multireference Mgller—-Ples8#RMP) energy size consistent at
second order. The same thing applies to the related multireference perturbation theory by Witek,
Nakano, and Hirao. @005 American Institute of PhysidDOI: 10.1063/1.1862235

. INTRODUCTION studies by Wernel? Dyall,** Mitrushenkov?’ the MRMP
methodology of Hirao and co-workefSworks by Rosta and
Description of molecules at a wide range of atomic con-Surjan?? Rassolovet al,?® the PT framework of Angelet
figurations, including stretched or dissociating bonds, contina|_24 and several others. Recenﬂy yet another MRPT scheme
ues to be a challenge for theory. To account for electrofalling into the latter category has been proposed in our labo-

correlation all over the molecular pOtential surface in a We”ratory that was termed mu'ticonﬁguration perturbation
balanced manner, it is necessary to use multiconfiguratiofheory, abbreviated as MCBY.

(MC) wave functions, built of several Slater determinants. A The essence of MCPT is that perturbative corrections

usual way to get such a wave function is to select a subspacgyn pe derived to an arbitrary refererizero ordey function,

of one-electron orbitals, called the active space, and detefyq,gh the definition of virtual excited states. This way, no

mine a reference state containing excitations within the aczpecia| character of the reference function is required: it does
F'Ve space. Due to t_he unaqlvantageous scaling with increagis nave to be a CAS function, for instance. At the same
ing number of active orbitals and/or electrons of thesg;q he formulation of the theory remains simple; one does
procedures, there is no way to describe electron correlanoHot need to apply a numerical orthogonalization procedure
with sufficient accuracy based on solely approaches like thi%either solve a linear system of equations to get the correc-

i still, a MC funcgon c_grretsr]ponmrl]g tol a reletmv;a_lyl sma;ll tions. One more noteworthy feature of this scheme is the
aﬁ;\lli(taatis\?ea}cecgigctles;:r?d ere reesrgr?tsecz: agopdo setg:?n suro?r(]: resence of free parameters that can tune the zero order op-
q y y P 9 9 POING ator. In other words, the partitioning in MCPT is not fixed
for other, cheaper methods that can account for dynamical _ . . 2527, . )

. . o . a priori. It is therefore rather a framework than one defi-
correlation, such as configuration interaction, coupled clus-. -
. nite method that becomes well specified at the moment
ter, or perturbation theor{PT).

One of the simplest of the above families of methods isW:tefrii;(;ee parameters—zero order excited state energies—

PT, which has the advantage over CI that possible si eg e
whi v ge ov POSSI 'z There are some common difficulties that most MRPT

consistent character of the reference MC function is not necf- lati taced with: the fulfil t of the criteri f
essarily destroyed. Since it is not as straightforward to ge'ormuiations are faced with, the fulliiment ot the cniterion o

velop a PT treatment for a MC function, as it is for one size-consistency is one of such. Even though Rayleigh-

single determinant, numerous formulations of multireference>c"0dinger perturbation theory may give size-consistent
PT (MRPT) schemes have been elaborated. An importanfOrections at every finite ordét,an unfortunate specifica-

aspect of orientation among MRPT methodologies istion of the zero order Hamiltonian may destroy this behavior.
whether or not PT corrections are obtained from the eigen] NS IS the case with MRPT formulations that use projectors
value problem of an effective Hamiltonian operator. The sd© define the zero order Hamiltoniaf:®** The size-
called “perturb then diagonalize” approaches fall into theCONSIStency issue of such MRPT methods has been discussed

former category, such as works by Robb and co-workersn more detail by Van Lenthe and co-workéfgointing that
Freed and co-workefsNakano® Davidson® Malrieu and  the use of projectors if° need not necessarily violate size
co-workerss works by Mukherjee and co-workefs®  consistency. Initiated by their numerical experiences, Pulay
Finley® Angeli et al,* and others. Examples for schemesand co-workers arrived to design a zero order Hamiltonian
operating without an effective operator are several studies bgperator—through the application of projectors which corre-
Davidson'>*PT formulations worked out by Wolinski and spond to excited subspaces sufficiently separated—that
co-workers™ Murphy and Messméf the complete active proved to give size-consistent results even if dissociating a
space PTICASPT) methodology by Roos and co-workérs, system for open-shell fragmentsComplete elimination of
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projection operators from the zero order Hamiltonian doesnalytically due to the simple structure 8f .. Tildes are
not solve the problem in itself, see, e.g., theotfe®On the  used to denote reciprocébiorthogonal vectors throughout
other hand, careful selection of the zero order quantities cathis work.
result in a size-consistent theory, such as that of Rosta and The zero order ground state energy is most practically
Surjan?? R%ngO\;,s or Angeli et al?* The approaches of chosen a&,=(0|H|0), while the zero order excited energies
H_euIIy et gl. and Mukherje_e and (_:o-worké?sal_so armve o g,.s are parameters of the theory.
size-consistent PT corrections via well designed effective  The perturbation operator is defined as
Hamiltonian operators. o
Our recent MCPT formulatidii has been shown to be W=H-H°
slightly size inconsistent. In this study we present a reformu- . .
lation of MCPT theory, so that size consistency of the initialand the second order PT correction looks:
function and energy is conserved at the first nonvanishing ) <0||Z||kf><§/||i||o>
order. Energy corrections from third order on and wave func- E°=- e
tion corrections from second order on remain consistency
violating. This version of the theory will be referred to as The MCPT framework as detailed here is inherently size
SC2-MCPT. inconsistent. The main source of size inconsistency is the
We also show that by a careful selection of zero Orderappearance of projectcﬁr in the zero order operatdf) that

excited energies, a similar situation can be achieved in th?nduces a counling iR1® between noninteracting subsvstems
MRPT theory of Witeket al>* and in the closely related biing g y :

MRMP method of Hirad: similar to the problem encountered in the CASPT schéhe.

(4)

k#HF Ex-Eo

B. Reformulation of MCPT: SC2-MCPT
Il. THEORY In order to diminish consistency violation of the MCPT
framework one needs to redefine the zero order Hamiltonian
so that projectoP is excluded. To reach this goal, let us use
unprojected Slater determinanks instead offk’) in HC:

A. Multiconfiguration PT

According to the multiconfiguration perturbation theory
described in Ref. 25, one starts with a functioh that can

be written as a weighted sum of a principal determiniif H2.,= Eol0)(0] + > EdK)K. (5)

and several other Slater determinafijs k#HF
|0) = dyeHF) + > dk), Vectors(0| and (k| now stand for the reciprocgbiorthogo-

k#HF nal) vectors of the overlapping s¢i0)} U{|k)|k# HF}. To
where the casél=0 is to be excluded. construct the tilded vectors, let us build the metric matrix of
In the spirit of perturbation theory, we considey as the  the overlapping set:

zero order grqund state function an_d seek for perturbation g = 5, +ddo(1 = &) + diSo(1 = S0). (6)

corrections to it. For this end we define a formal zero order ) o )

Hamiltonian (Casek=0 designates the multiconfiguration reference state
~ _ |0).) The inverse of metri¢6) can be expressed by the closed
HO=Eg0)0[ + 2 EJKk'XK], (1)  formula

k#HF .
Si = 0~ Skdio + &E, (7)

where{|k")|k# HF} is an overlapping set of excited determi-

: —A-1 — -1 H 1 H
nants from which the ground std@® has been projected out: With €=, &=-didye for i # 0, andS;” being a shorthand
for the elements of the inverse of the metric matiéx. In-

k') = P|k) = |K) - d/0), verse(7) results the reciprocal vectors
. Z . - 1
the projectorP being (0] = —(HF|
S dhe
P=1-[0X0|.
and

The metric matrix of the projected excited determinants is q
(k= (K| = (HF.
HF

Serr = (Pl = 8~ ddl, 2
and vectorglﬂ are biorthogonal td|k’)|k # HF}: It is interesting to compare the direct and reciprocal ex-
pansion states of MCPT and SC2-MCPSee Table )l We
K= S:/1|/<|,| =(K'|+ > @(” = (K| - &<HF|. see that bra excited vectors turn out to be the same in both
I#HF 12rF Ohe dyr formalisms. Thus, there is a difference in the ground state

3) between the bra vectors, while the set of zero order ket vec-

tors agree only in the ground state between the two versions.

We used the Shortharﬁl,ll, to denote the elements of the The zero order ground state energy in this scheme is
inverse of the metric matrix2). This inverse can be given most practically taken as
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TABLE |. Comparison of bra and ket expansion vectors used to construct Exg=Ea+Eg

F%in MCPT and SC2-MCPT scheme. Slater determinants different from the
Fermi vacuum are denoted ty Number 0 stands for the multiconfigura- while the wave function has to be multiplicatively separable:

tional reference.

ket vect bra vect » .
et vectors ra vectors It has been showfi*°that any finite order PT correction

Ground state Excited states Ground state Excited statesto the energy is size consistent, provided that the zero order
operator is additive over independent subsystems, i.e.,

MCPT O ko O K- o s
" Hag=Halg +1aHg. 9)
SC2-MCPT |0) k) di<HF\ (K| —dd—k<HF| In terms of zero order quantities, this requires additivity of
i i zero order eigenvalues and multiplicative separability of zero
order wave functions(In the following discussion we will
~ consider unit operatoils, andlg as self-understood, and omit
Eo=(0|H|0), them to simplify formula.
so thatE! vanishes. The zero order excited enerdigs are To examine the consistent or inconsistent nature of the
still free parameters. SC2 variant of MCPT, let us look first at the zero order

The reduced resolvent corresponding to the zero ordefuantities for the joint systemB. We suppose that the ref-
Hamiltonian(5) is diagonal in the biorthogonal formulation: erence function is product separable:

Sy S | 10)=100g)

Qsc2= BB, just like its reciprocal vector
Corrections t0)0) and E; in the SC2 variant of MCPT are @ = (HFAHFg| (6,64
straightforward to construct according to standard biorthogo- dHFAdH,:B

nal perturbation theory:
P Y giving rise to the additively separable zero order ground state

Wije- S S'Eﬂg“‘" enery
kHE S0 Eoas=(0a0g|Ha + Hg|0a0g) = Egp + Eg .
<6|I:||k><~k||:||0> Zero order excited state ket vectors are excited determi-
Eéczz - E _, (8) nants, where the excitation may take place on one system, or
ke B Bo the other, or both|HFkg), or |kaHFg), or |Kalg). Unfortu-

nately neither|HF\kg) nor |kaHFg) is a product of a zero
Comparison of the second order formula E4.and Eq. order vector on syster and another on systeB) since the

(8) reveals that the latter is computationally cheaper than th¥€ctor|HF) is not contained in the expansion $et Eq. (5)
former, since a sum for excited configurations is present ift"d Table ]. This has unfavorable consequences on the con-

(0| not like in (6|. This might also give a warning that for- sistency property of the energy from third order on,

mula (8) may yield smaller corrections than E¢t)—this Looking at zero order excited bra vectors, one finds:
however is not found in our numerical tests presented in Sec. . —_ dy ~
1. (HFakg| = (HFakg| - d_B<HFAHFB| = (HF akg|
A common property of both SC2-MCPT and MCPT is HFs
the noninvariance with respect to the choice of the Fermkimilarly
vacuum|/HF). In cases where there is a dominant determinant

etc.

in |0) it is natural to pick this agHF). If two or more deter- (kaHFg| = (kaHFg|
minants havenearly equal weight in0) the choice is more and
arbitrary.

—_— di d ~—
(Kalg| = (kalg| - ﬁ(HFAHFQ # (Kalg|.
C. Consistency at second order HFA™HFg

In order to discuss size consistency, let us consider twé\part from the constartﬂ,LFA, (HFakg| is the product of zero
systemsA and B with no interaction in between: order functions(0, and (kg|, which is desirable. However,

this is not the case fofkalg|.

A A Zero order excited energies are considered in the form
wherel, and Ig stgnd for the unit operator in_the Hil_bert E, =Ey+ A, (10)
space corresponding to systelnand B, respectively. Size

consistency, as used by Popteequires additive separability with A, being constructed of one-particle energies that char-
of the energy over noninteracting partners, acterize the excitation taking frofHF) to |k). By this

|:|AB = ﬁAiB + iAﬁBa
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Mﬂller—PIesse(MP) type const_rucnon one can avoid emer- <‘I’AB| _ (‘I’AOB| n <OA\If I
gence of a coupling between independent subsystems in the
energy denominators, since excited state energies then loothat is just the behavior requiredNote that this does not
E “E.+A mean product separability Qﬂf,ﬁBL)
HFakg ™ =0 7 Tk Looking at the second order energy

Ei e = Bo* Ak, E2e = (W50g|H + Hal0x0g) + {A — B}
and and using the fact thdtZ|OA>:O for all k# HF, one gets

Sla = Fo+ A * A E2e= (WAIAl0.)(0s/08) + {A < B},
Using the above zero order functions and energies it i?hat is
easy to see that the zero order Hamilton{&nis not additive
over subsystemA andB. Full size consistency of the SC2- Eie=Ea+E3. (11
MCPT scheme therefore cannot be expected. Still, we shall . . )
show that first nonvanishing corrections behave correctlys'nce<0|3|OB>_1 This proves size consistency of the second

Let us start with the first order wave function: order energy correction. _ _
It is easy to check that the first order wave function

(OAOB|H At H glkaHFg) ~ correction written as a ket vector is already ill behaved from

1=
Vel __k;HF Ay <kAHFB| the point of view of size consistency. This is due to that
A determinantkalg) shows up in¥!) with the corresponding
+{A < B}. energy denominatah,, +A,_ that couples systems andB.
(Note that the contribution ofkalg) is zero at this order. Eg” (ﬂ;‘:‘ second order energy as derived frpkt) matches

Since(0,|ka)=0, this formula simplifies to:

—_ N e - A
5 (0a|Ha|ka)(Og|HFg) (WHH|0) = (O|H|WH).

(Wag =~ A (kaHFg| +{A < B}.
k#HF Ka
-~ . _1 . .
Integral (Og|HFg) givesd,r, leading to: D. Consistency violation at higher orders
<a|I:|A|kA> ~— Stepping to the next nonvanishing order, one recovers
(Vg == 2 ——(kaOg| + {A < B}.

the unadvantageous consequence of the fact that certain zero
order vectors are products of not exactly those vectors that
The first order wave function therefore can be written as  would be needed. Inspecting the third order energy one gets:

ke Ay

E 2 <0AOB|HAB|kAHFB><kAHFB|WAB|IAHFB><|AHFB|HAB|0AOB> (12)
T e A A,
£ Y <0AOB|HAB|kAHFB><kAHFBA|WZB|HFAIB><HFA|B|HAB|OAOB> +{ALB) (13
k| #HF ka=lg
W|th WAB: HA+ HB_HgB
|
Let us analyze the second bracket in the numerators of <kAHFB|WAB|HFAIB> - <kA|HFA><HFB||:|B||B> (15)

terms (12) and (13). Since both|l,HFg) and (kAHFB| are

eigenvectors of the zero order Hamﬂtom&tﬁ_’\B, for term The points where consistency is violated are apparent in

(12) we get . A
formulas(14) and(15). First,(HFg|Hg|HFg) does not cancel
(kaHFg|Wagll AHFg) = (ka|Hall o) + 8((HFg|Hg|HFg) Eo g on the right-hand sid&hs) of Eq. (14), which would be

- Ay, ~Eoa~Eop). (14)  Necessary. Second, the integ(kNL\HFB|\7VAB|HFAI g estab-
lishes a coupling between independent zero order excited
In the second bracket of E¢L3) Ha andH g has zero con- vectors(rk;HFB| and|HF4lg), which is not allowed.
tribution, as(HFg|lg)=0 and(kAHFB|HFAIB> 0, butHB re- Let us note that both problems would disappear if inter-
sults the nonvanishing integral nally contracted excitations were used for zero-order excited
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functions, just like in the CASPT2 scherfieln this case 1073 |
however, the metric matrix would become too complicated to
invert analytically. -107.35
It is further interesting to mention that redefinirig, g -107.4 |
=(HF|H|HF) does not solve the problem of E44), since in & 10745
~ A ~ A o~ I - B I~
this case (O|W|0)#0, and an additional term(0|W|0) 5
X (0|HQ?H|0) appears irE® that brings a coupling between % S1ors
subsystemd# and B. The fact that alteration oE, cannot g -107.55 {®
g .

FullCl ——

possibly have any consequence on PT corrections is alse MCPT-0, SC2-MCPT-0 —a— -

-107.6

clear from the invariance of Rayleigh—Schrddinger theory MCPT-2 ---e---
against any shift of the zero point of the energy scale. -107.65 - Snaf/ SC2 Mot 3 e
Ye SC2-MCPT=3 e
-107.7 . . . '
1 15 2 2.5 3 3.5
. . . (a) distance, A
E. Consistency issue of the MRPT scheme of Witek,
Nakano, and Hirao 045 T T T T

We have seen in the previous sections that the exclusior
of the projector from the zero order Hamiltonian facilitates
the second order PT correction to become size consistemg 01
This experience raises the question of whether multirefer-:l?_
ence PT approaches where no projection operators appe:
show the same property. In a recent multireference Epstein-5 o0.05 -
Nesbet study by Witek, Nakano, and HifA¢WNH)—that

diff

lacks any reference to projection operators—size-consistenc’d o8

violation has been observed numerically. In this section we% 0 -::: s ' MCPT=0; SC2-MCPT=0 -
show that in the approach of WNH size inconsistency of the e ;’" MSER% e
second order energy originates in the zero order excited en “ag-e’ SC2-MCPT-2 -

i . . SC2-MCPT-3 - ;
ergies and can be easily cured by using Mgller—Plesset typ: -0.05 1'5 '2 2'5 '3 o
ﬁ}réergy denominators instead of the Epstein—Nesbet partltlon(b) distance, A

A multireference PT formalism in the Epstein—NesbetriG. 1. Dissociation potential curve of the, Molecule in STO-3G basis
partitioning’ similar to the WNH approaéﬁ"ge’was first pro- get.(a) Total energy curvesb) Difference curves of various PT formula-
posed by Davidsof? then Mitrushenkof and was used by tons With respect to FCI.
several others. Zero order eigenvectors of this theory are
multireference functions denoted B§),|®,), ... that result |Dg) = |y P g),
from the diagonalization of the matrix of the Hamiltonian in
a restricted reference space. This set is augmented by thgd making use of the orthogonality @B, to |qp), it is easy
nonredundant set of configurational state functig@SP to see that no interaction occurs betwédn| and|qj’Aql‘B>,
|g1),]02), ... that arise by applying single, double, etc. exci-
tations to the CSF spanning the refe_renc_e space. W|th t_he use (D 4D, B||:|A+ |:|B|q1 Q) =0
of these vectors, a zero order Hamiltonian is defined in the R o
form:

i = 2 S E Eqlaail- (16)

while the interaction betweefiy| and|g; Ak g) looks:

<(DO,Aq)O,B|HA+ HB|qj,AkI,B> = <(D0,A|HA|qj,A><(I)O,B|kI,B>a
Zero order energiek; are the eigenvalues of the restricted
diagonalization, whilee,'s are taken a&q =(qi[H|q;), in the
spirit of the Epstein—Nesbet partitioning.

We would like to see how the second order energy cor-

and(d)oyA®0,B|l:|A+ I:|B|kijq,yB> is completely analogous. This
leads to the second order energy correction:

| (P AlH Al W2
_ , ,
rection B2 == S (@ gk )23 | EOA| A|_ EA |
a - | i -k 0
E2..==> (Do|H|g){aiH|Po) (17) I 9,44 8
WNH | Eqi - EO + {A — B} (18)

behaves, given two noninteracting subsysteéfnandB. In  Supposing thatb g is normalized, we hav&|(®q gk g)f?
this case excited CSHg) may emerge as the product =1. From Eq.(18) it is then apparent thef?,, would be
|0 akig), or |k A0ig), OF [0 A0l B), Wherel|k) denotes CSF additive if the energy denominator on the rhs of Ep) was
that belong to the reference space. Supposing that the zeinedependent of index. This can be achieved by choosing
order ground state function is product separable zero order excited energies as
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Eq =Eo+Aq, (19) By any of the above choices the zero order excited en-

ergy becomes
whereA, depends only on the one-particle excitation indices

that proolluce}qi> out of alk,,, such as in the Mgller—Plesset

partitioning. In principle, dqg;) can be obtained from every Eq,»,AkLB: EO+Aq,-,A (20)
|k, by appropriate excitation, there are therefore many ways
of picking up such a\ for a given levelq;. and Eq.(18) can be brought to the additively separable form:
To do this in anl-independent manner one can, e.g.,
specify a “principal determinant” dD) to count the excita- .
tions from. Alternatively, one can fid, uniquely by select- ) (Do alHAlG; A)]?
i = _ " LZ0ATTAMj AL
ing the smallest possible excitation level and MP-type exci- Ewnn = ; +{A < B}. (21)

tation energy with respect tfk,)’s belonging to the CAS Gi.a
space.(In the latter case unphysically small denominators  Similar to SC2-MCPT, the above choice for the energy
can be cured by, e.g., appropriate level shifts as proposed thenominators does not help the size inconsistency at the third

Ref. 37) oder. Inspecting

=3 <q)O,A(DO,B||:|AB|qi,AkI,B><qi,AkI,B|\7VAB|qj ,Akm,B><qJ',Akm,B||:|AB|‘D0,A‘1’0,B>

Ednn (22
ijim Aqi,Aqu,A
Do AP0 ol HaglGh aKi 2)(Ch AKi 5] WaglKn aGi  glHagl o AD
+E< 0A o,B| AB|q|,A 1,8){0i A I,B| gl m,AqJ,B><km,AqJ,B| gl 0A 0,B>+{A<_>B}, (23)
|j|m Aqi'AAqLB

and analyzing the second integral in ter(@88) and(23) one  discussed in the preceding section. Though the zero order

gets Hamiltonian of MRMP theory is defined with the use of
- -~ projection operators, it can be easily rewritten to exclude any
(G ki 8| Wag|0j Ak ) = 3¢k g|HglKins) appearance of projectors, these therefore cannot spoil size

+ 8, (G AlFLAlG ) - 81 6(E consistency. Zero order eigenvectors in MRMP are the same
IMAHLATTTATHLAZ - G Amt=0A as those discussed in Sec. Il E, moreover, the spectral form
+EogtAg ) (24)  of HO., - in the first order interacting subspaiee., in the
' space of|g;)’s) also matches the corresponding part of Eq.
(16). The second order energy correction in MRMP conse-
<qiyAk|'B|WAB|kvaqij>:0 ?uently has_ exgctly _the same form as Ef7). Thi_s is a
_ avorable situation since only the energy denomlnaE:gis
for term (23). In the latter case orthogonality ¢6| to [k)  —E, have to be investigated, if one wishes to see whether
was utilized. size consistency is ensured at second order in MRMP.

One can observe that a direct coupling between indepen-  Due to the Mgller—Plesset type partitioning, explicit ex-
dent extzitations on different subsystems is not establishegressions foE, anqui are already different in MRMP from
throughW,g in the WNH formulation, at difference with the what was discussed in Sec. Il E. Let us consider again two
third order formula of SC2-MCPTcf., Eq.(15)]. There ap- noninteracting subsystem& and B. In this case the zero
pear, however, consistency violating cross terms in(E8.  order ground state energy in MRMP has the form
due to the fact thas;;(kg|Hg|lg) does not canced; §,Eqg on E,= S DA+ DB
the rhs of Eq.(24). At this point the third order energy of 0 e m I e A
Witek et al. shows a similarity with that of the SC2-MCPT
schemel[cf. Eq. (14)]. Choosing the excited state energies
according to Eq(20) therefore ensures size consistency only
at the first nonvanishing order in this MRPT formulation as
well.

for term (22) and

with D; == (0|a; a;,|0) and &’s being orbital energies de-
fined according to the MRMP recipe. According to Ref. 37,
the zero order excited state energy for a state where the ex-
citation has taken place on subsyst@nboks
occqi ocq(|
. . . EinleZE 6iA+E_EiB'

F. Consistency issue of Hirao's MRMP . i i

The well-known multireference MRMP methodology Unfortunately the differenc&,  _—Eq apparently depends
worked out by Hira8"*"~*is closely related to the method on orbital indices belonging to ‘subsysteBy which spoils
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FIG. 3. Dissociation potential curve of the Folecule in 6-311G** basis
FIG. 2. Dissociation potential curve of the, kolecule in 6-311G** basis  set.(a) Potential curve displayed in a wide range of diatomic distafine.
set.(a) Potential curve displayed in a wide range of diatomic distaflme.  Potential curve displayed at around equilibrium geometry.
Potential curve displayed at around equilibrium geometry.

amples. In the case of dissociation potential curves orbital
size consistency of MRMP2. Just like in the case of theenergies used to construct the Maller—Plesset-like energy de-
WNH approach, choic€l9) for the zero order excited state nominatorsj,, e.g.,
energies ensures the size-consistent second order energy for-
mula(21). The fact that by redefinition of excitation energies ~ Aia= €.~ €, | € 0CC, a € virt
E, the very same formula is resulted from both MRMP and . .
the WNH approach emphasizes that the second order ener re simply take_n as the diagonal element _Of the Fock opera-
of these theories are related by simple level shifts affectin r corresponding to the reference determiriat),
zero order eigenvalues. For this reason ch¢i® does not occ
ensure size consistency of the third order energy neither if ¢ =h; + 2 Gjllij). (25)
starting from MRMP. '

In the case of the Befmolecule and in size-consistency
calculations we also checked the effect of using the diago-

IIl. EXAMPLES nals of the generalized Fock operator
llustrative applications reported in this section serve €= h;+ 2, (ij|[ik)Py;, (26)
two purposes. Performance of the MCPT and SC2-MCPT Ik

schemes are compared on the dissociation potential curve Wth

biatomic molecules Nand F, and on the example of the

insertion of a Be atom in between two H atoms to form a pkj:<o|aj+ak|o>_

BeH, molecule. Numerical check of size consistency is re-

ported for both formulations using two noninteracting Be This choice is, in principle, better suited to a multiconfigu-

atoms and two noninteracting,Hnolecules with somewhat rational based PT approach, however it usually has only a

distorted geometry. slight effect in terms of numerical results, as we will see
We investigate two partitionings in the following ex- below.
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TABLE II. Total energies in atomic units for the Bglystem in 6-31G** basis, at various nuclear arrange-
ments. See geometry in text. Methods applied are MCPT and SC2-MCPT up to third order as well as the
APSG-PT formalism. Partitioning in MCPT and SC2-MCPT is defined by eithel(Zs).or Eq.(26). Full CI
energies are given for comparison.

&-s come from

Eq. (25) Eq. (26) Eq. (25) Eq. (26) Eq. (25) Eq. (26)
Method Point A Point B Point C
MCPT-0 —15.803 140 —15.770 403 —15.706 863
SC2-MCPT-0 —15.803 139 —15.770 401 —15.706 850
MCPT-2 —15.819808 —15.819849 —15.787 995 —15.788038 —15.723334 —15.723 415
MCPT-3 —15.823266 —15.823284 —15.791982 —15.792002 —15.726 046 —15.726 076

SC2-MCPT-2 —15.820944 —15.820986 —15.789580 —15.789625 —15.725533 —15.725621
SC2-MCPT-3 —15.823 041 —15.823049 —-15.791852 —15.791858 —15.725905 —15.725898

APSG-PT2 —15.824 415 —15.793 091 —15.726 117
FCI —15.831 097 —15.800 286 —15.731 878

Point D Point E Point F
MCPT-0 —15.650 441 —15.616 101 —15.615 634
SC2-MCPT-0 —15.650 414 —15.616 067 —15.615 637
MCPT-2 —15.666 955 —15.667 110 —15.632959 —-15.633 184 —15.641700 —15.643 665
MCPT-3 —15.669 425 —15.669 487 —15.636 205 —15.636316 —15.646599 —15.647 344

SC2-MCPT-2 —15.669 167 —15.669 323 —15.634 720 —15.634 928 —15.642592 —15.643 769
SC2-MCPT-3 —15.668 983 —15.668 981 —15.635277 —15.635301 —15.645930 —15.648 995

APSG-PT2 —15.668 916 —15.635 444 —15.646 696
FCI —15.675 800 —15.649 202 —15.656 667

Point G Point H Point |
MCPT-0 —15.693 772 —15.734 123 —15.754 844
SC2-MCPT-0 —15.693 781 —15.734 123 —15.754 843
MCPT-2 —15.706 482 —15.706 708 —15.746 723 —15.746 874 —15.765852 —15.765 969
MCPT-3 —15.709 577 —15.709 705 —15.749833 —15.749927 —15.768906 —15.768 990

SC2-MCPT-2 —15.708 610 —15.708 825 —15.749235 —15.749413 —15.768 595 —15.768 749
SC2-MCPT-3 —15.710417 —15.710444 —15.751134 —15.751128 —15.770403 —15.770399

APSG-PT2 —15.709 671 —15.750 019 —15.769 933
FCl —15.716 702 —15.757 323 —-15.777 481
A. Dissociation potential curves PT corrected lines to be displayed together in one plot. For

The case of the Nmolecule is presented in Figs. 1 and the F, molecule we used simpl@, 2) CAS functions as zero

) i i hp order ground state reference.
2. Basis sets used are STO _399. D ant_j 6 31.1G (Fig. Apart from the MCPT and SC2-MCPT formulations, the
2). Reference functions serving as starting point of the per-

. : . second order result obtained by the PT scheme of Rosta and
turbation procedures are antisymmetrized product of strongl)éurjérprz is also shown in Fig. 2, labeled as APSG-PT2. In
orthogonal geminal§APSG in both case&™*?Two orbitals L '

this method, following Dyall's ided’ a two-body zero order

were a_ssigned to _each noncore geminal in both basis Se'ﬁamiltonian is applied, whose eigenvectors are the APSG
producing generalized valence bo(@VB) type reference  gi05 |y Fig. b) parallelity of the PT curves is plotted.
states. Corrections by MCPT and SC2-MCPT are plotted a{y5tead of a parallelity curve a zoom into the region at

second at third order, using the diagonals of the ordinary o ng equilibrium geometry helps to see the situation more
Fock operator as orbital energies. Full configuration mteracaeaﬂy in Figs. 2b) and 3b).
tion (FCI, Full Cl) curve is shown for comparison in Fig. 1 Examining Figs. 1 and 2 one can observe that zero order
while a state-selective multiconfigurational coupled—clusterenergieS in MCPT and SC2-MCPT formulations do not differ
(SS-MRCQ (Ref. 43 energy was computed at some geom-gignificantly in numerical terms. Second and third order re-
etries in 6-311G** basigFig. 2). sults in the MCPT formulation lie close to each other in both
The F, molecule was also treated in the 6-311G** basis.pasis sets. Third order MCPT slightly improves upon second
Here, as no full Cl reference was affordable, we computed arder in the minimal basis set example, while it slightly
multireference average quadratic coupled-clustR  worsens the second order in Fig. 2. On the other hand, SC2-
AQCQO) to test the perturbative results. Curves correspondin@CPT second and third order curves differ significantly in
to the reference energies MCPT-0 and SC2-MCPT-0 aréoth basis sets. Third order SC2-MCPT is worse than second
missing from the plot for purpose: they lie too far from the order in both figures, showing a bump at around 2 A. If
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TABLE lll. Energy differences in millihartrees between FCI and various PT formulations for the Bedtem

in 6-31G** basis. Points A to | refer to the nuclear arrangement, see text for coordinates. Methods applied are
MCPT and SC2-MCPT up to third order as well as the APSG-PT formalism. Partitioning in MCPT and
SC2-MCPT is defined by either ER5) or Eq. (26).

€-s come from

Eq. (25 Eq. (26) Eq. (25 Eq. (26) Eq. (25 Eq. (26)

Method Point A Point B Point C
MCPT-0 27.96 29.88 25.01
SC2-MCPT-0 27.96 29.89 25.03
MCPT-2 11.29 11.25 12.29 12.25 8.54 8.46
MCPT-3 7.83 7.81 8.30 8.28 5.83 5.80
SC2-MCPT-2 10.15 10.11 10.71 10.66 6.35 6.26
SC2-MCPT-3 8.06 8.05 8.43 8.43 5.97 5.98
APSG-PT2 6.68 7.20 5.76

Point D Point E Point F
MCPT-0 25.36 33.10 41.03
SC2-MCPT-0 25.39 33.13 41.03
MCPT-2 8.84 8.69 16.24 16.02 14.97 13.00
MCPT-3 6.37 6.31 13.00 12.89 10.07 9.32
SC2-MCPT-2 6.63 6.48 14.48 14.27 14.08 12.90
SC2-MCPT-3 6.82 6.82 13.93 13.90 10.74 7.67
APSG-PT2 6.88 13.76 9.97

Point G Point H Point |
MCPT-0 22.93 23.20 22.64
SC2-MCPT-0 22.92 23.20 22.64
MCPT-2 10.22 9.99 10.60 10.45 11.63 11.51
MCPT-3 7.13 7.00 7.49 7.40 8.58 8.49
SC2-MCPT-2 8.09 7.88 8.09 7.91 8.89 8.73
SC2-MCPT-3 6.29 6.26 6.19 6.19 7.08 7.08
APSG-PT2 7.03 7.30 7.55

comparing the second order of the two MCPT formulations,second order result, we see a better shaped curve at third
we see a notable decrease in energy stepping from MCPT2 frder than at second, though the minimum is far better at
SC2-MCPT2. In STO-3G basis set the MCPT2 curve issecond than at third order.

about the same quality as the SC2-MCPT2 curve, deviating

from full QI in the op_posite direction at arqund equilibrium. g BeH., system

In the triple ¢ polarized basis overshooting of the SC2- _ _ _

MCPT2 curve is not seen, it represents a significant improve-  The Cy, insertion of a Be atom in between two H atoms
ment upon the MCPT2 potential curve. The second ordeWVith a simultaneous increase of the H-H distance presents

SC2-MCPT2 lies very close to APSG PT2 in this example gvarious difficulties at different regions along the insertion
around equilibrium. This is remarkable taking into accountPath and has been a good test case of numerous multirefer-

. 3,44-46 . _
that APSG-PT applies a more sophisticated zero ordef'¢¢ theories: Nuclear arrangementgoints A-) along

Hamiltonian than SC2-MCPT. Unfortunately APSG-PT2 tg;ﬂgé‘ﬁ? Tvr\llgrgeb;[gr?]vz:dpuftr Zrtnthtg‘f)ri\:gvi((r)ﬁ;k OOfQ Ptl;rewt?NOand
starts to deviate from the good shape at around 2 A due 1 Stoms lie symmetric to the axis, with ,C()'or(’jinates in
the quasidegenerate character of the reference function thgfomic units(0, +2.54, 0, (0, +2 08’ 1.0, (0,+1.62, 2.0
slowly builds up upon dissociation. o ' (0, +1.39, 2.5, (0, =1.275, 2.75, (0, +1.16, 3.0, (O,

The example of F molecule shown in Fig. 3 is some- +0.93, 3.5, (0, +0.70, 4.0, and finally (0, +7.70, 6.0 at
what different from the case of the,Mholecule. Here we see 4ints A B, C, D, E, F, G, H, and finally I.

a rather big deviation of MCPT second and third order re-  Bgagjs set applied for this system was 6-31G**. We again

sults, third order improving on both the shape and the miniysed an APSG type zero order reference: three orbitals were
mum value of the second order curve. In the case of SCZassigned to both valence geminals, and the core geminal was
MCPT, second order is hard to distinguish from MR AQCC left uncorrelated. Perturbation theory corrections to this
at around equilibrium, but it gets worse as the dissociatiorfunction are collected in Table II, together with FCI results
takes place. Again at difference with the example of the N for comparison. Partitionings applying the diagonals of ei-
molecule, third order SC2-MCPT does not simply worsenther the ordinary Fock operatpEq. (25)] or the generalized
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16 [ ' ' ' 4 T MEPT2 o ] energy is the worst at point F. Along the path from A to |
N goomerT3 MCPT-2 and SC2-MCPT-2 follow a similar trend, the SC2
Y SC2-MCPT-3 variant being closer to the exact result typically by about a

APSG-PT2 --%--

milliHartree. This does not hold for point F: here the two
second order energies agree within 0.1 mhartree. Third or-
ders improve upon second orders both in MCPT and SC2-
MCPT, except for point E. Difference between the two vari-
ants of MCPT is smaller at third order than at second. The
ordering of third orders changes along the path, at points
from Ato D MCPT-3 is slightly better than SC2-MCPT-3, at
points from E to | this is just reversed, with the difference
between SC2-MCPT-3 and MC-PT-3 becoming somewhat
larger.

As expected, the second order of APSG-PT outperforms
second orders of both MCPT formalism at most points. At
FIG. 4. Errors of total energies in millihartrees of the Bedystem obtained  points A, B, and C it is even better than either MCPT-3 or
by MCPT, SC2-MCPT, anc_J APSG-PT in 6-31G** basis. Labels A to | refer SC2-MCPT-3.
to the geometry, for coordinates see text. At most geometries it makes only a slight difference

whether orbital energies building the energy denominators
one[Eq. (26)] as orbital energies were computed. In Table Ill are related to the usual or the generalized Fock operator: Eq.
deviation of these numbers from the FCI value are listed, in26) represents an improvement upon E2p) only by a few
millihartrees. Energy errors of the PT corrected values, fotenths of a millihartree. Point F is again an exception, here
partitioning corresponding to Ed26), are also plotted in Eqg. (26) performs better than E@25) by 1-3 mhartree. This
Fig. 4 for a better overview. behavior agrees with expectations, regarding that the multi-

Zero order energies MCPT-0 and SC2-MCPT-0 shown irreference nature of the wave function is most expressed at
Table Il are very close to each other at each geometry, thpoint F, consequently the difference between the Hartree—
largest difference between the two values is only 0.034 mharock and the exact density matrix is the biggest at this ge-
trees, at point E. Errors of MCPT-0 and SC2-MCPT-0 varyometry.
between 20 and 30 mhartree along the sampling path, except
for the peak of the barrier, points E and F. At these points th%
system shows a significant open-shell character that cannot
be described by the APSG functibh?? hence the sudden Two Be atoms and two jimolecules were selected for
increase of the error to around 40 mhartree. numerical size-consistency check. Internuclear distance of

Interestingly the largest error of PT corrected values ishe H, molecules was 1.0 A, noninteracting systems were put
seen at point E, even though the zero order ground statt00 A away from each other. We used 6-311G** basis set in

energy error, mH

Size-consistency studies

TABLE IV. Total energies of one single Hnolecule and two limolecules forming a rectangle. For geometry
see text. Energies obtained by PT in the MCPT and SC2-MCPT formulations, up to order three. Basis set
applied was 6-311G**. The full CI solution is shown as reference. Size-inconsistency is tabulated in the last

column.
Energy difference
Method Energy(hartreg (millihartree
EH2 |5|-|2...|-|2 |5|-|2...|-|2_2|5H2
MCPT-0 —1.128 780 —2.257 559 0.000
SC2-MCPT-0 —1.128 780 —2.257 559 0.000
Eq. (25) for €-s
MCPT-2 —1.139 049 —2.277 914 0.184
MCPT-3 —1.141 042 —2.281 932 0.152
SC2-MCPT-2 —1.140832 —2.281 664 0.000
SC2-MCPT-3 —1.141 863 —2.283 528 0.198
Eq. (26) for €-s
MCPT-2 —1.139 113 —2.278 043 0.183
MCPT-3 —1.141 069 —2.281 989 0.149
SC2-MCPT-2 —1.140 906 —2.281812 0.000
SC2-MCPT-3 —1.141 860 —2.283519 0.201
FCI —1.141 748
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TABLE V. Total energies of one single Be atom and two Be atoms 100 A apart. Energies obtained by PT in the
MCPT and SC2-MCPT formulations are given up to order three. Basis set applied was 6-311G**. The full CI
solution is shown as reference. Size inconsistency is tabulated in the last column.

Energy difference

Method Energy(hartreg (millihartree

EBe EBe...Be EBe...Be_ 2EBe
MCPT-0 —14.615 608 —29.231 216 0.000
SC2-MCPT-0 —14.615 608 —29.231 216 0.000

Eq. (25) for €-s

MCPT-2 —14.631011 —29.261 810 0.212
MCPT-3 —14.632 906 —29.265 688 0.123
SC2-MCPT-2 —14.632 479 —29.264 957 0.000
SC2-MCPT-3 —14.633773 —29.267 322 0.224

Eq. (26) for €-s

MCPT-2 —14.631 069 —29.261 934 0.205
MCPT-3 —14.632 935 —29.265 753 0.118
SC2-MCPT-2 —14.632 577 —29.265 155 0.000
SC2-MCPT-3 —14.633725 —29.267 214 0.236
FCI —14.633 376

both examples. The reference function was a valence CAS8f the MCPT scheme diminishes faster, still the violation of
with two active electrons and four active orbitals for a singlethe two schemes fall into the same order of magnitude at the
Be atom, and correspondingly we used four active electronthird and higher orders.

and eight active orbitals for the noninteracting dimer. A
simple (2, 2 CAS was computed as reference for the
stretched H molecule and4, 4) CAS for the noninteracting

dimer. Geometry of jwas a rectangle, the longer edge be- A modified formulation of the previously introduced
ing 100 A. Results collected in Tables IV and V include multireference perturbation theory has been presented. In the
MCPT and SC2-MCPT corrections in two partitionings: we modified theory the projector to the one-dimensional refer-
used the diagonals of either the ordinary or the generalizegnce space has been left out from the zero order Hamil-
Fock operator to construct orbital energigs tonian. This has the consequence, that the first nonvanishing
Numbers tabulated in Tables V and IV show that there iserms of the PT series, i.e., the first order wave function and
hardly any difference between zero order energies of formuthe second order energy is strictly size consistent, provided
lations MCPT and SC2-MCPT, similar to the situation appar-that the zero order wave function is size consistent. Higher
ent in Figs. 1-3. Second and third order corrections ar@rders of this series, however, violate the size-consistency
closer to the FCI value in the SC2-MCPT formulation thanrequirement.
by MCPT. Second order in SC2-MCPT represents a signifi-
cant improvement upon MCPT-2, while third orders in the
two formulations are of similar quality. Third order of SC2-
MCPT overshoots in both examples; this effect is not shown
by MCPT-3. Still, the absolute value of the error of SC2-
MCPT-3 is slightly smaller than that of MCPT-3. Partitioning
with orbital energies taken from E@26) performs slightly
better than Eq(25). However, this effect touches the num-
bers not at the relevant digit: while the error is in millihartree
at second order, this choice improves only by a few hun-.
dredths of a millihartree. .
Size inconsistency is of the order of magnitude of a tenth
of a millihartree. It diminishes stepping from MCPT-2 to
MCPT-3. Interestingly, size-consistency violation of the third
order of the SC2-MCPT formulation is a little larger than 0 6 8 10 12 14
size inconsistency of MCPT-2. Size-consistency violation as order of PT
a function of the order of PT is plotted in Fig. 5 for the case o .
of the H, molecules. Here one sees that consistency violatiofy'S: > Size inconsistency of MCPT and SC2-MCPT schemes on the ex-
_ . mple of two stretched fHmolecules. For geometry see text. Numbers dis-
of the SC2-MCPT scheme remains slightly larger than that oglayed are in millihartrees, basis set used is 6-311G**. Inconsistency is
MCPT at every order from third order on. Size inconsistencycomputed a€y, 1, - 2Ey,.

IV. SUMMARY
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