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Spin-adaptation of virtual functions in state-specific multireference perturbation theory is examined.
Redundancy occurring among virtual functions generated by unitary group based excitation opera-
tors on a model-space function is handled by canonical orthogonalization. The treatment is found to
remove non-physical kinks observed earlier on potential energy surfaces. Sensitivity analysis of the
new approach confirms the elimination of the drastic increase in singular values of sensitivity matri-
ces, reported earlier. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795436]

I. INTRODUCTION

Molecular systems often exhibit multireference charac-
ter, which persists to be a challenge for theoreticians to
describe. Systems of fundamental chemical interest may be-
long to this class, such as stretched covalent bonds, tran-
sition metal compounds with open shells, or excited elec-
tronic states of molecules. From the methodological point of
view, the difficulty lies with the fact, that a single determinant
does not give a qualitatively correct wavefunction even at the
zero order. Constructing a reasonably good multideterminan-
tal wavefunction may not represent a problem in itself. It is
however not straightforward to describe correlation effects,
based on such a reference function. Development of standard
electron correlation approaches for the multireference (MR)
case continues to be an active field. For surveys on tech-
niques in MR configuration interaction (CI), MR coupled-
cluster (CC), and MR perturbation theory (PT), see, e.g.,
Refs. 1–3, respectively.

There exists an especially great variety of multirefer-
ence perturbation theories (MRPT’s). To help orientation,
it is usual to categorize MRPT techniques as “diagonal-
ize then perturb” or “perturb then diagonalize.” Our present
study focuses on an approach belonging to the latter class.
Methods of this type rely of an effective Hamiltonian, of-
ten but not exclusively based on the Bloch-equation.4 Ef-
fective Hamiltonian theories have the potential to target
more than one state at a time, though intruder effect may
hamper the calculation of numerous states simultaneously.
One solution to the intruder problem is to target less states
than the dimension of the model space, leading to in-
termediate Hamiltonian theories.5 The extreme case of a
single target state was considered by Mukherjee and co-
workers24, 27, 47 when developing state-specific (SS) MRPT.6–8

Besides manifest intruder avoidance, an attractive feature of
SS-MRPT is the extensive nature of its energy corrections.
The method of SS-MRPT has been successfully applied for
determining potential energy surfaces and spectroscopical
data.9–11 It has also been demonstrated that SS-MRPT gives
competitive results, compared to various alternative MRPT
methods.12, 13

In addition to extensivity, the question of spin-symmetry
breaking may come as a further problematic point of multiref-
erence correlation methods. Following the pioneering stud-
ies on spin symmetry conservation within the coupled-cluster
methodology,14–16 two paradigms appear to be persistent in
MR CC theories: (i) application of spin-free unitary genera-
tors for expressing the cluster-operator,17–21 or (ii) consider-
ation of the eigenvalue equation of operator S2 in addition to
that of H.22, 23 The first approach has the drawback of tak-
ing the exponential of non-commuting operators, resulting in
contractions among different terms of the cluster-operator. In
contrast to this, spin-adaptation based on S2-equations works
with “pure” excitation-operators, but it relies on a single de-
terminantal reference state.

In the context of the parent CC theory of SS-MRPT,
called SS-MRCC, the unitary group approach (UGA) has
been used in various manners to arrive at a spin-pure
formulation.24–26 First attempts in this line used exponen-
tials of normal ordered spin-free operators.24 More recently,
normal-ordering of the entire exponential, {exp (Tμ)} has
been advocated to avoid the long expansion including con-
tractions among various cluster-operators.26

The UGA type spin-adaptation of SS-MRPT has been
reported and applied in several studies.13, 24 Mao and co-
workers suggested a partitioning, which suppresses depen-
dence of the results on the spin-coupling scheme.27 Explicit
electron correlation correction to spin-adapted SS-MRPT
been also implemented and tested recently.28

In spite of the manifest intruder-free character of SS-
MRPT, unphysical kinks have been observed on the order of
1–10 mEh when computing potential energy surfaces. Simi-
lar experience has been reported in the parent coupled-cluster
theory29 as well as in a related multireference CC theory, de-
veloped by Hanrath.30 The unexpected behavior has been at-
tributed to small coefficients in the CAS wavefunction, which
appear in the denominator of the amplitude equations. Later,
Hanrath30 hinted that reference specific excitation spaces used
for the projection of the Schrödinger equation in SS-MRCC
may be responsible for the numerical inaccuracy.31 To cir-
cumvent the problem, a damping procedure has been applied
both in SS-MRCC29 and SS-MRPT.11, 32 Our study of the
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problem has revealed, that the unphysical kinks are accompa-
nied by orders of magnitude increase in the coefficient sen-
sitivity of SS-MRPT energies and relaxed coefficients.32 It
could however provide no explanation on the source of the
phenomenon.

In the present work, we study a redundancy among vir-
tual functions, which arises due to the application of spin-
free unitary generators. An orthogonalization procedure is
introduced to remove the redundancy stemming from spin-
adaptation. Numerical applications of the theory demonstrate
that the problem of kinks gets cured by screening redundancy.
Sensitivity analysis confirms the finding, showing no notable
increase in sensitivities in the previously problematic regions
of the potential energy surface.

II. THEORY

A. SS-MRPT

Essential features of SS-MRPT are briefly summarized
below, focusing on spin-adaptation applying unitary group
generators. For detailed derivation, we refer to previous works
on the determinantal version6, 8, 33–35 and the unitary group ap-
proach (UGA) based spin-adaptation of the theory.24, 26, 36

State-specific MRPT relies on a model space, the corre-
sponding projector being

P =
∑

μ

|φμ〉〈φμ|.

Functions φμ are presently considered to form a complete ac-
tive space (CAS). This restriction is not necessary to impose:
incomplete model space formulation of SS-MRCC has been
also worked out.37

The initial target function expanded in terms of model-
space functions is written as

|�〉 =
∑

μ

|φμ〉 c(0)
μ , (1)

the associated CAS energy denoted by ECAS. Parametrization
of the target function

|�〉 =
∑

μ

exp(T μ) |φμ〉 cμ (2)

involves a separate cluster-operator Tμ, associated to each
model-space function.38

Equations determining the amplitudes in Tμ are derived
from the Schrödinger-equation, assuming a set of redundancy
conditions characteristic for SS-MRCC. Upon linearization,
the amplitude equations become8

〈χl|H |φμ〉 c(0)
μ + 〈χl|[H , T μ]|φμ〉 c(0)

μ

+
∑

ν

〈χl|T ν − T μ|φμ〉Hμν c(0)
ν = 0. (3)

Functions χ l are elements of the outer space Q, complemen-
tary to P

Q = 1 − P =
∑

l

|χl〉〈χl|. (4)

Since Eq. (3) holds for each μ and l, the number of equations
is appropriate if using as many outer-space functions χ l for a
given φμ, as the number of parameters in Tμ.

Invoking a perturbative splitting of the Hamiltonian

H = H (0) + V

with the zero-order operator diagonal on the basis of functions
φμ and χ l

H (0) =
∑

μ

E(0)
μ |φμ〉〈φμ| +

∑
l

E
(0)
l |χl〉〈χl| , (5)

equations determining the amplitudes at the first order take
the form8∑

ν

[
Hμν + (

E
(0)
l − E(0)

μ − ECAS
)
δμν

]
c(0)
ν tνlμ

= −Hlμ c(0)
μ , (6)

with Hμν = 〈φμ|H|φν〉, Hlμ = 〈χ l|H|φμ〉, and tνlμ
= 〈χl|T ν |φμ〉.

Having determined the amplitudes, the non-symmetric
effective Hamiltonian is constructed up to order two as

H [2]
νμ = 〈φν |H + (HT μ)c|φμ〉 .

The eigenvalue-equation of H [2]
νμ yields the energy and the re-

laxed coefficients of SS-MRPT at order two,∑
μ

H [2]
νμ cμ = E[2] cν.

B. Spin-adaptation

When aiming a correct treatment of spin-symmetry, it is
practical to consider functions φμ as configuration state func-
tions (CSF). Conserving spin quantum number of the refer-
ence functions is possible if expressing the cluster operator in
terms of generators of the unitary group

Ea
i = a+

aαaiα + a+
aβaiβ .

Such a parametrization—ensuring orthogonality of Tμφμ to
the model space—can be given as

T μ =
∑
ia

tai
{
Ea

i

}
c

+
∑
ius

t
us

i

{
E

us

i

}
c

+
∑
aus

taus

{
Ea

us

}
c

+1

2

∑
ij

∑
ab

(1 + δij δab)tab
ij

{
Eab

ij

}
c
+

∑
ij

∑
aus

t
aus

ij

{
E

aus

ij

}
c

+
∑
ius

∑
ab

tab
ius

{
Eab

ius

}
c

+1

2

∑
ij

∑
us �=vs

t
usvs

ij

{
E

usvs

ij

}
c

+ 1

2

∑
us �=vs

∑
ab

tab
usvs

{
Eab

usvs

}
c

+
∑
ius

∑
avs

t
avs

ius

{
E

avs

ius

}
c

+
∑
ius

∑
avs

t
vsa
ius

{
E

vsa
ius

}
c

+
∑
ius

∑
vs �=ws

t
vsws

ius

{
E

vsws

ius

}
c

+
∑
us �=vs

∑
aws

taws

usvs

{
Eaws

usvs

}
c

(7)
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with {Eab
ij }c = {Ea

i Eb
j }c. The above expression of Tμ is es-

sentially in agreement with Refs. 24 and 27, with the excep-
tion that normal ordering with respect to the common core of
all model space functions, φc is used, denoted by {.}c. As it
was argued before,27 in case of the operators appearing in Eq.
(7), normal ordering with respect to φc is the same as normal
ordering with respect to the doubly occupied part of φμ. In-
dices i, j, . . . stand for orbitals doubly occupied in φμ (i.e.,
they can be either holes or particles as defined by φc). Labels
a, b, . . . denote orbitals unoccupied in φμ (either inactive or
active). Active indices are labeled by u, v, . . .. Occupancy of
active indices is indicated in subscript when needed: ud refers
to doubly occupied, us to singly occupied, and uz to an unoc-
cupied active orbital. Note the dichotomy of the notation for
active indices: a doubly occupied active may be labeled by i
or by ud, an unoccupied active may be denoted by either uz or
by a. Inactive particles, also called virtuals, are labeled by a,
b, . . . only. When needed, indices p, q, . . . are used to refer to
generic orbitals.

For open shell CSF’s, a matching between upper and
lower indices of unitary generators can occur for orbitals
singly occupied in φμ. Upper-lower matching affects the so-
called spectator excitations, where active labels appear both as
creation and annihilation indices. Any matching between up-
per and lower indices are excluded among single excitations
but they can appear among doubles in Tμ. When matching
orbitals are necessarily of the same spin, we speak of direct
spectator excitations, these are of the form {E.us

. us
}c. In contrast

to this, excitations of the type {Eus .
. us

}c are called exchange
spectators.

Excitation types admissible in Tμ are inherently con-
nected with the question of redundancy. State-specific theo-
ries relying on a Jeziorski-Monkhorst type parametrization38

encounter a redundancy stemming from the fact that a given
excited function χ l is generated by Tμ acting on φμ as well as
by Tν acting on φν , μ �= ν. Redundancy of this sort is handled
by introducing sufficiency conditions,33 which are exploited
in Eq. (3), the linearized form of the SS-MRCC amplitude
equations. In spin-orbital based formulations of SS-MRPT,
Eq. (6) written for all μ, l, determines all the amplitudes
considered.

In a spin-adapted treatment, further complications arise
from the fact that acting on φμ with the spin-free oper-
ators in Eq. (7) of the cluster operator, a linearly depen-
dent set is generated, if φμ is open-shell. This additional
redundancy has been taken care of in different manners in
various spin-adapted MRCC theories. Paldus an co-workers
have been using spin functions as χ l, constructed accord-
ing to the Gel’fand coupling scheme.18, 19 Sen et al. also
considered linearly independent spin-adapted functions in
their UGA-based state-universal MRCC.39 In the context
of state-specific MRCC, Mukherjee and co-workers24, 27, 47

choose to take the overlapping and redundant set of func-
tions χ l, as resulted by acting with unitary generators on
model space functions.24 When following the latter ap-
proach, the use of additional sufficiency conditions, analo-
gous those of the the spin-orbital based theory, have been
reported.25–27 These are necessary, since the number of am-
plitudes in a given truncation scheme of Tμ exceeds the di-

mension of the space spanned by functions χ l, generated
from φμ.

To give a specific example, consider a case of two active
electrons and take φμ as an open-shell singlet

|φμ〉 = 1√
2

(
v+

β u+
α + u+

β v+
α

)|φc〉, u �= v. (8)

Let us examine two double excitations, {Evsa
ius

}c and {Eavs

ius
}c,

acting on φμ,

1

2

{
E

avs

ius

}
c
|φμ〉 = ∣∣χavs

ius

〉
,

{
E

vsa
ius

}
c
|φμ〉 = ∣∣χvsa

ius

〉
,

with factor 1/2 introduced for normalization. It is easy to show
that the above functions differ only in sign

χ
avs

ius
= − χ

vsa
ius

.

Taking E
(0)
l = 〈χl|H |χl〉 for zero order excited energies (cf.

Epstein-Nesbet (EN) partitioning in PT), it is clear from
Eq. (6) that the equations obtained by projection with χ

avs

ius

and χ
vsa
ius

are the same. This would prohibit the inversion of the
coefficient matrix of Eq. (6), if written for all μ and l indices.
The amplitudes of SS-MRPT are however not obtained by di-
rect inversion of the coefficient matrix of Eq. (6). They are
decoupled instead, cf. Ref. 24 or the discussion in Sec. II D.
For each excitation pattern—in our example for {Evsa

ius
}c and

{Eavs

ius
}c—separate equations are solved, which are of the di-

mension of the model space. In a spin-orbital based approach,
where no overlap occurs among various χ l’s generated from
the same φμ, the decoupling follows from the structure of
Eq. (6) and does not represent any approximation.8 In con-
trast to this, coupling does occur in Eq. (6) in a spin-adapted
formulation, affecting excitations, which generate overlap-
ping functions χ l, when acting on the same φμ. Neglecting
this coupling solves the additional redundancy problem of
spin-adapted theory, since the number of equations gets aug-
mented, to match the number of unknowns.

When dealing with a spin-adapted multireference formu-
lation, one has to be aware of an even further complexity:
spin-functions of a given open-shell structure may correspond
to non-uniform excitation levels when generated from a par-
ticular, open-shell φμ. To give an example again, consider ex-
citation {Eab

ii }c , a �= b , acting on φμ of Eq. (8). The result-
ing function

1√
2

{
Eab

ii

}
c
|φμ〉 = ∣∣χab

ii

〉
has four singly occupied orbitals: u, v, a, b. With four open
shells, there exists a second singlet function, related to φμ by
a triple excitation, according to18{

E
usa b
i us i

}
c
|φμ〉 ∼ ∣∣χusa b

i us i

〉
.

If truncating Tμ based on excitation level, χab
ii is used for pro-

jecting the equations, while χ
usa b
i us i not. Since these functions

mix, when rotating, e.g., active orbitals, it is necessary to con-
sider both of them, if unitary invariance is to be kept.18 In
any approximate theory, it is a matter of decision, whether to
include all spin components of open-shell excited functions,
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or not. In the present approach, we wish to investigate the
role of redundancy, and keep all other aspects of the theory
unchanged. For this reason, we conserve the treatment of our
previous studies,13, 32 and stick with truncation of Tμ based on
excitation level. We note in passing, that choice Eq. (5) of the
zero-order Hamiltonian—i.e., diagonal on the basis applied—
prohibits the invariance of SS-MRPT to a unitary transforma-
tion anyhow.

C. Removal of redundancy in Tμ

Redundancy in Tμ stemming from spin-adaptation has
been so far treated by applying additional sufficiency condi-
tions in SS-MRPT.24, 27, 32 Here, we examine a variant of spin-
adapted SS-MRPT, using orthogonal excited functions. The
basic idea is to identify overlapping sets of χ l-s obtained by
acting with the unitary generators in Tμ on φμ. The overlap-
ping functions are orthogonalized by the canonical scheme.40

Eigenvectors corresponding to zero eigenvalues of the overlap
matrix are dropped to eliminate redundancy. The treatment is
similar in spirit to the orthogonalization applied in internally
contracted MR approaches, both in the framework of PT41, 42

and CC.43–46 A notable difference with internally contracted
theories is that overlap arises only due to spin-adaptation in
the present case. This means that the open-shell structure of
nonorthogonal functions must be the same, overlapping sets
are consequently rather small. In the examples studied here,
they are three dimensional at most, lifting the need to per-
form any numerical procedure. In parallel with filtering re-
dundancy, the number of amplitudes is reduced to match the
number orthogonal virtual functions. The orthogonalization
procedure yields a modified cluster operator

T̃ μ =
∑
I,A

∑
g

g t̃
A
I

{
gẼ

A
I
}

c
, (9)

where upper case calligraphy letters I,J ,A,B may be com-
posite indices: they refer either to a single orbital, or to an

orbital pair. The new cluster operator, T̃ μ is used for writing
amplitude equations in Sec. II D.

The very first step in eliminating overcompleteness was
taken by Mukherjee and co-workers,24, 27, 47 when combin-
ing direct spectator excitations with the corresponding single
excitations in Tμ. This is an obvious redundancy screening,
since {Eus

us
}c acts as an operator of unity on φμ, where us is

singly occupied. For this reason, the result of a double exci-
tation, involving direct spectators, matches the effect of the
corresponding single substitution, spectator indices omitted.

In the present approach, we choose to omit direct specta-
tor excitations entirely. Even after excluding direct spectators,
there remain redundancies among spin-free operator gener-
ated excited functions. Overlapping sets of excited functions
and their orthogonalized counterparts are presented in Table I
for single excitations and in Table III for doubles. Excitation
operators appearing in T̃ μ, defined based on the orthogonal-
ized functions are collected in the same tables. Relation be-
tween amplitudes in Eq. (7) and those appearing in Eq. (9)
are given in Tables II and IV. A detailed derivation of the re-
sults collected in Tables I–IV is given in the supplementary
material.48

When categorizing excitations, designations core, docc,
active, active(1), empty, and virtual are used. Terminology
core refers to orbitals doubly occupied in all model func-
tions, active designates orbitals with variable occupancy in the
model functions, while virtual refers to orbitals unoccupied in
any model function. Classifications docc, active(1) and empty
are defined with respect to a particular model function, and
stand for a doubly occupied, singly occupied or unoccupied
orbital, respectively.

For the sake of simplicity, we restrict the analysis
to two active electrons. In such a situation, singlet refer-
ence functions are either closed-shell determinants, or two-
determinantal open-shell functions. Tables III and IV do not
include the case of 2 docc→2 empty excitation performed on
a closed-shell reference function. (As discussed in the sup-
plementary material,48 this situation is completely parallel
with the case of 2 core→2 empty excitation exercised upon

TABLE I. Overlapping sets of normalized excited functions and their orthonormalized counterparts for single excitations. Excitation operators based on the
orthogonalized functions and the respective amplitudes of cluster operator T̃ μ are also tabulated. Model function φμ is two-determinantal open-shell as given
by Eq. (8), u < v is assumed. See text for labeling convention.

Corresponding term in T̃ μ

Overlapping functions Orthonormal functions { f Ẽ
A
I }c f t̃

A
I

Core → empty
χa

i = 1√
2
{Ea

i }cφμ

χ
usa
i us

= 1√
2
{Eusa

ius
}cφμ

χ
vsa
i vs

= 1√
2
{Evsa

ivs
}cφμ

1χ̃
a
i = − 2

3 χa
i

+ 1
3 (χusa

i us
+ χ

vsa
i vs

)

2χ̃
a
i = 1√

3
(χusa

i us
− χ

vsa
i vs

)

{ 1Ẽ
a

i }c = −{Ea
i }c

+ 1
2 ({Eusa

i us
}c + {Evsa

i vs
}c)

{ 2Ẽ
a

i }c = {Eusa
i us

}c − {Evsa
i vs

}c

1 t̃
a
i

2 t̃
a
i

Core → active(1)
χ

us
i = {Eus

i }cφμ

χ
vsus
ivs

= 1
2 {Evsus

ivs
}cφμ

χ̃
us
i = 1

2 (χus
i − χ

vsus
i vs

) {Ẽus
i }c = {Eus

i }c − 1
2 {Evsus

i vs
}c t̃

us
i

Active(1) → empty
χa

us
= {Ea

us
}cφμ

χ
vsa
usvs = {Evsa

usvs }cφμ

χ̃a
us

= 1
2 (χa

us
+ χ

vsa
usvs ) {Ẽa

us
}c = {Ea

us
}c + {Evsa

usvs }c t̃aus
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TABLE II. Relation between cluster amplitudes in the redundant
parametrization Eq. (7) of Tμ and the orthogonal parametrization Eq. (9)
of T̃ μ. Case of single excitations. Model function φμ is two-determinantal
open-shell, as given by Eq. (8). See text for labeling convention.

Core → empty

tai = − 1 t̃
a
i

t
us a
i us

= 1
2 1 t̃

a
i + 2 t̃

a
i

t
vs a
i vs

= 1
2 1 t̃

a
i − 2 t̃

a
i

Core → active(1)
t
us
i = t̃

us
i

t
vsus
ivs

= − 1
2 t̃

us
i

Active(1) → empty
taus

= t̃ aus

t
avs
vsus = t̃ aus

an open-shell reference function.) Apart from this case, and
those considered in Tables I and III, parametrization of Tμ

agrees with that of T̃ μ, with the difference that direct specta-
tors are excluded from the latter.

We wish to stress here that from the purely theoreti-
cal point of view, the use of orthogonal functions is by no
means superior to overlapping functions. If invariance to a

linear transformation of the basis holds, the two approaches
produce the same result. When dealing with an overlapping
basis however, care has to be taken to achieve a proper—
possibly equivalent—formulation. Deriving equations of SS-
MRPT, orthogonality of the virtual functions was assumed in
the form of projector Q (cf. Eq. (4)) and the zero-order Hamil-
tonian (cf. Eq. (5)). Formulation of the theory with overlap-
ping functions χ l, requires either the overlapping form of the
above quantities, e.g.,

Q =
∑
lm

|χl〉(S−1)lm〈χm|, (10)

or orthogonalization of functions χ l (with Slm = 〈χ l|χm〉 giv-
ing the elements of the overlap matrix). It is the latter route
we explore in this study.

Use of orthogonal or overlapping functions has its spe-
cific advantages as well as shortcomings. Orthogonalization
of functions χ l brings a considerable complication in the
present study, which discouraged us to step beyond two active
electrons. Keeping the overlapping functions and introducing
their overlap in the equations may offer a simpler alternative.
Overcompleteness is still to be removed if relying on the spec-
tral form of projector Q, since S−1 is singular otherwise.

A known caveat in connection with orthogonalization is
the possibility for spoiling size-extensivity.45, 49, 50 To examine
this property, one may start from the original, spin-adapted

TABLE III. Overlapping sets of normalized excited functions and their orthonormalized counterparts for double excitations. Excitation operators based on the
orthogonalized functions and the respective amplitudes of cluster operator T̃ μ are also tabulated. Model function φμ is two-determinantal open-shell, according
to Eq. (8). Index ordering i < j, a < b, and u < v is assumed. See text for labeling convention. Notation p(ua) stands for the parity of the permutation ordering
the pair (ua).

Corresponding term in T̃ μ

Overlapping functions Orthonormal functions { f Ẽ
A
I }c f t̃

A
I

2 core → 2 empty

χab
ij = 1

2 {Eab
ij }cφμ

χba
ij = 1

2 {Eba
ij }cφμ

1χ̃
ab
ij = χab

ij + χba
ij

2χ̃
ab
ij = 1√

3
(χab

ij − χba
ij )

{ 1Ẽ
ab

ij }c = {Eab
ij }c + {Eba

ij }c

{ 2Ẽ
ab

ij }c = {Eab
ij }c − {Eba

ij }c

1 t̃
ab
ij

2 t̃
ab
ij

2 core → active(1), empty
χ

usa
ij = 1√

2
{Eusa

ij }cφμ

χ
aus
ij = 1√

2
{Eaus

ij }cφμ

1χ̃
usa
ij = χ

usa
ij + χ

aus
ij

2χ̃
usa
ij = (−1)p(usa) · 1√

3
(χusa

ij − χ
aus
ij )

{ 1Ẽ
usa

ij }c = {Eusa
ij }c + {Eaus

ij }c

{ 2Ẽ
usa

ij }c = (−1)p(usa) · ({Eusa
ij }c − {Eaus

ij }c)

1 t̃
us a
ij

2 t̃
us a
ij

Core, active(1) → 2 empty

χab
ius

= 1√
2
{Eab

ius
}cφμ

χba
ius

= 1√
2
{Eba

ius
}cφμ

1χ̃
ab
ius

= χab
ius

+ χba
ius

2χ̃
ab
ius

= 1√
3

(χab
ius

− χba
ius

)

{ 1Ẽ
ab

ius
}c = {Eab

ius
}c + {Eba

ius
}c

{ 2Ẽ
ab

ius
}c = {Eab

ius
}c − {Eba

ius
}c

1 t̃
ab
ius

2 t̃
ab
ius

2 core → 2 active(1)
χ

usvs
ij = {Eusvs

ij }cφμ

χ
vsus
ij = {Evsus

ij }cφμ

χ̃
usvs
ij = 1

2 (χ̃usvs
ij + χ̃

vsus
ij ) {Ẽusvs

ij }c = {Eusvs
ij }c + {Evsus

ij }c t̃
us vs
ij

2 active(1) → 2 empty
χab

usvs
= {Eab

usvs
}cφμ

χba
usvs

= {Eba
usvs

}cφμ

χ̃ab
usvs

= 1
2 (χ̃ ab

usvs
+ χ̃ ba

usvs
) {Ẽab

usvs
}c = {Eab

usvs
}c + {Eba

usvs
}c t̃ab

usvs

Core, active(1) → active(1), empty
χ

vsa
ius

= {Evsa
ius

}cφμ

χ
avs
ius

= 1
2 {Eavs

ius
}cφμ

χ̃
vsa
ius

= (−1)p(vsa) · 1
2 (χ̃ vs a

ius
− χ̃

avs
ius

) {Ẽvsa
ius

}c = (−1)p(vsa) · ({Evsa
ius

}c − 1
2 {Eavs

ius
}c) t̃

vs a
ius
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TABLE IV. Relation between cluster amplitudes in the redundant
parametrization Eq. (7) of Tμ and the orthogonal parametrization Eq. (9)
of T̃ μ. Case of double excitations. Model function φμ is two-determinantal
open-shell, as given by Eq. (8). See text for labeling convention. Index order-
ing i < j, a < b, and u < v is assumed. Notation p(ua) stands for the parity
of the permutation ordering the pair (ua).

2 core → 2 empty

tab
ij = 1 t̃

ab
ij + 2 t̃

ab
ij

tba
ij = 1 t̃

ab
ij − 2 t̃

ab
ij

2 core → active(1), empty

t
usa
ij = 1 t̃

us a
ij + (−1)p(usa)

2 t̃
us a
ij

t
aus
ij = 1 t̃

us a
ij − (−1)p(usa)

2 t̃
us a
ij

Core, active(1) → 2 empty

tab
ius

= 1 t̃
ab
ius

+ 2 t̃
ab
ius

tba
ius

= 1 t̃
ab
ius

− 2 t̃
ab
ius

2 core → 2 active(1)

t
us vs
ij = t̃

us vs
ij

t
vsus
ij = t̃

us vs
ij

2 active(1) → 2 empty

tab
usvs

= t̃ ab
usvs

tba
usvs

= t̃ ab
usvs

Core, active(1) → active(1), empty

t
avs
ius

= (−1)p(vsa) 1
2 t̃

vs a
ius

t
vs a
ius

= (−1)p(vsa) t̃
vs a
ius

formulation of the theory, which is size-extensive.24 Consider
now a separation of the total system for two non-interacting
parts, characterized by H = HA + HB. Assume that orbitals
are localized to subsystems, e.g., iA is localized to system A
and jB to system B. In this situation, amplitudes t(μ) may also
be given a subsystem label A or B. Amplitude assignation is
based on the Hamiltonian, which appears in the interaction
matrix element, e.g., t

aA

iA
(μ) is given label A, since only HA

figures in

〈φμ| {EaA

iA

}†
c

(HA + HB) |φμ〉 = 〈φμ| {EaA

iA

}†
c
HA|φμ〉.

Size-extensivity is conserved upon orthogonalization if the
quantities mixed by the transformation are assigned the same
subsystem label. As Tables I and III reflect, this holds true for
every overlapping subspace affected by the present transfor-
mation. The case of double excitations is trivial, since unitary
generators combined to form {ẼA

I }c have the very same in-
dices. Regarding single excitations, {EuBaA

iAuB
}c may mix with

{EaA

iA
}c. This however presents no problem, since the corre-

sponding interaction matrix element involves only HA:

〈φμ| {EuBaA

iAuB

}†
c

(HA + HB) |φμ〉 = 〈φμ| {EuBaA

iAuB

}†
c
HA|φμ〉,

hence t
uBaA

iAuB
is assigned to system A. Separability of the theory

is therefore expected with two active electrons.

Overlapping spaces may get larger when increasing the
number of active electrons. Size-extensivity of the theory is
expected to still hold, since the overlapping functions ex-
hibit the same open-shell structure. Upon separation, this is
expected to lead to a subsystem assignation uniform for the
overlapping set.

D. Coupling of amplitudes within T̃ μ

A compact form of amplitude Eq. (6) can be written in
the spin-adapted case as

∑
ν

∑
J ,B

Hμν c(0)
ν C (μ, I → A; ν,J → B) tBJ (ν)

= − 〈
χA
I (μ)

∣∣H ∣∣φμ

〉
c(0)
μ . (11)

Connection with Eq. (6) is set by recognizing, that

〈
χA
I (μ)

∣∣ = 1

NA
I (μ)

〈φμ| {EA
I
}†

c

stands for 〈χ l| of Eq. (6), factor NA
I (μ) ensuring normaliza-

tion. For μ �= ν, amplitude tνlμ of Eq. (6) is replaced by

〈
χA
I (μ)

∣∣T ν
∣∣φμ

〉
=

∑
J ,B

C (μ, I → A; ν,J → B) tBJ (ν), μ �= ν

in Eq. (11). For μ = ν, the product C(μ, I → A; μ, I
→ A)tAI (ν) in Eq. (11) incorporates term (E(0)

l

− E(0)
μ − ECAS)tμlμ on the left hand side of Eq. (6) as

well. Reference index ν of the amplitude is written in round
braces to avoid confusion with excitation indices. Index μ

of the reference function is also indicated in round braces in
the virtual function, e.g., χA

I (μ), when its parentage is not
obvious.

The additional conditions applied for the redundancy
stemming from spin adaptation, can now be given expression-
wise, by the following decoupled form of matrix C:

C (μ, I → A; ν,J → B)

= δIJ δAB NA
I (μ)

(
1 + δμν

(
XA

I (μ) − ECAS
)
H−1

μμ

)
(12)

with the shorthand

XA
I (μ) = 〈

χA
I (μ)

∣∣H (0)
∣∣χA

I (μ)
〉 − 〈φμ|H (0)|φμ〉 (13)

for zero order excitation energy. Note, that XA
I (μ) is shifted

by Hμμ − ECAS in the energy denominator of SS-MRPT, a
reason why the theory is manifestly robust against intruders.8

Inspecting matrix C of Eq. (12), factors δIJ δAB ap-
parently exclude any coupling between excitation patterns,
Eq. (11) can therefore be solved for each I → A pattern
separately.
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TABLE V. Elements C̃ of Eq. (15), for core → virtual excitation, i → a. Abbreviations: “cs” – closed-shell, “os” – open-shell. Indices f and g are left blank,
when not applicable. Virtual function f χ̃a

i (μ) is assumed normalized. See text for labeling convention and the definition of f X
a
i (μ).

μ f ν g C̃(μ, i → a, f ; ν, i → a, g)

cs cs
√

2 + √
2 δμν (Xa

i (μ) − ECAS) H−1
μμ

cs, xd os, us < vs 1 − √
2(1 + 1

2 (δxu + δxv))
cs, xd os, us < vs 2 −√

2(δxu − δxv)
os, xs < ys 1 cs −√

2
os, xs < ys 1 os, us < vs 1

√
2(1 + 1

4 (δxu + δyu + δxv + δyv)) + 3√
2

δμν ( 1X
a
i (μ) − ECAS) H−1

μμ

os, xs < ys 1 os, us < vs 2 1√
2

(δxu − δxv + δyu − δyv)

os, xs < ys 2 cs 0

os, xs < ys 2 os, us < vs 1
√

3
2
√

2
(δxu + δxv − δyu − δyv)

os, xs < ys 2 os, us < vs 2
√

3√
2

(δxu − δxv − δyu + δyv) + √
6 δμν ( 2X

a
i (μ) − ECAS) H−1

μμ

Turning now to the equations determining amplitudes of
cluster operator T̃ μ, the compact form of Eq. (6) becomes∑

ν

∑
J ,B

∑
g

Hμν c(0)
ν C̃ (μ, I → A, f ; ν,J → B, g) g t̃

B
J (ν)

= − 〈
f χ̃A

I (μ) |H | φμ

〉
c(0)
μ . (14)

Compared to Eq. (11), an additional sum is introduced for
lower left index g, since for μ �= ν〈

f χ̃A
I (μ)

∣∣T̃ ν
∣∣φμ

〉
=

∑
J ,B

∑
g

C̃ (μ, I → A, f ; ν,J → B, g) g t̃
B
J (ν)

(15)

holds in this case. Indices f and g can take values 1 and 2,
when the case requires (cf. Tables I and III). Due to the or-
thogonality of functions f χ̃A

I (μ), we can allow couplings to
appear in Eq. (14). Coupling affects only those excitations
which are combined when orthogonalizing virtual functions,
consequently the factor δIJ δAB appears in C̃ as well. Equa-

tion (14) can therefore also be solved separately for excitation
patterns I → A, but not separately for indices f.

It is a rather tedious task to derive the matrix C̃, since
its complexity increases with the number of active elec-
trons. Matrix elements for two active electrons are collected
in Tables V–VII for single excitations. Double excitations
are uncoupled in index f in most of the cases. The corre-
sponding values for C̃ are collected in Table VIII. Couplings
among doubles’ amplitudes occur for two excitation types:
core, active→2 active and core, active→active, virtual. Ma-
trix form of C̃ for these excitations is shown in Table IX.
Type core, active→active, virtual is not tabulated, as it can
be derived from matrix C̃ of the core, active→2 active case,
by substituting index a for vz, and omitting the last row and
column.

Orthogonalization results in a slight increase in computa-
tional cost as compared to the decoupled variant of the redun-
dant, spin-adapted formulation. Based on Eq. (11), the latter
shows a rough (Ncore + Nactive)2(Nactive + Nvirtual)2N2

CAS scal-
ing, while the sum for g introduced in Eq. (14) brings a fac-
tor of two. This scaling is obviously more favourable than the

TABLE VI. Elements C̃ of Eq. (15), for core → active excitations, i → w. Abbreviations: “cs” – closed-shell, “os” – open-shell. Indices f and g are left blank,
when not applicable. Virtual function f χ̃w

i (μ) is assumed normalized. See text for labeling convention and the definition of f X
w
i (μ).

μ f ν g C̃(μ, i → w, f ; ν, i → w, g)

cs, wz cs, wz

√
2 + √

2 δμν (Xw
i (μ) − ECAS) H−1

μμ

cs, xd , wz os, us < vs, wz 1 −√
2(1 + 1

2 (δxu + δxv))
cs, wz os, us < vs, wz 2 −√

2(δxu − δxv)
cs, wz os, us, ws

√
2(1 + 1

2 δxu)
os, xs < ys, wz 1 cs, wz −√

2
os, xs < ys, wz 1 os, us < vs, wz 1

√
2(1 + 1

4 (δxu + δxv + δyu + δyv)) + 3√
2
δμν ( 1X

w
i (μ) − ECAS)H−1

μμ

os, xs < ys, wz 1 os, us < vs, wz 2 1√
2

(δxu − δxv + δyu − δyv)

os, xs < ys, wz 1 os, us, ws −√
2(1 + 1

4 (δxu + δyu))
os, xs < ys, wz 2 cs, wz 0

os, xs < ys, wz 2 os, us < vs, wz 1
√

3
2
√

2
(δxu + δxv − δyu − δyv)

os, xs < ys, wz 2 os, us < vs, wz 2
√

3√
2

(δxu − δxv − δyu + δyv) + √
6 δμν ( 2X

w
i (μ) − ECAS) H−1

μμ

os, xs < ys, wz 2 os, us, ws

√
3

2
√

2
(−δxu + δyu)

os, xs, ws cs, wz 1
os, xs, ws os, us < vs, wz 1 − (1 + δxu + δxv)
os, xs, ws os, us < vs, wz 2 2 (−δxu + δxv)
os, xs, ws os, us, ws (1 + δxu) + 2 δμν (Xw

i (μ) − ECAS) H−1
μμ
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TABLE VII. Elements C̃ of Eq. (15), for active → virtual excitations, i.e.,
w → a. Abbreviations: “cs” – closed-shell, “os” – open-shell. Virtual func-
tions χ̃ a

w(μ) are assumed normalized. See text for for labeling convention and
the definition of Xa

w(μ).

μ ν C̃(μ, w → a; ν, w → a)

cs, wd cs, wd

√
2 + √

2 δμν (Xa
w(μ) − ECAS) H−1

μμ

cs, wd os, us, ws

√
2

os, xs, ws cs, wd 1
os, xs, ws os, us, ws (1 + δxu) + 2 δμν (Xa

w(μ) − ECAS) H−1
μμ

TABLE VIII. Elements C̃ of Eq. (15), for non-coupled double excitations,
i.e., f = g. Values of C̃ are collected for the possible combinations of I → A
with reference functions, φμ. Admissible types for CSF ν agree with types
listed for μ. Description of CSF μ is indicated in the rows, indices I,A
and f are given in column headers. Abbreviations: “cs” – closed-shell, “os”
– open shell, “n.a.” – not applicable. Shorthand Y stands for f Y

ab
ij (μ) = 1

+ δμν ( f X
ab
ij (μ) − ECAS)H−1

μμ ). See text for the definition of f X
ab
ij (μ). Vir-

tual functions f χ̃ab
ij (μ) are assumed normalized.

Excitation 2 core → 2 virtual: (i, j) → (a, b)
i < j i = j i < j i = j

a < b a < b a = b a = b

Type of µ f = 1 f = 2

any 2 1
1Y

ab
ij 2

√
3 2

2Y
ab
ij

√
2 Y ab

ii

√
2 Y aa

ij 2 Y aa
ii

Excitation 2 core → active, virtual: (i, j) → (u, a)
i < j i = j

u < a u < a

Type of µ f = 1 f = 2

cs or os, uz 2 1
1Y

ua
ij 2

√
3 2

2Y
ua
ij

√
2 Y ua

ii

os, us

√
2 1

1Y
ua
ij

√
6 2

2Y
ua
ij Y ua

ii

Excitation core, active → 2 virtual: (i, u) → (a, b)
i < u i < u

a < b a = b

Type of µ f = 1 f = 2

2 1
1Y

ab
iu 2

√
3 2

2Y
ab
iu

√
2 Y aa

iucs or os, ud

os, us

√
2 1

1Y
ab
iu

√
6 2

2Y
ab
iu Y aa

iu

Excitation 2 core → 2 active: (i, j) → (u, v)
i < j i = j i < j i = j

u < v u < v u = v u = v

Type of µ f = 1 f = 2

cs or os, uz, vz 2 1
1Y

uv
ij 2

√
3 2

2Y
uv
ij

√
2 Y uv

ii

√
2 Y uu

ij 2 Y uu
ii

os, us, vz or uz, vs

√
2 1

1Y
uv
ij

√
6 2

2Y
uv
ij Y uv

ii n.a. n.a.

os, us, vs 2 1
1Y

uv
ij 0

√
2 Y uv

ii n.a. n.a.

Excitation 2 active → 2 virtual: (u, v) → (a, b)
u < v

Type of µ a < b a = b

os, us, vs 2 Y ab
uv

√
2 Y aa

uv

Excitation 2 active → active, virtual: (u, v) → (w, a)
u < v

Type of µ w < a

os, us, vs, wz 2 Y wa
uv

requirement of the parent CC theory, nonlinear terms bringing
a considerable increase in computational time.

E. Construction of the effective Hamiltonian

Once an amplitude t̃
μ

lμ = 〈χ̃l(μ)|T̃ μ|φμ〉 is determined,
its contribution to the effective Hamiltonian can be read-
ily calculated by multiplication with the matrix element
〈φν |H |χ̃l(μ)〉, involving Hamiltonian integrals. Accumulat-
ing these products yields the effective Hamiltonian

H [2]
νμ = Hνμ + 〈φν |HT̃ μ|φμ〉

= Hνμ +
∑

l

〈φν |H |χ̃l(μ)〉 t̃
μ

lμ. (16)

In Eq. (16) above, the projection operator Q in the form

Q =
∑

l

|χ̃l(μ)〉〈χ̃l(μ)|

was inserted.
When working with amplitudes tAI (μ) of Tμ, instead of

the non-redundant t̃
μ

lμ parameters of T̃ μ, it is practical to ex-
press the effective Hamiltonian as

H [2]
νμ = Hνμ +

∑
IA

〈
φν

∣∣H ∣∣χA
I (μ)

〉
tAI (μ) NA

I (μ). (17)

Note, that expression of H [2]
νμ in Eq. (17) is not equivalent

to inserting operator Q′ between H and Tμ in the form Q′

= ∑
μ|χ l(μ)〉〈χ l(μ)|. There are two reasons for this: (i) Q′

as written here is not a proper projector, (ii) tAI (μ) does not
arise as the matrix element 〈χA

I (μ)|T μ|φμ〉.
In the applications of Sec. III, Eq. (17) is used for build-

ing the effective Hamiltonian. When using Eq. (17) with
the orthogonalized parametrization of T̃ μ, amplitudes t̃ are
first converted to amplitudes t, governed by the formulae
of Sec. II C. Alternatively, amplitudes t̃ of the orthonormal
parametrization could be readily used for constructing the ef-
fective Hamiltonian of Eq. (16). The two approaches lead to
the same result.

F. Sensitivity analysis

The main motivation of this work is to explore the origin
of kinks, which occasionally appear on potential energy sur-
faces computed by spin-adapted SS-MRPT.11, 13 A diagnostic
tool for this purpose is offered by sensitivity analysis, a tech-
nique for characterizing the change in the solution of a mathe-
matical model when an input parameter is altered. Sensitivity
analysis finds widespread applications when solving systems
of differential equations by numerical means, e.g., in reaction
kinetics.51 Sensitivities are presently used for comparing the
nonredundant parametrization of the cluster operator with the
redundant variant. The essence of sensitivity analysis as ap-
plied to SS-MRPT is briefly recapitulated here. We refer to a
previous report32 for more detailed presentation.
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TABLE IX. Matrix C̃ of Eq. (15), for core, active → 2 active excitations, (i, w) → (u, v). Description of CSF μ is indicated in the rows, together with index f,
when applicable. Characterization of CSF ν is given in column headers, together with index g, when applicable. Abbreviations: “cs” – closed-shell, “os” – open
shell. Shorthand Y stands for f Y

uv
iw (μ) = 1 + δμν ( f X

uv
iw(μ) − ECAS)H−1

μμ ). See text for the definition of f X
uv
iw(μ). Virtual functions f χ̃uv

iw(μ) are assumed
normalized.The table applies for the core, active → active, virtual excitations also, with a substituted for vz. Column and row referring to a vs is not applicable
in this case.

g = 1 g = 2

cs os cs os os os

f wd, uz < vz ws, uz < vz wd, uz < vz ws, uz < vz ws, us < vz ws, uz < vs

cs, wd, uz < vz 1 2 f Y
uv
iw (μ) 2 0 0 1

2 − 1
2

os, ws, uz < vz 1
√

2
√

2 f Y
uv
iw (μ) 0 0 1

2
√

2
− 1

2
√

2

cs, wd, uz < vz 2 0 0 2
√

3 f Y
uw
iw (μ) 2

√
3 3

√
3

2
3
√

3
2

os, ws, uz < vz 2 0 0
√

6
√

6 f Y
uv
iw (μ) 3

√
3

2
√

2
3
√

3
2
√

2

os, ws, us < vz − 1 − 1 3 3 2 Yuv
iw (μ) 5

2

os, ws, uz < vs 1 1 3 3 5
2 2 Yuv

iw (μ)

The key quantities of coefficient sensitivity of SS-MRPT
are derivatives of the energy, ∂E[2]/∂c(0)

μ , and the final coeffi-
cients, ∂cμ/∂c(0)

μ . The related sensitivity matrices are built of

Sμ = c(0)
μ

E[2]

∂E[2]

∂c
(0)
μ

, (18)

and

Sμν = c(0)
ν

cμ

∂cμ

∂c
(0)
ν

, (19)

respectively. Sensitivity matrices are subjected to singular
value decomposition (SVD), allowing to write, e.g., Sμν as

Sμν =
∑

i

Uμi σi Vνi ,

where Vνi and Uμi are components of the right and left singu-
lar vector, corresponding to singular value σ i.

When altering initial coefficients c(0)
ν by �c(0)

ν , the rel-
ative change of the quantity studied—e.g., relaxed coeffi-
cients, cμ—can be expressed as the squared sum of relative
deviations

e =
∑

μ

(
cμ(c(0) + �c(0)) − cμ(c(0))

cμ(c(0))

)2

.

Using the singular values and singular vectors, function e
takes the simple, so-called canonical form

e =
∑

i

σ 2
i |δi |2 + O(3) (20)

with

δi =
∑

ν

�c(0)
ν

c
(0)
ν

Vνi .

Singular values σ i are called sensitivities. If one, or a few sen-
sitivities are exceedingly large compared to the others, they
give the dominant term(s) of function e, and point to the ini-
tial coefficients, which have the largest influence on c, when

changed. The corresponding column of matrix V reveals what
combination of relative changes in c(0)

ν ’s is the most effective
in achieving a large relaxation effect in c.

When studying coefficient sensitivity of the SS-MRPT
energy, the corresponding sensitivity matrix is a row vector,
leading to the only nonzero singular value σ = (

∑
μ S2

μ)1/2 .
There is no point in examining the right singular vector in this
case, since the first column of V is uniformly built of numbers
1, apart from normalization.

To express elements of sensitivity matrices, derivatives
of the working equations are to be taken. Here, we com-
pute sensitivities based either on the amplitude equations of
the redundant parametrization of Tμ, cf. Eqs. (11) and (12),
or the orthogonalized parametrization of T̃ μ, cf. Eq. (14).
The effective Hamiltonian is built according to Eq. (17) in
both cases. Sensitivities based on the effective Hamiltonian of
Eq. (16) are not examined in this work.

There are three basic quantities necessary for construct-
ing sensitivity matrices:

(i) derivative of the amplitudes with respect to the initial co-
efficients;
Regarding Tμ, derivatives of amplitudes tAI (μ) are read-
ily expressed from Eqs. (11) and (12) as58

∂tAI (μ)

∂c
(0)
ν

= − 1

c
(0)
μ

(
δμν tAI (μ)

+A−1
μν (I → A) 〈φν |

{
EA

I
}†

c
H |φν〉

)
with

Aμν(I → A) = Hμν + δμν

(
XA

I (μ) − ECAS
)
.

If considering the orthogonalized parametrization, T̃ μ,
Eq. (14) leads to the derivative

∂ f t̃
A
I (μ)

∂c
(0)
ν

= − 1

c
(0)
μ

(
δμν f t̃

A
I (μ)

+
∑

g

A−1
μf,νg(I → A)

〈
gχ̃

A
I (ν)

∣∣H ∣∣φν

〉)
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with

Aμf,νg(I → A)

= Hμν C̃ (μ, I → A, f ; ν, I → A, g) ;

(ii) derivative of the energy with respect to the amplitudes

∂E[2]

∂tAI (μ)
=

∑
ν

c̃∗
ν

〈
φν

∣∣H ∣∣χA
I (μ)

〉
cμ ;

(iii) derivative of the relaxed coefficients with respect to the
amplitudes

∂cμ

∂tAI (μ)
= −

∑
νστ

Lμν Gνσ Kστ

〈
φτ

∣∣H ∣∣χA
I (μ)

〉
cμ.

Notation c̃∗
ν stands for elements of the left eigenvector of the

effective Hamiltonian, H[2], corresponding to eigenvalue E[2].
Elements of matrices L and K above are Lμν = δμν − cμc∗

ν

and Kστ = δστ − cσ c̃∗
τ . Quantities Gνσ are elements of the re-

duced resolvent of the effective Hamiltonian, defined as

G(H[2] − E[2]) = 1 − |c〉〈c̃| .

With the above ingredients, derivatives necessary for the
sensitivity matrices are expressed via the chain rule, e.g.,

∂E[2]

∂c
(0)
ν

=
∑
I,A

∑
μ

∂E[2]

∂tAI (μ)

∂tAI (μ)

∂c
(0)
ν

,

if using amplitude equations of Eqs. (11) and (12). When am-
plitudes are determined from Eq. (14), derivative of E[2] is
written as

∂E[2]

∂c
(0)
ν

=
∑
I,A

∑
μ

∑
J ,B

∑
g

∂E[2]

∂tAI (μ)

∂tAI (μ)

∂ gt̃
B
J (μ)

∂ gt̃
B
J (μ)

∂c
(0)
ν

with ∂tAI (μ)/∂ gt̃
B
J computed based on Tables II and IV. Anal-

ogous expressions apply for the derivatives of relaxed coeffi-
cients, cμ.

III. NUMERICAL ILLUSTRATIONS

Two single bond dissociation processes are selected as
test cases: that of the HF and the LiH molecule. The HF
molecule is computed in Dunning’s double zeta correlation
consistent (cc-pVDZ) set.52 The CAS reference function is
generated by distributing two active electrons on two active
orbitals, with symmetry labels 3a1 and 4a1, classified accord-
ing to C2v . The bond dissociation curve of the LiH molecule
is computed in Dunning’s double zeta plus polarization (DZP)
set.53 The CAS wavefunction is constructed with two active
electrons and five active orbitals of symmetry 2a1, 3a1, 4a1,
1b1, 1b2 in the C2v molecular point group.

The basis sets being relatively small, full configuration
interaction (FCI) results are feasible, and serve for computing
errors.

Møller-Plesset (MP) and Epstein-Nesbet (EN) partition-
ings are applied within SS-MRPT. In the MP case, the parti-
tioning of the Hamiltonian depends on the reference CSF, in
analogy with the multipartitioning applied in many-body PT

schemes.54 Fockian matrix elements are constructed as

f̃ −
pq(μ) = f 0

pq(μ) +
∑

us∈φμ

[(pq|usus) − δqus
(pus |usus)],

f̃ +
pq(μ) = f 0

pq(μ) +
∑

us∈φμ

(pq|usus),

adopting the (11|22) integral convention,

f 0
pq(μ) = hpq +

∑
i∈φμ

[2(pq|ii) − (pi|iq)]

standing for matrix elements of the Fockian corresponding to
the core of CSF φμ and hpq being the one-electron integral of
the kinetic energy operator plus nuclear-electron attraction.
Note that f̃ −

pq(μ) and f̃ +
pq(μ) differ only if index q is singly

occupied.
Quantity XA

I (μ) defined in Eq. (13) is expressed in MP
partitioning with the Fockian matrix elements as

Xp
q = f̃ +

pp(μ) − f̃ −
qq(μ)

for single excitations, and as

Xpq
rs = f̃ +

pp(μ) + f̃ +
qq(μ) − f̃ −

rr (μ) − f̃ −
ss (μ)

for double excitations.
In EN partitioning, the diagonal part of the Hamiltonian

is regarded as zero-order, accordingly H can be substituted for
H(0) in Eq. (13). Many-body expressions for XA

I (μ) in the EN
case are given both in Refs. 27 and 32, they are however not
in complete agreement. To eliminate any ambiguity, a numer-
ical code, based on Wick’s theorem was used for constructing
EN excitation energies in the newly developed, redundancy-
filtered formulation. In calculations relying on the redundant
parametrization of Tμ, expressions of Ref. 32 are used for EN
excitation energies.

One-electron orbitals used for generating the PT results
are either pseudo-canonical or natural. In the former case, the
active block of the generalized Fockian built with the density
matrix of the target root is diagonal, while in the latter case
the active block of the density matrix is diagonal.

In the following, we report the results for the various as-
pects of SS-MRPT, studied. Let us first examine the kinks
in more detail. As emphasized earlier, if plotting the differ-
ence between SS-MRPT second-order energy and FCI, kinks
on the order of 1−10 mEh may appear on potential energy
surfaces.

A. Kinks due to small coefficients

An example for the kinks was reported by Mao et al.11

on the case of the HF molecule, using natural orbitals. To al-
leviate the problem, Mao and co-workers11 applied Tikhonov
regularization55 (damping).

The kinks observed by Mao are also apparent in Fig. 1.
As Fig. 1 illustrates, the effect is considerably larger than a
few mEh and appears at the same geometry for MP and EN
partitioning, at around 2 Å . Both curves are smoothened, if
setting a numerical threshold of 10−8 for model space coef-
ficients. This means dropping CSF-s from the initial function



124110-11 Jeszenszki, Surján, and Szabados J. Chem. Phys. 138, 124110 (2013)

−0.15

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

ΔE
 / 

E
h

bond distance / Å 

MP, no thresh
EN, no thresh

MP,thresh=1E− 8
EN,thresh=1E−8

FIG. 1. Errors of second order SS-MRPT energies for the ground state of
the HF system in cc-pVDZ basis.52 Reference function is CAS(2,2), active
orbitals are naturals. Full CI values are subtracted from total SS-MRPT en-
ergies. Partitioning is either MP or EN. Label “thresh=1E-8” corresponds to
omitting model space CSF’s with coefficients smaller than 10−8 in absolute
value. No such treatment is applied for label “no thresh.”

with coefficients smaller than 10−8 in absolute value. Omit-
ting small coefficients—either in form of Tikhonov damping
or a numerical threshold—is necessary for SS-MRPT since a
division by c(0)

μ has to be carried out at some point to obtain
amplitudes.

Kinks which disappear due to this treatment are not inter-
esting from our present point of view. In the followings, we
focus on those effects, which appear even if the appropriate
numerical threshold is set for c(0)

μ ’s.
In the results reported below, a numerical threshold of

10−8 is applied for CAS coefficients when working with natu-
ral orbitals. Such treatment did not have any significant effect
with pseudo-canonicals, hence it was not applied.

B. Kinks due to redundancy

Examples for kinks that show up even if setting proper
numerical threshold for small c(0)

μ ’s are given by the curves
labeled “MP, T ” and “EN, T ” in Figs. 2 and 3. These cal-
culations were carried out with the redundant parametrization
of Tμ, including direct spectator excitations and using the de-
coupled form of the amplitude equations, cf. Eqs. (11)–(13).
Omitting direct spectators but keeping all other features un-
changed we get the curves labeled “T, no dir spec.” As Figs. 2
and 3 demonstrate, the error curves get smoothened by the ex-
clusion of direct spectators. Redundancy in Tμ is however not
eliminated completely by omitting direct spectators. If work-
ing with the non-redundant parametrization of T̃ μ, amplitude
equations Eq. (14), and the effective Hamiltonian of Eq. (17),
the curves labeled “MP, T̃ ” and “EN, T̃ ” are obtained. Ap-
parently, the orthogonalization of virtual functions has only a
minor numerical effect in MP partitioning, if compared with
the redundant parametrization of Tμ, without direct specta-
tors. In EN partitioning, the curve can get shifted even by ca.
10 mEh for the HF molecule. The larger effect be attributed
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FIG. 2. Errors of second order SS-MRPT energies for the ground state of
the HF system. Active orbitals are pseudo-canonicals. Full CI values are sub-
tracted from total SS-MRPT energies. Basis set, reference function, and par-
titionings agree with that of Fig. 1. Key legends: “T” refers to the redundant
parametrization of Tμ with direct spectators included, “T, no dir spec” ap-
plies the parametrization of Eq. (7) without direct spectators, “T̃ ” uses the
non-redundant parametrization of T̃ μ.

to the fact that besides orthogonalization, the expression of
XA

I (μ) has also been altered in EN partitioning.

C. Sensitivity analysis

The largest singular value of coefficient sensitivity matri-
ces, cf. Eqs. (18) and (19), are presented for the HF molecule
in Fig. 4 and for the LiH molecule in Fig. 5. Sensitivity
curves of both the second-order energy and the relaxed co-
efficients show a smoothening when stepping from the redun-
dant parametrization of Tμ including direct spectators (’MP
or EN, T’) to the method where direct spectators are excluded
(“T, no dir spec”). Sudden jumps on orders of magnitude in
σ i visible on “MP or EN, T” curves are all extinguished in “T,
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LiH molecule in Dunning’s DZP basis.53 Reference function is CAS(2,5),
active orbitals are pseudo-canonicals. Full CI values are subtracted from to-
tal SS-MRPT energies. Partitioning is either MP or EN. See Fig. 2 for key
legends.
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FIG. 4. The largest singular value of the coefficient sensitivity matrix of SS-MRPT energy (Eq. (18)) and relaxed coefficients (Eq. (19)) for the ground state of
the HF molecule. Basis set, reference function, and partitioning agrees with Fig. 2. Key legends are also given at Fig. 2.
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Key legends: “T, no dir spec” applies the parametrization of Eq. (7) without
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of T̃ μ with the functions of Tables I and III, “T̃ , alternative ort” uses the non-
redundant parametrization of T̃ μ with the functions described in Table I of
the supplementary material,48 “T, drop out” refers to the method where terms
of Tμ of Eq. (7) are dropped to set the parametrization non-redundant, “det”
refers to the determinantal approach.

no dir spec” curves. Sensitivities are further diminished when
applying the orthogonal parametrization of T̃ μ.

D. Determinantal versus spin-adapted formulation

Spin-adapted results are compared with the determinan-
tal formulation29, 56 in the MP partitioning in Figs. 6 and 7.
Curves by the redundant parametrization of Tμ without direct
spectators as well as those by the redundancy filtered method
show good correspondence with the determinantal formula-
tion, for both molecules. The largest difference occurs for
intermediate bond distances but remains rather insignificant.
Of the two molecules, HF shows the worse picture, but even
here the difference does not exceed 1 mEh.
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FIG. 7. Errors of second order SS-MRPT energies in MP partitioning for the
ground state of the LiH system. Full CI values are subtracted from total SS-
MRPT energies. Basis set and reference function agree with that of Fig. 3.
Legends “T̃ ” refers to the non-redundant parametrization of T̃ μ, see Fig. 6
for other key legends.

E. Effect of redundancy treatment

It is important to stress that the SS-MRPT energy is
not invariant to the orthogonalization used for screening re-
dundancy in Tμ. Results of canonical orthogonalization are
compared with those obtained by alternative procedures in
Fig. 6. One of the alternative schemes omits direct specta-
tors and follows a different scheme for constructing functions
χ̃l(μ) in two cases. Formulae of this orthogonalization are
summarized in Table I of the supplementary material.48 Re-
sults produced by this approach are labeled “T̃ , alternative
ort” in Fig. 6. As Fig. 6 shows, the non-parallelity error of
the curve “T̃ , alternative ort” is significantly closer to that of
the determinantal curve, if compared with the error produced
by canonical orthogonalization. We have also tested the effect
of including direct spectators when constructing orthogonal-
ized functions χ̃l(μ), in the spirit of Mukherjee et al.24, 27, 47

This curve is not plotted in Fig. 6, as it runs on the top of
the curve “T̃ , alternative ort.” Similarly, “T̃ , alternative ort”
and the results obtained by the inclusion of direct spectators
is not shown for the LiH molecule, as they could not be dis-
tinguished from “T̃ , canonical ort” on the scale of the figure.

Figs. 6 and 7 show one more method, where redun-
dancy was achieved by dropping certain excitations instead of
constructing {ẼA

I }c. In particular, exchange spectators were
dropped for core→active(1) and active(1)→empty excita-
tions, {Ea

i }c was ignored for core→empty and {Eavs

ius
}c was

omitted for core, active(1)→active(1), empty. The curve la-
beled “T, drop out” shows these results, where the decou-
pled amplitude Eqs. (11) and (12) were used. Apparently,
this method suffers from the largest non-parallelity error, in-
dicating that coupling among amplitudes within Tμ can be
important.

IV. CONCLUSION

The results presented above indicate that a redundancy
among excited functions, generated by spin-free excitations
acting on a given model function is responsible for occasional
kinks on potential energy surfaces, obtained by spin-adapted
SS-MRPT, reported previously. Filtering this redundancy, po-
tential energy curves get smoothened. In parallel with this,
the orders of magnitude increase in coefficient sensitivities of
SS-MRPT is diminished.

Redundancy due to spin-adaptation is either completely
removed or just partially filtered. Numerical examples show
that the dominant part of the effect is caused by direct spec-
tator excitations. Direct spectators can be handled either by
ignoring them entirely or combining them with the corre-
sponding single excitation. Numerical comparison of the two
treatments show insignificant difference.

There are in principle two ways to handle redundancy
arising from the application of unitary generators in spin-
adapted SS-MRCC and related theories. One can either in-
troduce additional sufficiency conditions to determine the
redundant set of parameters, or carry out an orthogonal-
ization accompanied by a reduction in the number of pa-
rameters. Mukherjee et al.24, 27, 47 have been following the
first route,25, 26 with the actual additional conditions for



124110-14 Jeszenszki, Surján, and Szabados J. Chem. Phys. 138, 124110 (2013)

determining the redundant parameters in Tμ often implicit.
When making use of sufficiency conditions, any step that re-
lies on the orthogonal spectral form of the projector of the vir-
tual space, Eq. (4) has to be considered approximative. The
overlapping form of Eq. (10) cannot be constructed in this
case, due to matrix S−1 being singular.

To our knowledge, the technique of orthogonalizing vir-
tual functions in spin-adapted SS-MRPT has been explored
for the first time here. Our development is restricted to two
active electrons. Increasing the number of active electrons ne-
cessitates the derivation of new expressions for the orthog-
onalized functions and matrix elements, which are expected
to become more complicated. It would still be desirable to
check how the number of active electrons influences the pic-
ture gained here. Examination of redundancy treatment by or-
thogonalization in SS-MRCEPA theories in another issue of
interest, which we plan to perform in the future.

It is important to stress that the findings presented
here concern the spin-adapted formulation of SS-MRPT.
Though numerical problems have been reported with the
determinantal formulation of the parent coupled-cluster
theory,29 as well as in a related multireference CC theory,30

the orthogonalization proposed above is irrelevant in this con-
text, as the redundancy examined here does not show up in
determinant based theories.
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