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Abstract

An overview of geminal based wavefunctions is given, allowing for singlet-triplet

mixing within the two-electron units. Spin contamination of the total wavefunction

(obtained as an antisymmetrized product) is restored by spin projection. Full varia-

tion after projection is examined for two models. One is the long known spin projected

Extended Hartree-Fock (EHF). The other is a yet unexplored function, termed spin pro-

jected Extended Antisymmetrized Product of Strongly orthogonal Geminals (EAPSG).

Studies on size consistency is presented for both models. Numerical evaluation of EHF

and EAPSG is performed for small test systems (H4 and H8).

∗To whom correspondence should be addressed
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Introduction

Proper description of static correlation is crucial in many systems of chemical interest,

e.g. covalent bond dissociation processes or organometallic compounds of open-shell charac-

ter. Multiconfigurational Self-Consistent Field (MC-SCF),1,2 in particular Complete Active

Space SCF (CAS) is a common choice for these systems, thanks to the favourable properties

of orbital invariance within the active space, spin pure nature and computationally manage-

able optimization equations.3,4 Though recent years have seen tremendous advance in the

applicability of CAS for large systems,5–8 the formal exponential scaling with the number of

active orbitals remains. A CAS wavefunction characteristically includes a part of dynamic

correlation along with static, with antagonistic consequences in a multireference correlation

treatment.9 Conceptual as well as computational considerations appear to point to the need

for a model, more economic than CAS in the configuration interaction (CI) space.

One way to decrease scaling of the CAS Ansatz is to partition the active space and

restrict orbital occupancy in each partition.10–12 Alternatively, optimizable parameters can

be assigned only to two-electron functions (c.f. geminals), the total wavefunction being

constructed as an antisymmetric product.13 Requiring geminals ψi and ψj, i ̸= j to fulfill

the strong orthogonality condition

∫
ψi (x1,x2)ψj (x1,x2) dx1 = 0 , (1)

geminals are found to be expanded in mutually orthogonal molecular orbital (MO) subspaces,

based on Arai’s theorem.14 This allows one to identify the strongly orthogonal geminal

Ansatz as a direct product of CAS functions, each furnished with two active electrons. It

is the direct product nature, which ensures polynomial scaling with system size. The well-

known generalized valence bond function15 represents a special case, where active orbitals

per geminal is restricted to two.

Strongly orthogonal geminals have been cultivated under various names in the literature.
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To emphasize the fixed assignation of electrons to pairs, terminology ’Perfect Pairing’ was

introduced (GVB-PP).15,16 Singlet type Strongly orthogonal Geminals (SSG),17 and Anti-

symmetric Product of Strongly Orthogonal Geminals (APSG)13,18,19 represent extensions to

GVB-PP, allowing for more than two orbitals per geminal. In the SSG model of Rassolov,17

the number of orbitals per geminal is also subject to variation. Singlet state of the gemi-

nals is supposed in SSG, while it is abandoned by adopting a different orbitals for different

spin (DODS) framework in Unrestricted SSG (USSG)17 and Unrestricted Perfect Pairing

(UPP).20 In both USSG and UPP strong orthogonality implies integration over spatial as

well as spin variables of electron 1 in Eq.(1). As a consequence, spatial parts of the α and

β orbitals of different subspaces have nonzero overlap in general. Requiring Eq.(1) to hold

when integrating solely for the spatial variables of electron 1 restricts the expansion of the

spatial part of α and β MOs to the corresponding geminal subspace. Such a restricted but

still DODS approach was found desirable for spin symmetry and qualitatively correct defini-

tion of geminal subspaces.21,22 The related models are termed Restricted USSG (RUSSG)21

and Unrestriction in Active Pairs (UAP).22 Note, that the UPP and UAP schemes resort to

two orbitals per geminal.

Allowing for triplet geminals complicates theory, it however becomes important if wishing

to describe elongation of interacting (e.g. multiple) covalent bonds23–25 or molecules that

require multiple Lewis structures for a qualitative description.26,27 In particular, breaking

multiple bonds with singlet coupled geminals produces erroneous spin states of the fragments

in the dissociation limit.27,28 While DODS geminal schemes cure fragment spin upon disso-

ciation,27 the spin of the fragments are not coupled properly. A contamination of total spin

is produced consequently, in analogy with the Unrestricted Hartree-Fock (UHF) method.

In fact, breaking spin symmetry in the HF framework to account for static correlation

has been exploited in several instances.29,30 Restoration of spin symmetry in the unrestricted

HF theory, advocated by Löwdin,31 was extensively studied in the 1970’s32 and has been

revitalized recently.33 Spin purification of the DODS geminal model has been investigated
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for the UAP function in an approximate manner,34 based on Yamaguchi’s idea.35 For the

RUSSG function, rigorous spin projection has been developed and evaluated in numerical

terms.26

A caveat concerning spin projection is that potential curves may be ill-behaved, if subse-

quent optimization of wavefunction parameters is omitted. Full variation of the spin purified

UHF function – termed spin projected Extended Hartree Fock (EHF) – leads to continuous

potential curves, it however violates size consistency as well as size extensivity.33,36–38

In this study, the yet unexplored (restricted) DODS based geminal Ansatz, subjected

to variation after spin projection is examined. The presentation starts with a comparative

overwiev of DODS geminal Ansätze UHF and RUSSG. This is followed by a formal analysis of

size consistency on a two-geminal model system. Properties of DODS geminal based models

are also compared on this small model, based on numerical calculation. Size consistency

violation is finally evaluated for a four-geminal model system.

In course of the derivation we shall make use of an extended pairing theorem, formulated

and proven first by Karadakov.39 As an extension of the original pairing theorem, relating

the occupied UHF orbitals,40–42 Karadakov proved that virtuals can be paired in such a

manner, that the overlap of each α virtual orbital is nonzero for at most one β occupied,

and vice versa (with the value of the overlap integral being distinctly related to that of the

corresponding occupied orbitals).

Closing the introduction, let us note that triplet geminals can be incorporated in a spin-

pure manner by multireference coupled cluster43–45 or perturbation46,47 corrections based

on the singlet-coupled geminal wavefunction. The Coupled Cluster Valence Bond (CCVB)

approach of Small et al.45 is particularly relevant in the present context as it resorts solely to

pairs of intra-geminal triplet states, bringing in essentially the same effect as EAPSG. There

are Ng(Ng − 1)/2 extra parameters considered in CCVB in addition to those in APSG, Ng

standing for the number of geminals, and two orbitals being assigned to each geminal. This

facilitates an overall polynomial scaling of the resulting method.45 In comparison, EAPSG
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studied below is more economic, bringing Ng extra variational parameters in addition to

APSG. The potentially exponential scaling of the spin treatment can be avoided due to the

simplicity of the spin projection procedure,26 vide infra.

DODS geminal Ansätze

A brief, transparent recapitulation of two DODS Ansätze based on strongly orthogonal gem-

inals is given below. We start with the well known UHF wavefunction, then present the

extension, known as RUSSG or UAP. Comparison of the main features of the two wavefunc-

tions is followed by a discussion on spin purification and its consequences.

Unrestricted HF (UHF)

Let us start with the UHF wavefunction

|Ψ UHF⟩ =
∏
I

ϕI+
α χI+

β |vac⟩ ,

which is apparently an antisymmetrized product of geminals ψ̃I , written as

ψ̃+
I = ϕI+

α χI+
β . (2)

Assuming that α and β orbitals are paired in Löwdin’s sense,40,41,48

⟨ϕI |χJ⟩ = λIδIJ (3)

we can further state that geminals ψ̃I and ψ̃J , I ̸= J are expanded in mutually orthogonal

spaces, spanned by {ϕI , χI} and {ϕJ , χJ}, respectively. Based on Arai’s theorem,14 it follows

that ΨUHF is a specimen of strongly orthogonal geminal wavefunction.49,50

Let us now invoke the Alternating Molecular Orbital (AMO)51 parametrization of the
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orbitals, according to

ϕI = cosαI φ
I
1 + sinαI φ

I
2

χI = cosαI φ
I
1 − sinαI φ

I
2 , (4)

with ⟨φI
i |φJ

j ⟩ = δIJδij. Variational optimization MOs φI
1, φ

I
2 for all I (c.f. paired orbital

method52) yields the UHF wavefunction.32 (With this parametrization, the overlap of Eq.(3)

is easily found to be λI = cos(2αI).)

Substituting expansion (4) into Eq.(2) an equivalent expression of geminal ψ̃ is obtained

as

ψ̃+ =
2∑

i,j=1

CUHF

ij φ+
iαφ

+
jβ , (5)

with the geminal coefficient matrix

CUHF =

 cos2 α − sin(2α)/2

sin(2α)/2 − sin2 α

 .

In the above, and further on, index I of the geminal is omitted for clarity, whenever possible.

The (spatial) density matrix of geminal ψ̃ is readily found to be diagonal on the basis of

orbitals φi

DUHF = 2

 cos2 α 0

0 sin2 α

 . (6)

It follows, that the density matrix of the total UHF wavefunction – obtained as the direct

sum of geminal density matrices DUHF
I – is also diagonal. Orbitals φI

i are hence identified

as natural orbitals of ΨUHF and Eq.(6) reflects the well known paired nature of UHF nat-

ural occupation numbers53 utilized effectively in finding the appropriate active orbitals in
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multireference cases.29

While the natural orbital expansion (5) includes more terms than the DODS form Eq.(2),

it allows to associate the singlet and triplet components of ψ̃, with the symmetric (sCUHF)

and antisymmetric part of the geminal coefficient matrix. The former defines a singlet two-

particle creation operator

S̃+(α) =
2∑

i,j=1

sCUHF

ij φ+
iαφ

+
jβ = cos2 α φ+

1α φ
+
1β − sin2 α φ+

2α φ
+
2β ,

the latter is related to a triplet two-particle operator, with MS = 0

0T + =
1√
2

(
φ+
1α φ

+
2β − φ+

2αφ
+
1β

)
,

allowing to write the UHF geminal as

ψ̃+ = S̃+(α) +
sin (2α)√

2
0T + . (7)

Note, that ψ̃ is normalized, but the norm of its singlet and triplet components are in general

smaller than unity. The UHF geminal of Eq.(7) becomes spin pure at α = 0 (as sinα = 0).

The singlet part, S̃ falls back to restricted HF in such case. Accordingly, it is not possible

to obtain a multireference description with proper spin in UHF parametrization, even for

two-electrons. Approaching from another angle, one sees that UHF occupancies of natural

orbitals φi (c.f. Eq.(6)) can not be changed independently from the relative weight of singlet

and triplet components (c.f. Eq.(7)).
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Restricted Unrestricted SSG (RUSSG)

The RUSSG21 wavefunction exhibits an antisymmetrized geminal product form, similar to

UHF

|ΨRUSSG⟩ =
∏
I

ψ+
I |vac⟩ . (8)

The geminal in ΨRUSSG is however different from UHF, reading as

ψ+ = cos δ S+(γ) + sin δ 0T + , (9)

where the singlet component is expressed as

S+(γ) = cos γ φ+
1α φ

+
1β − sin γ φ+

2α φ
+
2β ,

for normalization. Comparison of Eqs.(7) and (9) shows that the UHF concept is generalized

by including one additional parameter per geminal. Angle δ in Eq.(9) controls singlet-triplet

mixing (c.f spin purity) while γ independently governs the multireference character of the

singlet part.54

The coefficient matrix behind the RUSSG geminal (9) reads

CRUSSG =

 cos δ cos γ sin δ/
√
2

− sin δ/
√
2 − cos δ sin γ

 ,

yielding the density matrix

DRUSSG =

 2 cos2 δ cos2 γ + sin2 δ 0

0 2 cos2 δ sin2 γ + sin2 δ

 .

Assuming orthogonality of geminal subspaces, according to ⟨φI
i |φJ

j ⟩ = δIJδij, it again follows
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that orbitals φI
i represent natural orbitals of ΨRUSSG. Paired nature of natural orbitals still

holds, as a direct consequence of the strongly orthogonal geminal character.

It is common to write a DODS expansion22 for the RUSSG geminal ψ

ψ+ = cos ϵ ϕ+
1αχ

+
1β + sin ϵ ϕ+

2αχ
+
2β , (10)

as an extension of the UHF geminal, Eq.(2). Orbitals ϕi and χi above are eigenvectors of

the α and β density matrix (so-called pseudo-natural orbitals). The associated occupation

numbers, n1 = cos2 ϵ and n2 = sin2 ϵ, are the same for the α and β set. Relation between

pseudo-natural and natural orbitals is expressed as

 ϕ1

ϕ2

 =

 cosα sinα

sinα − cosα


 φ1

φ2

 , (11)

 χ1

χ2

 =

 cosα − sinα

sinα cosα


 φ1

φ2

 , (12)

with α = − arctan
(√

2 tan δ/(cos γ − sin γ)
)
/2 , and cos(2ϵ) = cos2 δ cos(2γ)/ cos(2α) .

Pure singlet hence belongs to α = δ = 0 (lack of α-β splitting) and occupation numbers

can be deduced from ϵ = γ. Pure triplet, δ = π/2 generates α = π/4 and ϵ = 3π/4.

Characteristics of UHF and RUSSG

Comparing the DODS expansion of UHF and RUSSG, one can see that the UHF parametriza-

tion, Eq.(4), works only with ϕ1 and χ1 of the RUSSG unitary transformation pair of Eqs.(11)

and (12), since n2 = sin2 ϵ = 0 for UHF. Orbitals ϕ2 and χ2 are virtuals in the UHF

framework, fulfilling ⟨ϕ1|χ2⟩ = ⟨ϕ2|χ1⟩ = sin(2α), c.f. Karadakov’s extended pairing the-

orem.39,42,48,55 From this point of view, RUSSG represents a generalization of UHF where

virtual orbitals – paired to the occupieds according to Karadakov – can become partially
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occupied. This aspect was emphasized by Head-Gordon et al., when deriving the UAP

formalism.22

The UHF and RUSSG energies – obtained upon variational optimization of all parameters

– are usually close to each other at around equilibrium geometries where restricted HF is

acceptable (c.f. α ≈ 0 in UHF, while γ ≈ 0 and δ ≈ 0 in RUSSG). Energy difference

also disappears in the limit of breaking a single bond. As the lowest singlet and triplet

solutions become degenerate in this process, admixture of a triplet component to the ground

state singlet can not deteriorate the UHF energy. The situation is different for intermediate

distances. As RUSSG involves an extra variational parameter per geminal, it may provide a

better energy than UHF.

The unrestricted HF solution appears at a well defined point on the potential surface,

named after Coulson and Fischer.56,57 There is a similar point on the SSG surface, con-

nected to the appearance of the RUSSG solution.22 When a RUSSG solution appears below

restricted SSG in energy, an improved description of inter geminal correlation is obtained

at the price of mixing singlet and triplet components at the two-electron level. As a conse-

quence, spin symmetry is lost in general for RUSSG beyond one geminal.

Ensuring spin symmetry

Spin symmetry of ΨRUSSG can be achieved on one hand by restricting geminal spins as singlet.

This, so-called singlet coupling operates with a single parameter per geminal, c.f. Eq.(9) with

δ = 0 or Eq.(10) with α = 0 . Spin symmetry, however, can also be restored without im-

posing a constraint on geminals. This necessitates coupling geminal spins following Serber’s

scheme,58,59 or alternatively, spin purification of the total wavefunction as

|ΨSP-RUSSG⟩ = P̂ s|ΨRUSSG⟩ ,
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where P̂ s stands for Löwdin’s spin projector, picking the component corresponding to the

desired spin quantum number.59,60 The approach of Rassolov26 to spin-purification of RUSSG

represents a third option whereby the lowest singlet root of the squared spin operator is

determined iteratively. Due to the special structure of RUSSG, the procedure necessitates

tackling a considerably small subspace of the CI space, the dimension scaling with N2
g for

Sz = 0 systems.

Spin projection is always accompanied by the question whether parameters are optimized

before or after. Starting from UHF, both approaches have been studied. Spin projection after

variation is comparatively easy, but it may lead to ill-shaped potential energy curve near the

Coulson-Fischer point.61 Potential curves obtained by the more complicated ’variation after

projection’ (EHF)32 are free from the Coulson-Fischer point, hence they are continuously

differentiable. An alternative to Löwdin’s spin projection operator has been recently shown

to simplify the implementation of EHF.33 Spin projection of the RUSSG wavefunction26 is

still relatively easy, compared to the general case, thanks to the orthogonality of the spatial

parts of the MOs corresponding to different geminals.

We use acronym SP-RUSSG to refer to the ’projection after variation’ method based

on the RUSSG model. Rassolov also considered partial variation after projection.26,27 The

purpose of the present study is the analysis of ’full variation after spin projection’ of the

RUSSG Ansatz. We term this approach ’EAPSG’, in direct analogy with EHF. For clarity,

the formal definition of the EAPSG energy is given as

EEAPSG =
⟨ΨRUSSG|P̂ sĤP̂ s|ΨRUSSG⟩

⟨ΨRUSSG|P̂ s|ΨRUSSG⟩
= min. ,

with minimization performed for natural orbitals φI
i and parameters δI , γI . The spin pro-

jected function P̂ sΨRUSSG at the optimal parameter set is termed the EAPSG wavefunction.

Loss of size consistency as a byproduct of spin projection has been reported in connection

with EHF in several studies.33,36,37 Violation of size consistency is of primary concern, as
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it may have far reaching consequences on energy differences and the shape of potential

curves. We study below size consistency in Pople’s sense,62 i.e. additivity of energy over

non-interacting fragments. The two spin projected, extended geminal methods, EHF and

EAPSG are analysed in parallel. This helps to reveal the points of analogies and deviations

in their behaviour. We note here, that both parent methods, UHF and RUSSG can fulfill

size consistency, provided that a geminal structure, with the appropriate number of electrons

kept unpaired, is imposed on the monomer units.

The case of two geminals

This section is devoted to an analysis of the size consistency properties of EHF and EAPSG

for a system composed of two geminals. First we treat the fully separated (non interact-

ing) cases, giving analytical derivation of energy formulae. Then, for the interacting case,

numerically obtained potential curves are shown for the various solutions.

A system of two geminals can be thought of as H4 composed of two H2 subunits. Let us

assume that geminals have a considerable multireference character (elongated H−H bonds),

to incorporate the general (potentially singlet-triplet mixed) case.

Non-interacting geminals

EHF

The UHF wavefunction of the supersystem is written as

|ΨUHF

H4
⟩ = ψ̃+

1 ψ̃
+
2 |vac⟩ ,

with ψ̃1 and ψ̃2 referring to one and the other H2 unit. The effect of spin projection, P̂ s is

evaluated by relying on the natural orbital expansion of geminals and constructing spin pure

functions via coupling geminal spins with the appropriate Clebsch-Gordan coefficients. This
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results, for S = 0

P̂ s|ΨUHF

H4
⟩ =

(
S̃+
1 (α1)S̃+

2 (α2) +
sin (2α1) sin (2α2)

2
√
3

Π+
12

)
|vac⟩ ,

where a four-electron singlet state is associated with

Π+
12 =

√
1

3

(
+1T +

1 −1T +
2 + −1T +

1 +1T +
2 − 0T +

1 0T +
2

)
.

States ±1TI are MS = ±1 triplet geminal states, obtained by applying the spin raising

(lowering) operator on the MS = 0 geminal, as

+1T +
I =

1√
2
Ŝ+ 0T +

I = φI+
1α φI+

2α , (13)

−1T +
I =

1√
2
Ŝ− 0T +

I = φI+
1β φI+

2β . (14)

The EHF energy is obtained from the condition

EEHF

H4
=

⟨ΨUHF
H4

|P̂ sĤP̂ s|ΨUHF
H4

⟩
⟨ΨUHF

H4
|P̂ s|ΨUHF

H4
⟩

= min. (15)

Let us assume now additive separability of the Hamiltonian as

Ĥ = Ĥ1 + Ĥ2 . (16)

For identical H2 units, the energy expression is specified as

EEHF

H4
= 2

(cos4 α1 + sin4 α1)⟨S̃1(α1)|Ĥ1|S̃1(α1)⟩ + sin4(2α1)
12

⟨0T1|Ĥ1|0T1⟩
(cos4 α1 + sin4 α1)2 +

sin4(2α1)
12

, (17)

making use of the degeneracy of spin multiplets and assuming natural orbitals localized on

one or the other H2. Note, that the triplet state of H2 units figure in the dimer energy

for nonzero αI . As αI = 0 belongs to the RHF solution, triplet geminals contribute to the
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variationally optimized energy of the dimer in the general case. This is obviously a problem,

since calculating the H2 molecules independently, one obtains, again for S = 0

P̂ s|ΨUHF

H2
⟩ = S̃+

1 (α1)|vac⟩ ,

yielding the following EHF energy for the H2 unit

EEHF

H2
=

1

cos4 α1 + sin4 α1

⟨vac|S̃−
1 (α1) Ĥ S̃+

1 (α1)|vac⟩ = min. (18)

Comparison of Eqs.(17) and (18) clearly shows, that the monomer triplet contribution

to EEHF
H4

spoils size consistency. The error disappears as αI → 0, since the triplet component

of geminals falls off and the singlet component falls back to RHF. The error vanishes also in

the other extreme, in the dissociation limit of H2 subunits, since singlet and triplet geminal

states become degenerate, therefore spin contamination can not influence the energy. In

all other cases the monomer triplet component has a nonzero contribution to Eq.(17). As

EHF provides the FCI solution with two orbitals for H2, size consistency violating terms of

Eqs.(17) necessarily lift the energy of the non-interacting dimer above twice the energy of

the monomer.

EAPSG

Starting from the spin projection of ΨRUSSG, written as

|ΨSP-RUSSG

H4
⟩ = P̂ sψ+

1 ψ
+
2 |vac⟩ =

[
cos δ1 cos δ2 S+

1 (γ1)S+
2 (γ2) +

sin δ1 sin δ2√
3

Π+
12

]
|vac⟩ , (19)
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it is apparent, that the role of parameters δ1 and δ2 is merely to control the relative weight

of S+
1 (γ1)S+

2 (γ2) and Π+
12. Introducing the following, equivalent definitions

cos δ =
cos δ1 cos δ2√

cos2 δ1 cos2 δ2 + (sin2 δ1 sin
2 δ2)/3

, (20)

sin δ =
sin δ1 sin δ2√

cos2 δ1 cos2 δ2 + (sin2 δ1 sin
2 δ2)/3

, (21)

Eq.(19) can be recast without lack of generality as

|ΨSP-RUSSG

H4
⟩ =

(
cos δ S+

1 (γ1)S+
2 (γ2) + sin δΠ+

12

)
|vac⟩ . (22)

Condition

EEAPSG

H4
=

⟨ΨSP-RUSSG
H4

|Ĥ|ΨSP-RUSSG
H4

⟩
⟨ΨSP-RUSSG

H4
|ΨSP-RUSSG

H4
⟩

= min. (23)

results the EAPSG energy.

Assuming again additive separability of Ĥ according to Eq.(16), identical H2 units and

localized natural orbitals, the energy expression simplifies to

EEAPSG

H4
= 2

(
cos2 δ ⟨vac|S−

1 (γ1) Ĥ1 S+
1 (γ1)|vac⟩ + sin2 δ⟨vac|0T −

1 Ĥ1 0T +
1 |vac⟩

)
. (24)

Variational optimization of Eq.(24) results δ = 0, hence twice the energy obtained for the

H2 unit based on

|ΨSP-RUSSG

H2
⟩ = P̂ sψ+

1 |vac⟩ = S+
1 (γ1)|vac⟩ ,

and

EEAPSG

H2
= ⟨vac|S−

1 (γ1) Ĥ S+
1 (γ1)|vac⟩ = min.
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Accordingly, EAPSG is size consistent for a system composed of two geminals. Note, that in

this simple case, size consistency is achieved by eliminating the triplet component of Eq.(24)

upon variation of the EAPSG energy for the dimer. This is not always the case: dissociating

a double bond (two geminals), e.g. ethylene, the triplet component would survive purely.

Interacting geminals

Numerical assessment of EHF and EAPSG is presented on the example of H4, by monitoring

a square to rectangle distortion. Near to square geometry, the same system was examined

by a geminal coefficient optimized version of SP-RUSSG.26 Here, the dissociation of H4 to

two H2 units is considered.

Bond lengths of two H2 molecules, aligned parallel, are fixed to 1.4 Å , roughly twice the

equilibrium distance, to generate a considerable multireference character of the wavefunction.

Starting from the square geometry, the H2 units are gradually drawn apart. Energies of

various geminal based methods are shown in Fig. 1 in STO-3G basis, together with Full

Configuration Interaction (FCI), for comparison. Energy values for EHF and EAPSG were

obtained by minimizing Eq.(15) and Eq.(23), with respect to parameters α, γ and δ, following

a steepest descent algorithm.

The two sets of orbitals used for EHF and EAPSG in Fig. 1 are as follow. Orbitals

denoted as ’symm’ are symmetry adapted according to the D2h (D4h at square geometry)

point group, and set both Eq.(15) and Eq.(23) stationary. Orbitals ag and b1g are assigned to

one geminal, and b2u and b3u constitute the other geminal in D2h. As checked by numerical

means, bonding and antibonding orbitals of the two H2 molecules, denoted as ’loc’ also set

both Eq.(15) and Eq.(23) stationary. When using localized orbitals, geminals are localized

on the H2 molecules as well.

Examining EHF in Fig. 1, the solution with symmetric orbitals remains below (or equal

to) the curve with localized geminals, all along the potential curve. The two curves tend to

the same value with increasing distance. Size inconsistency of EHF is already obvious at 3
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Å . As EHF matches FCI for minimal basis H2, the cca. 25 mEh difference from FCI can

be readily identified as size consistency error. It is interesting to observe, that the energy

of the fully variational solution, ’EHF symm’ improves with decreasing distance (the energy

difference from FCI is only 0.100 mEh at the square geometry). This is in accordance with

the observation that EHF is the appropriate model of antiferromagnetic spin coupling.49,63

The present ’EHF symm’ solution at square geometry matches the EHF solution obtained

for cyclobutadiene within a π-electron model.36 This orbital set was reportedly reached by

Mayer and Kertész starting from a UHF guess.

The energy curves of EAPSG show somewhat different characteristics. Whereas the

delocalized solution runs only a few 0.1mEh below ’EHF symm’ (at square geometry ’EAPSG

symm’ equals FCI), the curve with localized geminals drops below ’EAPSG sym’ at large

distances. The curve ’EAPSG loc’ practically overlaps singlet coupled APSG and both tend

to FCI in the large distance limit, reflecting size consistency.

Remarkably, while singlet coupled APSG and EHF perform well for only at one of the

opposite extremes (antiferromagnetic coupling and weakly interacting geminals), EAPSG

is successful for both. This however comes at the serious price of switching between fully

variational solutions ’EAPSG symm’ and ’EAPSG loc’. Stepping from one solution to the

other leads to an incorrect shape of the potential curve and produces a discontinuity in the

derivative, with unfavourable consequences in geometry optimization or property calculation.

It remains to be checked whether there exists a further set of orbitals providing a solution

that would interpolate smoothly between the strongly and weakly correlated regimes.

The case of four geminals

Finally, we investigate additivity over non-interacting two-geminal units in the example of

the H4 dimer. According to the previous section, EHF fails to be size consistent already

for the H2 dimer. For this reason only EAPSG is considered in this larger test case. The
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RUSSG wave function is now constructed as the product of four geminals

|ΨRUSSG

(H4)2
⟩ =

4∏
I=1

ψ+
I |vac⟩ ,

where I ∈ {1, 2} (I ∈ {3, 4}) constitute one (and the other) subsystem, each composed of

two interacting geminals. Size consistency of the RUSSG method readily follows from the

product separability of the above wavefunction. Stepping towards EAPSG, let us substitute

Eq.(9) and perform spin projection, to obtain

P̂ s|ΨRUSSG

(H4)2
⟩ =

[
4∏

I=1

cos (δI)S+
I (γI) + (25)

+

(
4∏

J=1

sin (δJ)

)(
1

3
Π+

12Π
+
34 +

2

3
√
5
Ω+

1234

)
+

+
1

4

∑
P∈S4

cos (δP1) cos (δP2) sin (δP3) sin (δP4)√
3

S+
P1

(γP1)S+
P2

(γP2)Π
+
P3P4

]
|vac⟩,

where S4 stands for the symmetric group of order four and Ω+
1234 creates a singlet coupled

product of two quintet subunits according to

Ω+
1234 =

√
1

5

(
+2Q+

12 −2Q+
34 − +1Q+

12 −1Q+
34 + 0Q+

12 0Q+
34 −

− −1Q+
12 +1Q+

34 + −2Q+
12 +2Q+

34

)
,

with

0Q+
IJ =

√
1

6
+1T +

I −1T +
J +

√
2

3
0T +

I 0T +
J +

√
1

6
−1T +

I +1T +
J .

Similarly to Eqs.(13) and (14), the MS ̸= 0 quintet operators (mQ+, m = ±1,±2) are

generated with operators Ŝ+ and Ŝ−, starting from 0Q+
IJ .
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The Hamiltonian is additively separable as

Ĥ = Ĥ12 + Ĥ34 ,

reflecting the non-interacting situation of two H4 units, composed of ψ+
1 , ψ

+
2 and ψ+

3 , ψ
+
4 ,

respectively. Let us assume for simplicity that the two H4 systems are identical, which is

reflected in the parameters as

δ1 = δ3 ,

δ2 = δ4 ,

γ1 = γ3 ,

γ2 = γ4 .

By using the above, and assuming degeneracy of spin multiplets, the Rayleigh quotient can

be expressed as

EEAPSG

(H4)2
=

2

⟨ΨEAPSG

(H4)2
|ΨEAPSG

(H4)2
⟩

[
EEAPSG

H4
+

4

5
sin4 δ⟨0Q12|Ĥ12|0Q12⟩ + (26)

+ cos2 δ

(
sin2 δ +

cos2 δ tan4 δ2
3

)
⟨0T2 S1(γ1)|Ĥ12|S1(γ1) 0T2⟩ +

+ sin2 δ
(
cos2 δ + 3 sin2 δ ctg4 δ2

)
⟨0T1 S2(γ2)|Ĥ12|S2(γ2) 0T1⟩ +

+ sin(2δ)

(√
3 sin2 δ ctg2 δ2 +

cos2 δ tan2 δ2√
3

)
⟨0T2 S1(γ1)|Ĥ12|S2(γ2) 0T1⟩

]
.

Minimization of the expression above with respect to parameters δ, δ2, γ1, γ2 yields the

EAPSG energy. Note, that δ1 is eliminated by introducing δ via Eqs.(20) and (21), to

facilitate comparison with H4. As Eq.(26) shows, the EAPSG energy is composed of the en-

ergies of the monomers, 2EEAPSG
H4

plus the remaining terms in square bracket, inducing size

inconsistency. Size consistency violation of EAPSG is analogous to EHF in many respects,

e.g. size inconsistency stems from non-singlet components of the monomer wavefunction.
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(Note, that (H4)2 is spin pure but the individual H4 units are not.) The energy of the

dimer is expected to be higher than that of two monomers, in cases where EAPSG is a

reasonable approximation to the monomer ground state. This follows from the fact, that

consistency violating terms are contributions from exact states, high above the ground state.

In general, size consistency violation of EAPSG is nonzero. Size consistency is recovered for

sin δ1 = sin δ2 = 0 (consequently sin δ = 0 ). Geminals lack any triplet contribution (c.f.

Eqs.(9) and (22)) in this case, consistency violating term consequently disappear from the

square bracket of Eq.(26) and the norm ⟨ΨEAPSG

(H4)2
|ΨEAPSG

(H4)2
⟩ becomes unity. Such a situation is

produced e.g. if breaking further down the H4 subunits to non-interacting H2 systems.

Numerical evaluation of size inconsistency is performed with the same monomer geometry

as described in the previous section. According to Fig. 1, the EAPSG solution labeled

’EAPSG loc’ essentially agrees with singlet-coupled APSG, indicating a marginal role of the

triplet component of geminals. Size inconsistency is correspondingly surely negligible for

’EAPSG loc’, it occurs only with ’EAPSG symm’. For this reason the numerical evaluation

focuses on the [1.4, 1.7] Å H2−H2 distance interval.

Geminal parameters optimized for the monomer (c.f. Eq.(23)) and the dimer (c.f.

Eq.(26)) are collected in Table 1. The latter parameter set was obtained by minimiza-

tion over a numerical grid. Inspecting parameter δ, one finds that δ of the dimer is about

half of the δ of the monomer, in absolute value. Weight of triplet geminal components is

accordingly reduced in the dimer. Change in γ1 and γ2 is less significant. Parameter δ get-

ting closer to zero in the dimer has a direct size inconsistency reducing effect (c.f. Eq.(26)).

However, neither δ nor δ2 become exactly zero upon optimization, yielding a nonzero size

consistency error. As the last column of Table 1 reflects, size inconsistency is substantial,

amounting to a couple of percents of the total energy. Comparison with Fig. 1 reveals, that

size inconsistency swaps the order of ’EAPSG loc’ and ’EAPSG symm’ in the [1.4, 1.7] Å

H2−H2 distance interval for the dimer. The energy of (H4)2 with symmetry adapted orbitals

is higher than twice the ’EAPSG loc’ energy of H4. An artifactual consequence is, that the
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ground state EAPSG solution differs qualitatively for H4 and the non-interacting dimer.

Apart from energies, monomer spin is also reported in the Table. As expected, size

inconsistency is accompanied by a nonzero spin quantum number of the H4 subunits in the

dimer calculation. Interestingly, the slight shoulder discernible on the dimer energy curve at

around 1.5 Å is missing from the monomer spin values.

Conclusions

A comparative presentation of UHF and (two orbital per geminal) RUSSG reveals that

the latter is an extension of the former, both belonging to the strongly orthogonal geminal

wavefunction category. While UHF describes the correlation of two electrons at the price

of spoiling spin, RUSSG is flexible enough to incorporate correlation in a spin pure manner

for two electrons. Spin contamination appears at a higher level of complexity in RUSSG. It

is inter-geminal correlation that is described by RUSSG at the price of spoiling total spin,

analogously to UHF. In general both UHF and RUSSG exhibit critical points of the Coulson-

Fischer type on the potential surface, where the spin contaminated solution deviates from

the corresponding restricted curve.

Spin projection followed by variation removes critical points of UHF, but induces size

inconsistency. The same holds for the spin projected, extended version of singlet coupled

strongly orthogonal geminals, termed EAPSG. Here again, the problem appears at a higher

level of complexity. While EHF is not size consistent for a four-electron system, EAPSG is

yet size consistent. Size inconsistency of EAPSG is shown to appear in a four-geminal (eight-

electron) test case. Numerical assessment reveals a substantial consistency error of EAPSG,

on the order of a couple of percent of the total energy. For both EHF and EAPSG, size

inconsistency stems from higher than singlet components of the non-interacting fragments.

While these components can play an important role in the interacting region, they correspond

to highly excited exact solutions in the non-interacting limit. Parametrization of EHF and
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EAPSG is however is not flexible enough to allow for the gradual decrease of these terms

when decomposing the total system into two independent subsystems. We note, without

detailed derivation that EAPSG still fulfills size consistency on a three geminal system. The

reason behind is that the spin coupling pattern of triplet geminals to overall singlet are

similar to the two-geminal case (triplets coupled to quadruples have no contribution).

A remarkable feature of EAPSG is its ability to interpolate between strongly correlated

(antiferromagnetic) and weakly correlated geminal regimes of a two-geminal model system.

The character of EAPSG orbitals reported here changes sharply in the switching region.

Natural orbitals are found delocalized for the antiferromagnet but localized on the geminals

as the interaction becomes weaker. Both orbital sets represent a solution to the EAPSG

equations all along the process. Unless a further set of orbitals corresponding to a lower

lying minimum exists, EAPSG implies a switch from one solution to the other. In the latter

case averaging the two solutions29 may be a simple to way to avoid discontinuous derivatives

or ill-behaving energy correction schemes.

Extension of the flexibility of the geminal Ansatz, e.g. by lifting strong orthogonality64–67

or breaking further symmetries68 may alleviate the problems presented here. Based on the

current study, EAPSG appropriately describes breaking or rearrangement of two geminals. It

is definitely not recommended for four or more strongly interacting bonds, if size consistency

is of interest.
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Figure 1: Total energy of two H2 molecules oriented in parallel, in STO-3G basis, as a
function of the distance between the H2 units. Spin projected, extended HF (EHF), singlet
coupled strongly orthogonal geminals (APSG) and spin projected, extended version of the
latter (EAPSG) are compared. The H−H bond length is fixed at 1.4 Å . Key legend ’symm’
refers to orbitals, symmetry adapted according to the D2h (D4h at 1.4 Å ) point group. See
text for assignation of orbitals to geminals. Legend ’loc’ stands for orbitals localized on the
H2 molecules.
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Table 1: Geminal parameters, fragment spin and total energy in STO-3G basis obtained
by EAPSG with symmetry adapted orbitals. Independent H4 calculation is compared to
(H4)2, composed of non-interacting H4 fragments. Size consistency error is tabulated in the
last column. See Fig. 1 for the geometry of H4. In the Table, ’dist’ stands for the H2−H2

distance.

dist δ δ2 γ1 γ2 ⟨Ŝ2⟩H4 EEAPSG / Eh (E(H4)2 − 2EH4) / mEh

1.4
2 H4

(H4)2

-0.3182
-0.1282

–
0.5199

0.1535
0.1011

0.7813
0.7813

0
0.1394

-3.930152
-3.782148

148.00

1.5
2 H4

(H4)2

-0.3256
-0.1292

–
0.5132

0.1665
0.1093

0.9257
0.9813

0
0.1379

-3.930332
-3.779397

150.94

1.6
2 H4

(H4)2

-0.3251
-0.1252

–
0.4960

0.1765
0.1162

1.0258
1.1101

0
0.1264

-3.940264
-3.793110

147.15

1.7
2 H4

(H4)2

-0.3217
-0.1202

–
0.4778

0.1850
0.1222

1.0964
1.1910

0
0.1145

-3.952988
-3.822974

130.02
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