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Abstract

We point out that the well-known symmetry properties of the symmetrically and canonically

orthogonalized vectors hold only under certain conditions on the overlapping vectors. In partic-

ular, the matrix of the transformation induced by the symmetry operator must be unitary. This

requirement is not fulfilled if Cartesian d or f functions are used in the basis set. If such functions

are present, canonically orthogonalized orbitals do not transform according to representations of

the molecular point group; nor do Löwdin orthogonalized vectors preserve symmetry relation of

the original vectors.
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INTRODUCTION

In quantum chemistry, one often deals with non-orthogonal vectors which may be orthog-

onalized for convenience. Among the infinitely many possible orthogonalization procedures,

we list only four, which all have their own significances.

1. The Gram–Schmidt orthogonalization is a successive procedure. This is the method

of choice if one does not want to alter a subspace obtained in the previous step; e.g.,

in the case of orthogonalizing valence functions to the cores.

2. Mayer’s orthogonalization[1, 2] leaves only the first vector invariant, but it applies an

explicit (non-successive) transformation to get a set of orthogonal vectors.

3. The canonical orthogonalization procedure[3] transforms the vectors with the eigen-

vectors of the overlap matrix S. The orthogonal MOs belonging to the same overlap

eigenvalue form representations of the symmetry group of the system.

4. Symmetric orthogonalization[4] transforms the vectors by the S−1/2 matrix. This pro-

cedure is usually called Löwdin orthogonalization, although the canonical procedure 3

was also discussed extensively by him. The symetric orthogonalization possesses two

remarkable features: the Löwdin vectors

a) are least distorted from the original ones in the least-squares sense;

b) bear the same symmetry as the original ones. This statement is known also as

the Slater–Koster theorem[5], and it is the reason for which this scheme is often

called ‘symmetric’ orthogonalization.

In this note, we will revisit symmetry properties of the latter two procedures using atomic

orbitals (AOs) as primary nonorthogonal vectors. We will point out that these are valid

only if certain conditions are fulfilled by these AOs. In particular, we show that redundant

Cartesian (i.e., 6d, 10f , etc.) sets do not qualify.

This is not the first caveat in the literature concerning the use of Cartesian functions

together with Löwdin orthogonalization. In a recent letter[6], Mayer called attention to
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the fact that the so-called Löwdin charges (populations of Löwdin orthogonalized AOs) are

rotation-invariant only if no Cartesian d AOs are included in the basis set. This problem can

be cured by orthogonalizing 6d or 10f functions prior to use, as proposed by Davidson[7, 8].

This problem was revisited and further clarified in Ref. [9].

In this note, we sketch the essence of the problem of symmetry properties from the

quantum chemical point of view. More detailed and more strict mathematical formulation

will be published elsewhere.

SYMMETRY PROPERTIES OF ORTHOGONALIZED VECTORS

Let the functions ϕi form an overlapping set with metric Sik = 〈ϕi|ϕk〉. The symmetri-

cally (Löwdin) orthogonalized vectors are

ψL
k =

∑

i

(S−1/2)ikϕi, (1)

while the canonically orthogonalized and normalized vectors result from a transformation

by the S-eigenvectors:

ψc
k =

1√
σk

∑

i

Uikϕi, (2)

with
∑

i

SjiUik = σkUjk. (3)

In the appendix of their seminal paper, Slater and Koster[5] proved the following theo-

rem: Let T̂ be a symmetry operator of the system. Then, the transformation properties of

symmetrically orthogonalized vectors (1) are the same as those of the original nonorthogonal

set, i.e. the matrices representing T̂ in both sets are identical. This orthogonalization thus

preserves the symmetry of the basis.

Symmetry properties of canonically orthogonalized vectors (2) were treated by

Löwdin[10]. He concluded that these orbitals are eigenvectors of the symmetry operations

of the molecular point group.

We do not repeat the proofs here, just mention that the derivation of both properties ex-

ploit the fact that the matrix representing the transformation in the original, nonorthogonal

basis is unitary. Although symmetry operations as operators are, of course, unitary, for the

matrices representing them in a nonorthogonal set this is not necessarily true. This is easily
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seen by representing the operator relation

T̂ T̂ † = Î (4)

in an overlapping basis to yield

∑

jk

Tij(S
−1)jkT

†
kl = Sil, (5)

where Tij = 〈ϕi|T̂ϕj〉. Rewriting (5) to the form

S−1TS−1T† = I (6)

convinces us that neither T nor t = S−1T are unitary in general. However, if T and S

(hence, T and S−1) commute, the last equation can be transformed to

(S−1T) (S−1T†) = (S−1T) (TS−1)† = (S−1T)(S−1T)† = tt† = I, (7)

which shows that in this case t = S−1T, which actually performs the symmetry mapping in

the non-orthogonal basis, is unitary.

We see that both Slater and Koster[5] and Löwdin[10] tacitly assumed that the repre-

senting matrix of the symmetry operation commutes with the overlap matrix. The question

arises therefore whether this holds in all AO-basis sets. We will see that the answer is no.

Let us investigate the unitary nature of t. There are important special cases when it

is unitary even if S 6= I. As mentioned, t is the matrix which performs the mapping. In

the simplest example we consider only s-type basis orbitals on each atomic center. The

symmetry transformation maps an atom to another one, and it does the same to atomic

s-orbitals. Hence t is a permutation matrix, and as such, it must be unitary. (Needless to

say that we assume that symmetry-equivalent atoms have equivalent basis functions.)

A more complicated case is when p-type AOs enter the basis set, too. Let us consider

real orbitals px, py, pz. Then a particular p function is generally not mapped directly to

another p function on the other atom, but into a linear combination of the three p’s. The

associated mapping matrix t is, therefore, no longer a simple permutation matrix. However,

since the p subset on each atom is orthogonal, the local 3–by–3 transformation matrix is

unitary. Therefore, p orbitals do not destroy the unitary nature of t.

The above arguments also hold if orthogonal spherical d or f (etc.) functions enter

the basis set. If, however, one uses Cartesian sets, the situation changes [6]: the symmetry
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transformation maps a d function into the linear combination of the non-orthogonal d subset

of the target atom, thus the mapping matrix t will no longer be unitary. As a consequence,

T and S do not commute and both Löwdin’s orthogonalization schemes lose their symmetry

properties mentioned in the Introduction – subsets of canonically orthogonalized vectors

corresponding to the same overlap eigenvalue do not necessarily span representations, and,

in addition, symmetrically orthogonalized vectors transform differently from the original

ones.

EXAMPLES

We illustrate the above finding for the canonical orthogonalization on the example of

the scandium(III) hydride molecule[11], ScH3, which is the simplest possible molecule with

valence electrons from d AOs. Its equilibrium structure is planar, exhibiting D3h symmetry

(Fig. 1). We applied the canonical orthogonalization procedure to a minimal Gaussian AO

basis set consisting of a single s function on the hydrogens and a 4s3p1d set on atom Sc,

using spherical or Cartesian d functions.

One selected canonically orthogonalized AO for the 5d and one for the 6d case are pre-

sented in Fig. 2. When using 5d functions matrix S reflects proper D3h symmetry, hence

there are degenerate overlap-eigenvalues, as the group is non-Abelian and [T,S] = 0 for each

symmetry operator T̂ of the group. The lowest (in the order of S-eigenvalues) nondegenerate

canonically orthogonalized orbital of the 5d case, plotted in Fig. 2a, is totally symmetric,

as one expects.

The corresponding AO from the 6d set is shown in Fig. 2b. Use of 6d orbitals induces

[T,S] 6= 0, eigenvalues of S are thus not necessarily degenerate (and, indeed, are not),

reflecting loss of the symmetry of the matrix. The symmetry of canonically orthogonalized

vectors is also destroyed: no traces of three-fold symmetry can be seen in Fig. 2b.

It is is harder to find such a pictorial example for the symmetric orthogonalization:

preservation of the symmetry of the nonorthogonal set is most easily seen if the operator

induces permutations between AOs, but then [T,S] = 0 is ensured. We again turn to d

orbitals and show that the matrix representation of the symmetry operator is not invariant

with respect to Löwdin-orthogonalization if 6d sets are used. We will consider a free atom

with a set of normalized (but certainly not orthogonal) Cartesian d functions (N1 and N2
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are normalizing factors):

ϕ1 = N1x
2 e−αr2

ϕ2 = N1y
2 e−αr2

(8)

ϕ3 = N2xy e−αr2

ϕ4 = N2xz e−αr2

ϕ5 = N2yz e−αr2

ϕ6 = N1z
2 e−αr2

Rotation by an arbitrary angle α around the z axis is a symmetry operator of this system.

As a result of a lengthy but simple calculation the matrix representing the operator in this

set can be written as:

t(α) =




1+cos(2α)
2

1−cos(2α)
2

−
√

3
2

sin(2α) 0 0 0

1−cos(2α)
2

1+cos(2α)
2

√
3

2
sin(2α) 0 0 0

1√
3
sin(2α) − 1√

3
sin(2α) cos(2α) 0 0 0

0 0 0 cos(α) − sin(α) 0

0 0 0 sin(α) cos(α) 0

0 0 0 0 0 1




. (9)

This may be transformed into the basis of the respective Löwdin orthogonalized vectors,

yielding

tL(α) =




1+cos(2α)
2

1−cos(2α)
2

− 1√
2
sin(2α) 0 0 0

1−cos(2α)
2

1+cos(2α)
2

1√
2
sin(2α) 0 0 0

1√
2
sin(2α) − 1√

2
sin(2α) cos(2α) 0 0 0

0 0 0 cos(α) − sin(α) 0

0 0 0 sin(α) cos(α) 0

0 0 0 0 0 1




. (10)

It is easy to see that the Slater–Koster theorem does not hold for arbitrary α: transformation

matrices t and tL are different, as a consequence of t being non-unitary. Noteworthy, t = tL
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if α is a multiple of π/2: these ‘rotations’ correspond to permuting and changing orientation

of the Cartesian axes, which can again be described by a unitary matrix on this basis.
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[4] P.-O. Löwdin. J. Chem. Phys., 18:365, 1950.

[5] J. C. Slater and G. F. Koster. Phys. Rev., 94:1498, 1954.

[6] I. Mayer. Chem. Phys. Lett., 393:209, 2004.

[7] A. E. Clark and E. R. Davidson. J. Chem. Phys., 115:7382, 2001.

[8] A. E. Clark and E. R. Davidson. Int. J. Quantum Chem., 93:384, 2003.

[9] G. Bruhn, E. R. Davidson, I. Mayer, and A. E. Clark. Int. J. Quantum Chem., 106:2065 –

2072, 2006.
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Figure legends

Fig. 1

D3h structure of scandium(III) hydride

Fig. 2

Contour plot of the third (in order of increasing S eigenvalue) canonically orthogonalized

atomic orbital for ScH3.

(a): minimal basis using 5d set

(b): minimal basis using 6d set
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Fig. 1
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Fig. 2a
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Fig. 2b
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