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Sensitivity analysis of state-specific multireference perturbation theory
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State-specific multireference perturbation theory (SS-MRPT) developed by Mukherjee et al. [Int. J.
Mol. Sci. 3, 733 (2002)] is examined focusing on the dependence of the perturbed energy on the
initial model space coefficients. It has been observed earlier, that non-physical kinks may appear
on the potential energy surface obtained by SS-MRPT while related coupled-cluster methods may
face convergence difficulties. Though exclusion or damping of the division by small coefficients may
alleviate the problem, it is demonstrated here that the effect does not originate in an ill-defined divi-
sion. It is shown that non-negligible model space coefficients may also be linked with the problem.
Sensitivity analysis is suggested as a tool for detecting the coefficient responsible. By monitoring the
singular values of sensitivity matrices, orders of magnitude increase is found in the largest value, in
the vicinity of the problematic geometry point on the potential energy surface. The drastic increase
of coefficient sensitivities is found to be linked with a degeneracy of the target root of the effective
Hamiltonian. The nature of the one-electron orbitals has a profound influence on the picture: a rota-
tion among active orbitals may screen or worsen the effect. © 2011 American Institute of Physics.
[doi:10.1063/1.3585604]

I. INTRODUCTION

Molecular systems that are intriguing for chemists are of-
ten characterized by a wavefunction which can not be well
approximated by a single Hartree-Fock determinant. Single
bond dissociation, as the simplest example, requires two de-
terminants when working with restricted orbitals, to get a
qualitatively correct characterization. It has been well estab-
lished to describe the electronic structure of such systems
in two steps, i.e., by solving a linear variation problem in a
preferably small determinantal space collecting the most im-
portant configurations, and correct this wavefunction in a sec-
ond step by a properly formulated, multireference function
based correlation method.

Among various perturbation approaches that rely on a
multireference zero-order function (MRPT) the state-specific
(SS) MRPT developed by Mukherjee and co-workers1–4 is
one which possesses the desirable features of size-extensivity
and intruder free character. Similarly to most MRPT’s, SS-
MRPT does not conserve orbital invariance of the underlying
complete active space (CAS) wavefunction neither in its orig-
inal form, nor in a reformulation suggested recently.5 Never-
theless, SS-MRPT is an appealing and competitive method6, 7

and has been successfully applied for various problems.8, 9

In spite of the manifest intruder-free character of the the-
ory, unphysical kinks have been recently observed on the or-
der of one to ten mEh when computing potential energy sur-
faces by SS-MRPT. Similar experience has been reported in
the parent coupled-cluster (CC) theory10 as well as in a re-
lated multireference CC theory developed by Hanrath.11 The
unexpected behavior has been attributed to small coefficients
in the CAS wavefunction, which appear in the denominator of
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the amplitude equations. To circumvent the problem a damp-
ing procedure has been suggested.10

In the present study we apply a sensitivity analysis of the
SS-MRPT equations with the aim of unfolding the problem.
We show that sensitivity analysis may be used to point to the
problematic CAS space coefficients. The investigation reveals
that the coefficients responsible for the effect are not necessar-
ily the smallest in absolute value. It is found that the appear-
ance of the kinks depends severely on the nature of the one
particle basis, showing orders of magnitude difference in the
singular values of coefficient sensitivity matrices, for differ-
ent orbital sets. Knowing that SS-MRPT energies are orbital
dependent, we argue that orbital sets giving small sensitivities
are preferable to others, since these produce small variation
of SS-MRPT results upon infinitesimal orbital rotations.

In what follows, the formulation of SS-MRPT is briefly
recollected, followed by the presentation of sensitivity analy-
sis and a numerical illustration section demonstrating the util-
ity of the suggested analysis.

II. THEORY

A. SS-MRPT

Derived from the parent CC theory,12 SS-MRPT op-
erates with the Jeziorski-Monkhorst parametrization of the
wavefunction13

� =
∑

μ

eTμ |φμ〉 cμ, (1)

and assumes the existence of a CAS wavefunction written as

� =
∑

μ

|φμ〉 c(0)
μ , (2)
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the associated CAS energy being ECAS. Introducing P for the
projector of the CAS space

P =
∑

μ

|φμ〉〈φμ|, (3)

and Q for the orthogonal complement

Q = 1 − P =
∑

l

|χl〉〈χl |, (4)

upon substitution of the Ansatz Eq. (1) into the Schrödinger
equation one may arrive at the following pair of equations12∑

μ

H̃μν cν = E cμ, (5)

defining coefficients cμ and∑
μ

(
eTμ Q Hμ|φμ〉cμ +

∑
ν

eTμ Qe−TμeTν |φμ〉H̃μνcν

)
= 0,

(6)

determining amplitudes in excitation operators Tμ. In
the above Hμ = e−Tμ HeTμ is the similarity transformed
Hamiltonian and H̃μν = 〈φμ|H ν |φν〉 denotes its matrix ele-
ments taken with CAS space wavefunctions.

Obviously, projection of Eq. (6) by Q-space functions
does not provide sufficient number of equations to determine
the amplitudes in all operators Tμ. This well known redun-
dancy problem is surpassed in SS-MRPT by requiring that
Eq. (6) holds separately for each index μ. Omitting the sum
in Eq. (6) and projecting by function 〈χl | one obtains the am-
plitude equations

〈χl |Hμ|φμ〉cμ +
∑

ν

〈χl |e−TμeTν |φμ〉H̃μνcν = 0, (7)

that should hold for each μ and l. Equations (7) and (5) are
the basic equations of SS-MRCC that—with the appropriate
truncation introduced in operators Tμ—are iterated till self-
consistency.

The Rayleigh-Schrödinger variant of SS-MRPT pro-
posed by Mukherjee et al.4 stems by a linearization of the
amplitude equations giving

〈χl |H |φμ〉cμ + 〈χl |
[
H, Tμ

] |φμ〉cμ

+
∑

ν

〈χl |Tν − Tμ|φμ〉Hμνcν = 0. (8)

Introducing a partitioning of the total Hamiltonian as

H = H (0) + V, (9)

with the zero-order operator diagonal on the basis of functions
φμ and χl

H (0) =
∑

μ

E (0)
μ |φμ〉〈φμ| +

∑
l

E (0)
l |χl〉〈χl |, (10)

the equation determining the first order amplitudes t (1)ν
lμ

= 〈χl |T (1)
ν |φμ〉 takes the form∑
ν

[
Hμν +

(
E (0)

l − E (0)
μ − ECAS

)
δμν

]
c(0)
ν t (1)ν

lμ

= −Hlμ c(0)
μ , (11)

with Hμν = 〈φμ|H |φν〉 and Hlμ = 〈χl |H |φμ〉. Zero-order en-
ergies E (0)

μ and E (0)
l are subject to choice. See Sec. III for the

specification of these quantities. Substituting the first order
amplitudes into Eq. (5), the energy correct up to order two is
obtained as an eigenvalue∑

μ

H [2]
νμ cμ = E [2] cν, (12)

of the non-symmetric effective Hamiltonian

H [2]
νμ = 〈φν |H + (

H T (1)
μ

)
c
|φμ〉. (13)

We remark here that the derivation of the above equations is
not based on a rigorous order-by-order analysis of the SS-
MRCC equations. Note, for example, that the CAS wave-
function Eq. (2) is not an eigenfunction of the zero-order
Hamiltonian Eq. (10). A strict perturbation approach based
on the Taylor-expansion of the wavefunction and the energy
has been given recently5 and it results in working equations
different from the above. An important point of dissimilarity
is the expression of the second order correction: in Eq. (12) it
appears as an eigenvalue of H [2]

νμ while it is simply an expec-
tation value of H [2]

νμ in Ref. 5.
Introducing the composite index I for excitation

μ → l, working equation [Eq. (11)] of SS-MRPT can be
solved separately for each I in the spectral resolution form

t (1)ν
I = − 1

c(0)
ν

∑
μ

′
A−1

νμ(I ) c(0)
μ HIμ,μ, (14)

with

Aμν(I ) = Hμν + (
E (0)

l − E (0)
μ − ECAS

)
δμν, (15)

and HIμ,μ = Hlμ. Once t (1)ν
I -s are computed for a given I ,

their contribution is accumulated into H [2]
νμ by Eq. (13) and

subsequently they are dropped. When all excitations, I, have
been taken into account, H [2]

νμ is diagonalized to obtain the
second order SS-MRPT energy according to Eq. (12). It is to
be noted, that the dimension of the linear system of equations
[Eq. (14)] is equal or less than the dimension of the model
space, depending on the creation/annihilation indices which
carry out the excitation μ → l. Whenever these indices are in-
consistent with the occupied/virtual classification of a model
space determinant φν , the corresponding amplitude t (1)ν

I is
zero, and ν is omitted when constructing Aμν(I ) and evalu-
ating the sum on the right hand side of Eq. (14). A prime on
the sum in Eq. (14) indicates this restriction.

Although the amplitude equation in the form of Eq. (11)
shows similarity with the SS-MRCEPA(0) equations,14 they
markedly differ in the treatment of the Hamiltonian in the
space of the virtual functions, χl . In particular, term Hlm in
matrix A of the SS-MRCEPA(0) equations is approximated
as δlm E (0)

l in Eq. (15), facilitating the decoupling of t (1)μ
I and

t (1)μ
J for I �= J .

As demonstrated in Sec. III, the second order SS-MRPT
energy may show sudden, non-physical kinks on a potential
energy surface. Similar effects are observable in Figs. 12 and
14 of a recent study by Mahapatra et al.15 reporting applica-
tions of SS-MRPT. Divergence of PT denominators—intruder
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in matrix A(I ), in other terms—could be an obvious reason.
This however cannot be claimed for the effect, which may be
reasoned by a rearrangement of the diagonals of matrix A(I )
of Eq. (15) in the form4

Aμμ(I ) = Hμμ − E (0)
μ + E (0)

l − ECAS. (16)

The main contribution to Aμμ(I ) comes from the last two
terms on the right hand side in the form of an excitation en-
ergy. Since this is a difference of an uncorrelated excited state
energy and a correlated ground state energy, Aμμ(I ) is never
expected to vanish if treating the ground state.

Another plausible explanation for the kinks would be the
close to zero value of CAS coefficient c(0)

ν which would render
t (1)ν
I of Eq. (14) unphysically large in absolute value and non-

computable in the limit c(0)
ν → 0. For this reason, a damping

of 1/c(0)
ν attributed to Tikhonov16 has been applied in the par-

ent SS-MRCC10 in the form

c(0)
ν(

c(0)
ν

)2
+ ω2

, (17)

while Hanrath suggested to drop every c(0)
ν falling below a

threshold in magnitude and zero the corresponding tν
I -s.11

When applied to SS-MRPT, both of the above techniques
may be used to eliminate the kinks. However, the magnitude
of coefficients which need to be eliminated or damped may
be rather large. To complete the picture, Tikhonov damping
of A−1(I ) in the form

∑
μ

αμ

α2
μ + ω2

uμ ⊗ uμ (18)

has also been tested, while keeping 1/c(0)
ν undamped. Here

αμ are the eigenvalues and uμ are the eigenvectors of ma-
trix A(I ). Remarkably, in spite of matrix A(I ) being regular,
this procedure may also eliminate the kinks with a sufficiently
large damping parameter. Both of the above experiences indi-
cate that the problem is not purely of numerical nature.

A further watchword of effective or intermediate opera-
tor based MRPT’s is the (quasi) degeneracy in the spectrum of
the effective matrix.17–20 To distinguish this effect from quasi-
degeneracy of matrix A(I ) we refer to this problem as an
intruder in the effective Hamiltonian. Being a state-selective
theory, SS-MRPT is free from this pitfall since only one root
of H[2] of Eq. (13) is meaningful. To select the desired root,
one may monitor symmetry of the vectors as well as the over-
lap with the starting CAS wavefunction. Interestingly, how-
ever, we have observed that the problem of kinks is accom-
panied by a degeneracy building up in the spectrum of H[2],
involving the target root. Though selection of the target root
becomes problematic only in the exactly degenerate point,
the performance of the theory drops already in the quasi-
degenerate region, regarding either of the roots. From this
point of view, the success of a damping as described above,
lies in the modification of H[2] in a way that the degeneracy is
lifted.

B. Sensitivity analysis

To explore the problem of kinks in more detail, a tech-
nique called sensitivity analysis may be useful. Sensitivity
analysis is a tool for investigating the effect of parameter
change on the solution of mathematical models, that was
largely developed in connection with differential equations
appearing in reaction kinetics.21 The method is however not
confined to chemical kinetics, it may be applied whenever the
relation between the parameters and the results of a math-
ematical model is to be explored. In the present case we
are dealing with linear equations of a non-dynamical model,
which renders sensitivity analysis rather simple.

The unknowns of SS-MRPT are the cluster ampli-
tudes and the linear expansion coefficients of the Jeziorski-
Monkhorst Ansatz Eq. (1). The quantities are determined in
two steps:

(i) Equation (14) is solved first for the amplitudes t (1)ν
I , the

CAS coefficients c(0)
ν playing the role of parameters;

(ii) Equation (12) is solved next for the coefficients cν , the
amplitudes t (1)ν

I playing the role of parameters.

In principle, the one- and two-electron integrals defining the
Hamiltonian at the given geometry and basis set may also be
regarded as parameters of the equations. For the sake of clar-
ity, they will not be indicated among the parameters presently,
since it is neither geometry nor basis set sensitivity that we are
interested in. We will also omit upper index (1) of the first or-
der amplitudes from here on, to simplify the notations.

1. Coefficient sensitivity of the amplitudes

Let us first study the effect of a change in c(0)
ν on the am-

plitudes. This is reflected by the partial derivatives ∂tμ

I /∂c(0)
ν

∂tμ

I

∂c(0)
ν

= − 1

c(0)
ν

(
δμν tμ

I + A−1
μν (I )HIν,ν

)
. (19)

The Taylor-expansion of amplitude tμ

I around a set of refer-
ence parameter values c(0)

1 , c(0)
2 , . . . collected in column vector

c(0) reads as

tμ

I (c(0) + �c) = tμ

I (c(0)) +
∑

ν

∂tμ

I

∂c(0)
ν

�cν + O(2),

(20)

if truncated at the quadratic term. A collective measure of am-
plitude perturbation produced by the alteration of the coeffi-
cients can be given by an objective function, e.g. in the form

e =
∑

μ

(
tμ

I (c(0) + �c) − tμ

I (c(0))

tμ

I (c(0))

)2

. (21)

Substituting the linear expansion (20) into the above expres-
sion one gets

e = dT ST S d, (22)
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where

Sμν = c(0)
ν

tμ

I

∂tμ

I

∂c(0)
ν

= ∂ ln tμ

I

∂ ln c(0)
ν

(23)

is the normalized sensitivity matrix, and elements of vector d
give the relative parameter change

dν = �c(0)
ν

c(0)
ν

. (24)

By definition, the sensitivity matrix (23) is non-symmetric.
Moreover it is a non-square matrix, since excitation μ → l
acting on model space function φν may give zero. In such a
case the corresponding tν

I is zero by definition and it is elimi-
nated from the problem, while c(0)

ν (if nonzero) still counts as
a parameter.

To grab which are the parameters having the largest influ-
ence on the solution when changed, it is useful to perform the
singular value decomposition (SVD) of the sensitivity matrix.
This allows to express S as

S = U σ VT , (25)

with U and V built on the normalized eigenvectors of S ST

and ST S, respectively, and the diagonal matrix σ collecting
the singular values σi . Substituting this form into the objective
function one gets

e = dT V σ T σ VT d =
∑

i

σ 2
i |δi |2, (26)

where δi stands for the elements of the relative parameter-
change vector transformed by VT

δ = VT d . (27)

The right hand side of Eq. (26) gives the canonical form
of the objective function e. This form can be used to identify
the most influential parameters, since an exceedingly large
σi points to the coefficients which have strong perturbing ef-
fect on the amplitudes, if changed. The corresponding column
of matrix V reveals what combination of relative changes in
c(0)
ν -s is the most effective in achieving a large change in the

amplitudes.

2. Amplitude sensitivities: energy derivatives

Having obtained the amplitudes, the second step of SS-
MRPT is to compute the energy and the relaxed coefficients
according to Eq. (12). Here one may wish to examine the ef-
fect of an alteration in the amplitudes on the eigenvectors and
eigenvalues of H[2].

Let us consider the eigenvalue first. Computing the
derivative of E [2] with respect to an amplitude tμ

I one may
make use of the Hellman–Feynman theorem

∂ E [2]

∂tλ
I

= 〈c̃|∂H[2]

∂tλ
I

c〉, (28)

with c̃ denoting the left eigenvector of H[2] corresponding to
E [2], satisfying 〈c̃|c〉 = 1. Elements of the second order effec-
tive Hamiltonian are linear functions of the amplitudes

H [2]
νμ = Hνμ +

∑
l

Hνl tμ

lμ, (29)

leading to the simple derivative expression

∂ H [2]
νμ

∂tλ
I

= δλμ Hν,Iμ, (30)

where Hν,Iμ = Hνl , composite index I being associated with
the transition μ → l. Substituting this into the energy deriva-
tive one obtains

∂ E [2]

∂tλ
I

=
∑

ν

c̃∗
ν Hν,Iλ cλ, (31)

which may be used to build the sensitivity matrix as

SIλ = tλ
I

E [2]

∂ E [2]

∂tλ
I

, (32)

and compute its SVD to reveal whether any amplitudes have
an influence on E [2] that is out of proportion as compared to
the others. Note, that in this case matrix S is a row vector,
since it is the single quantity E [2] whose amplitude sensitiv-
ity is examined. As a consequence, the only nonzero singular
value is simply the norm of vector S.

3. Amplitude sensitivities: coefficient derivatives

Turning to the amplitude sensitivity of the eigenvectors
of H[2], let us take the derivative of the eigenvalue equation
[Eq. (12)] with respect to tλ

I . Denoting operation ∂/∂tλ
I by

prime for brevity, one obtains

H[2]′ c + H[2] c′ = E [2]′ c + E [2] c′. (33)

Rearranging this equation one gets

(H[2] − E [2])c′ = − (H[2]′ − E [2]′)c, (34)

which would yield c′ if multiplied by the inverse of
H[2] − E [2] from the left. However, this matrix is singular,
E [2] being an eigenvector of H[2]. For this reason the reduced
resolvent is defined as27, 28

G(H[2] − E [2]) = 1 − |c〉〈c̃|. (35)

Left multiplication of Eq. (34) by G yields

|c′〉 − |c〉〈c̃|c′〉 = − G(H[2]′ − E [2]′)|c〉 . (36)

Projection of Eq. (36) by 〈c| gives the scalar product of 〈c̃|
and |c′〉:

〈c̃|c′〉 = 〈c|G(H[2]′ − E [2]′)|c〉, (37)

having used that 〈c|c′〉 = 0, a consequence of the normal-
ization condition of the eigenvector, 〈c|c〉 = 1. Combining
Eqs. (37) and (36) the derivative c′ can be expressed as

|c′〉 = − (1 − |c〉〈c|) G(H[2]′ − E [2]′)|c〉 . (38)

Substituting expressions for H[2]′ and E [2]′ derived previously,
the derivative of the coefficients with respect to the amplitudes
can be finally written as

∂cμ

∂tλ
I

= −
∑
νστ

Lμν Gνσ Kστ Hτ,Iλ cλ, (39)
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and can be utilized to construct the sensitivity matrix

Sμ,Iλ = tλ
I

cμ

∂cμ

∂tλ
I

. (40)

Matrices L and K in the above [Eq. (39)] are the representa-
tion of projector 1 − |c〉〈c| and 1 − |c〉〈c̃|, respectively, with
elements Lμν = δμν − cμc∗

ν and Kστ = δστ − cσ c̃∗
τ . Compu-

tation of matrix G is straightforward, once the spectral form
of H[2] is available.

4. Eventual coefficient sensitivities: derivatives
of the energy

It may be useful to link the above derivatives via the chain
rule and study the eventual effect of CAS coefficient variation
on the final SS-MRPT quantities. Regarding the energy, the
derivative can be expressed as

∂ E [2]

∂c(0)
μ

=
∑

Iλ

∂ E [2]

∂tλ
I

∂tλ
I

∂c(0)
μ

= − 1

c(0)
μ

∑
νλ

c̃∗
ν Fμ

νλ cλ,

(41)

the elements of matrices Fμ being

Fμ
νλ =

∑
I

Hν,Iλ
(
δλμtμ

I + A−1
λμ(I )HIμ,μ

)
. (42)

For each I , terms of matrices Fμ can be computed and ac-
cumulated and then dropped to spare the storage of the nu-
merous derivatives. The sensitivity matrix can finally be ex-
pressed as

Sμ = c(0)
μ

E [2]

∂ E [2]

∂c(0)
μ

, (43)

and subjected to SVD.

5. Eventual coefficient sensitivities: derivatives
of the coefficients

Finally, we give the expressions for studying the CAS
coefficient sensitivity of the relaxed coefficients. For this end
the partial derivatives

∂cμ

∂c(0)
ν

=
∑

Iλ

∂cμ

∂tλ
I

∂tλ
I

∂c(0)
ν

= 1

c(0)
ν

∑
κλστ

Lμκ Gκσ Kστ Fν
τλcλ

(44)

are to be constructed and substituted into

Sμν = c(0)
ν

cμ

∂cμ

∂c(0)
ν

, (45)

which is the sensitivity matrix to be analyzed by performing
its SVD.

We note at this point that instead of the relative change
in the parameters, one may alternatively monitor absolute
changes. Derivation of this analysis is analogous to the above
and leads to the SVD of un-normalized sensitivity matrices as
shown in Appendix A. Numerical experience indicates that
normalized sensitivities show better correlation with kinks
on energy curves than un-normalized quantities, we there-
fore present only normalized sensitivities in the numerical
applications.

III. NUMERICAL ILLUSTRATIONS

In the examples presented below singular values of the
eventual coefficient sensitivity matrices [Eqs. (43) and (45)]
are reported. To avoid numerical ill-effects, removal of am-
plitudes or coefficients below threshold in magnitude is per-
formed, whenever a division is needed in the final expression
of the sensitivity matrix. For example cμ is checked in the
case of Eq. (45). The dropout threshold is typically 10−8.

In the case of Eq. (43) the only nonzero singular value,
which is the norm of vector S, is examined. In the case of
Eq. (45) we are focusing on the few largest singular values.
We note here, that if an exact degeneracy affects root c of
H[2], the reduced resolvent G of Eq. (35) is still ill-defined,
since the projector of the entire degenerate subspace should
be subtracted from unity on the right hand side. This occurs
just at a few geometry points on the potential surface, these
are simply omitted when performing sensitivity analysis.

The sensitivity diagnostic tool is illustrated on the exam-
ple of the bond dissociation process of the LiH molecule and
the insertion of Be among two H atoms. Relatively small ba-
sis sets are applied, so that full configuration interaction (full
CI or FCI) is attainable as benchmark.

Of the possible formulations of SS-MRPT, the spin-
free variant is applied here.22, 30 Specification of the zero-
order Hamiltonian—i.e., the partitioning—requires the def-
inition of E (0)

μ and E (0)
l in Eq. (10). We investigate two

choices for constructing the zero-order energies: diagonals of
Fockians are used in Møller–Plesset (MP) partitioning, while
expectation values of the full Hamiltonian are computed with
functions φμ and χl in the Epstein–Nesbet (EN) partitioning.
Size-extensivity requirement is satisfied both by MP and EN
partitionings.4

Based on Eq. (14), our equations for the single excita-
tions’ amplitudes read

tν
ia = − 1

c(0)
ν

∑
μ

′
A−1

νμ(ia) c(0)
μ f̃ μ

ia , (46)

the double excitations’ amplitudes are given by

tν
i jab = − 1

c(0)
ν

∑
μ

′
A−1

νμ(i jab) c(0)
μ 〈i j |ab〉. (47)

Here, the composite excitation index—previously referred to
as I —is resolved as orbital index pair ia or the quartet i jab,
i, j labeling orbitals singly or doubly occupied in φν , a, b la-
beling orbitals unoccupied or singly occupied in φν . For the
two-electron integral the 〈12|12〉 convention is applied. Note
that HIμ,μ in the inhomogeneous term is substituted by f̃ia

for singles and by 〈i j |ab〉 for doubles. Matrix elements of the
Fockian are defined as

f̃ μ
pq = f 0

pq (μ) +
∑

us∈φμ

′ 〈pus |qus〉, (48)

where indices p, q are generic, us refers to orbitals singly oc-
cupied in φμ and f 0

pq (μ) are elements of the Fockian built
with the doubly occupied part of φμ. The prime on the sum
above indicates a restriction: 〈pus |qus〉 is excluded for us

= p = q, with the aim of omitting self-interaction. Note, that
elements of the Fockian show a dependence on the reference
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function φμ. This means that not one, but several zero-order
Hamiltonians are used, a treatment reminiscent of the multi-
partitioning theory introduced by Malrieu and co-workers.23

Matrix A(I ) of Eq. (15) is the final ingredient to be spec-
ified. This is essentially the model space block of (H − ECAS)
to which the zero-order excitation energy

X (I ) = E (0)
l − E (0)

μ (49)

is added in the diagonals. In MP partitioning the excitation
energy is

X (ia) = − f̃ μ

i i + f
μ

aa , (50)

if single excitation Ea
i connects functions φμ and χl , and

X (i j, ab) = − f̃ μ

i i − f̃ μ

j j + f
μ

aa + f
μ

bb

− δib〈ib|ib〉 − δ ja〈 ja| ja〉, (51)

if double excitation Eb
j Ea

i takes from φμ to χl . Note, that f
is used for particle labels, where self-interaction is retained
in Eq. (48) (i.e., no restriction on the sum). Two-electron in-
tegrals in X (i j, ab) take care of converting f to f̃ so that
spectator excitations do not have any contribution.

Formulae of zero-order excitation energies in EN parti-
tioning are somewhat lengthier, these expressions are given in
Appendix B.

Orbital dependence of the PT results is investigated by
using two choices for the active set: pseudo-canonical or nat-
ural. In the former case the active block of the generalized
Fockian built with the density matrix of the target root is di-
agonal, while in the latter case the active block of the density
matrix is diagonal. The computation of derivatives necessi-
tates well converged CAS orbitals, which was achieved by
requiring that asymmetry of the Lagrangian got smaller than
2 × 10−10 Eh upon convergence.

A. LiH

The single bond dissociation of the LiH molecule is com-
puted in Dunning’s double zeta plus polarization (DZP) set.24

The CAS reference function is produced by distributing two
active electrons on five active orbitals, with symmetry labels
2a1, 3a1, 4a1, 1b1, 1b2 classified according to C2v .

In Fig. 1 we present the energy error of second order SS-
MRPT results in both partitionings, using pseudo-canonical
orbitals. A kink of ca. 0.5 mEh amplitude is apparent in MP
partitioning around 6 Å internuclear distance. A larger, ca.
1.5 mEh amplitude kink is produced around 3 Å internu-
clear distance in EN partitioning. If applying the damping of
Eq. (17) when computing the effective Hamiltonian, the kinks
get smoothed, as shown by the hollow symbols in Fig. 1.

An illustration focusing on the problematic geometry
range is given by Figs. 2–4 in MP and by Figs. 5–7 in EN
partitioning.

According to Figs. 2 and 5 a degeneracy of the target root
of H[2] is built up at the problematic geometries. Passing the
degenerate region of the potential energy curve, one of the
roots of the effective Hamiltonian falls below the target root.
The fact, that the ground state of the system does not corre-
spond to the lowest root of H[2] does not represent a problem
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FIG. 1. Errors of second order SS-MRPT energies for the ground state of
the LiH molecule in Dunning’s DZP basis (Ref. 24). Reference function
is CAS(2,5), active orbitals are pseudo-canonicals. Full CI values are sub-
tracted from total SS-MRPT energies. Partitioning is either MP or EN. Filled
symbols correspond to undamped equations, results obtained by Tikhonov
damping according to Eq. (17) are shown by hollow symbols. The damping
parameter is denoted by ω.

in itself: the kink appears in the quasi-degenerate region but
not at larger bond distances. Note, that the degeneracy in the
spectrum of H[2] is a pure artifact, no such effect is observed
in the full CI solution. Either by applying Tikhonov damping
[Eq. (17)] or by turning to natural orbitals in the active space,
the degeneracy of the effective Hamiltonian is lifted. The sec-
ond (and unphysical) root of SS-MRPT—not shown in the
Figures — lies by a rough 0.2 Eh above the ground state in
MP and by 0.05–0.2 Eh (depending on the actual treatment)
in EN partitioning in the respective geometry region.

Analysis of the CAS coefficient sensitivity of the relaxed
coefficients presented in Figs. 3 and 6 show a drastic increase
in the largest singular value for the method producing the kink
(undamped SS-MRPT with pseudo-canonical orbitals) in the
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FIG. 2. Total energy of the ground state of the LiH molecule as a function
of the internuclear distance, obtained by second order SS-MRPT in MP par-
titioning. Basis set and reference function agrees with that of Fig. 1. The
nature of orbitals (pscanorb: pseudo-canonicals; natorbs: naturals) is varied.
Whenever Tikhonov damping is used [cf. Eq. (17)] symbol ω is indicated
and shows the value of the damping parameter. Both roots of the second-
order Hamiltonian H[2] are shown for the undamped equations, displayed by
circles.
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FIG. 3. Singular values of the coefficient sensitivity matrix Eq. (45) around
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partitioning. The largest singular value is denoted by σ1, the second largest is
σ2. Basis set and reference function agrees with that of Fig. 1. The nature of
orbitals (pscanorb: pseudo-canonicals; natorbs: naturals) is varied. Symbol ω

refers to Tikhonov damping (c.f. Eq. (17)) and gives the value of the damping
parameter.

geometry regions under study. The singular value shoots up
more than 10 orders of magnitude in either partitionings. This
occurs only for the largest singular value, the second largest is
unaffected and remains similar to σ1 of the techniques giving
a smooth potential curve. This latter value remains σ1 < 102 if
applying damping with pseudo-canonical orbitals or σ1 < 103

if using natural orbitals, as manifested by Figs. 3 and 6.
Regarding CAS coefficient sensitivity of the SS-MRPT

energy, Figs. 4 and 7 also show peaks for the ill-behaving
method in the quasi-degenerate regime. The increase in the
singular value reflected by Figs. 4 and 7 is less drastic, than
what is observed with derivatives of the coefficients: it mounts
to about two orders of magnitude. The peaks, however,
can be clearly identified. Interestingly, the shoot up in the
coefficient sensitivity of the energy is smaller for EN than
for MP, though the kink is larger for EN in Fig. 1. Similarly
to the observations made above, singular values of the well-
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FIG. 4. Nonzero singular value (i.e. norm) of the coefficient sensitivity ma-
trix Eq. (43), around 6 Å internuclear distance, for the ground state of the LiH
molecule in MP partitioning. Basis set and reference function agrees with that
of Fig. 1. The nature of orbitals (pscanorb: pseudo-canonicals; natorbs: nat-
urals) is varied. Symbol ω refers to Tikhonov damping (c.f. Eq. (17)), and
gives the value of the damping parameter.
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FIG. 5. Same as Fig. 2 in EN partitioning, around 3 Å bond distance.

behaving methods in Figs. 4 and 7 remain flat and small, on
the order of 10−4.

B. BeH2

The classical test case of the BeH2 system with the
geometry points defined by Purvis and Bartlett25 is com-
puted in a valence double zeta basis. Dunning’s DZ set24 is
taken for the hydrogen atoms. For beryllium the basis of
Purvis et al.25 is used with the p function decontracted leav-
ing the most compact primitive (exponent 5.693880) alone
and contracting the remaining two into a second p function
(exponents 1.555630, 0.171855 and coefficients 0.144045,
0.949692, respectively). Coordinates of the hydrogen
atoms in atomic units are (0,±2.54, 0), (0,±2.08, 1.0),
(0,±1.62, 2.0), (0,±1.39, 2.5), (0,±1.275, 2.75),
(0,±1.16, 3.0) (0,±0.93, 3.5), (0,±0.70, 4.0),
(0,±0.70, 6.0), respectively, at points A, B, C, D, E, F,
G, H, and I. The beryllium lies in the origin of the coordinate
system. A CAS(4,4) function is computed as reference, with
two active orbitals of a1 symmetry, and the other two being
b1 as classified in C2v .
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FIG. 6. Same as Fig. 3 in EN partitioning, around 3 Å bond distance.
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In Fig. 8 energy errors are displayed in both partition-
ings. The curves obtained with pseudo-canonical active or-
bitals show kinks at geometry point E in MP and at points
B and E in EN partitioning. Similarly to the previous expe-
rience, a damping according to Eq. (17) gets the error curve
smoother, as apparent in Fig. 8. Instead of damping the divi-
sion by c(0)

μ , a damping of inversion of matrix A(I ) according
to Eq. (18) is also tested in this case, and gives results indis-
tinguishable from the hollow symbols on the scale of Fig. 8.
However, a damping of A(I )−1 may require larger damping
factor than the damping of 1/c(0)

μ : in particular, ω = 0.17 is
needed for point E and ω = 0.005 suffices at point B. It is
also observed that the optimal factor ω needed for damping
A(I )−1 varies more with geometry than the factor needed for
damping according to Eq. (17).

Error curves of SS-MRPT when using natural active or-
bitals are also shown in Fig. 8 and they again prove to be
smoother than the curves by pseudo-canonical orbitals. A
kink of ca. 5 mEh is apparent in the geometry region E-F in
EN partitioning. This however is unaffected by damping: a
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FIG. 8. Errors of second order SS-MRPT energies for the ground state of
the BeH2 system in DZ basis (see text for more detail). Reference function is
CAS(4,4), active orbitals are either pseudo-canonicals (pscanorb) or naturals
(natorbs). Full CI values are subtracted from total SS-MRPT energies. Par-
titioning is either MP or EN. Filled symbols correspond to undamped equa-
tions, results obtained by Tikhonov damping according to Eq. (17) are shown
by hollow symbols. The damping parameter is denoted by ω.
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FIG. 9. Nonzero singular value (i.e. norm) of the coefficient sensitivity ma-
trix Eq. (43) (upper plot) and the two largest singular values of the of the
coefficient sensitivity matrix Eq. (45) (bottom plot) for the ground state of
the BeH2 system in MP partitioning, using pseudo-canonical active orbitals.
Basis set and reference function agrees with that of Fig. 8. Symbol ω refers
to Tikhonov damping (c.f. Eq. (17)) and gives the value of the damping
parameter.

roughly constant shift of the error curve is all that is achiev-
able by a sufficiently large factor ω.

In Figs. 9 and 10 an insight offered by sensitivities is pre-
sented for the case of the pseudo-canonical active orbitals.
Derivatives of the SS-MRPT energy are always informative,
as reflected in the upper plots of the figures. We see a rough
order of magnitude increase in the singular value of Eq. (43)
at the problematic geometries, i.e., E in the case of MP and B
and E in the case of EN partitioning. Coefficient sensitivity of
the relaxed coefficients in MP partitioning, shown at the bot-
tom plot of Fig. 9 is unindicative. Taking into account that this
sensitivity is seen to shoot up several orders of magnitude at
the problematic points, the rough order of magnitude increase
cannot be regarded as significant. The fact, that the peak at
point D is insignificant is underlined by the observation that
the singular value at point D increases upon damping. From
this we deduce that the values shown at the bottom of Fig. 9
are insignificantly small. In the case of EN partitioning on the
other hand we see a considerable effect in coefficient sensitiv-
ities of the coefficients: a peak of ca. 12 orders of magnitude
at point E at the bottom of Fig. 10.
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FIG. 10. Same as Fig. 9 in EN partitioning.
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TABLE I. Right singular vectors of the CAS coefficient sensitivity of the
relaxed coefficients, Eq. (45) for the ground state of the BeH2 system in
EN partitioning, with pseudo-canonical active orbitals. Basis set and refer-
ence function agrees with that of Fig. 8. The largest singular value is given
by σ1.

geometry B geometry E
σ1 = 461 σ1 = 1.17 · 1014

CAS coeff. right sing. vector CAS coeff. right sing. vector
0.99109292 0.116 − 0.80937851 − 0.050

− 0.00420961 − 0.316 − 0.07705062 0.009
− 0.00151338 0.892 0.11577611 − 0.031
− 0.06926363 0.021 0.51498539 0.939
− 0.08774899 0.111 0.19855833 − 0.059
− 0.00464325 − 0.256 0.09262726 0.332
− 0.04218947 0.073 0.06034612 0.014

0.00259208 0.084 0.00308458 − 0.004
− 0.05028701 − 0.004 − 0.00097524 0.010

0.00144061 − 0.001 − 0.04022365 0.008
− 0.02854409 0.007 0.06490194 − 0.006

0.00797646 0.001 − 0.05355391 0.003

The case of natural orbitals is not displayed. An inspec-
tion of singular values along the reaction path reveals a mild
peak in sensitivities at point B in MP partitioning. This means
an increase from ca. 10−4 to ca. 10−3 in the singular value of
Eq. (43) and from ca. 102 to ca. 105 in the singular value of
Eq. (45). Since no pronounced kink is visible at point B in
Fig. 8 with natural orbitals, one may deduce that sensitivities
represent a finer tool of problem-detection than monitoring
kinks on error curves.

Apart from singular values, it is instructive to examine
singular vectors as well. Right singular vector corresponding
to the largest singular value of Eq. (45), for example, carries
information on which CAS coefficient the effect of kink orig-
inates, while the corresponding left singular vector reflects
which are the most affected coefficients of the relaxed eigen-
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FIG. 11. Analysis of the unrelaxed second order SS-MRPT energy, E [2]

= 〈�|H [2]|�〉 for the ground state of the BeH2 system in DZ basis. Ref-
erence function is CAS(4,4), active orbitals are pseudo-canonicals. Filled
symbols correspond to undamped equations, results obtained by Tikhonov
damping according to Eq. (17) are shown by hollow symbols. The damp-
ing parameter is denoted by ω. Energy errors are shown in the upper plot.
Nonzero singular value (i.e. norm) of the coefficient sensitivity of the unre-
laxed E [2] is shown in the bottom plot.

vector of H[2]. The two geometries shown in Table I represent
examples of two typical cases. At point B these are indeed
the small coefficients—on the order of 10−3—for which the
elements of the right singular vector are significant. In this
case, the corresponding reference functions may be omitted
from the SS-MRPT calculation and the corresponding ampli-
tudes may be zeroed. The SS-MRPT energy may get remark-
ably better by this procedure, e.g., omitting reference function
No. 3 at point B of the BeH2 molecule reduces the error from
10.4 mEh to 0.2 mEh . At geometry E on the other hand, the
most significant component of the right singular vector is the
second most important component of the CAS vector. In this
case dropping the responsible element of the CAS wavefunc-
tion does not result in a reasonable SS-MRPT energy. Omit-
ting reference function No.4, for example, reduces the origi-
nal error of 26.6 mEh at point E only to 11.7 mEh . This is still
out of proportion if compared to the errors at point D and F,
0.1 mEh and −1.2 mEh, respectively.

Finally, we present energy and sensitivity results ob-
tained with the unrelaxed second order energy expression [Eq.
(30)] of the study by Evangelista et al.5 As the upper plot of
Fig. 11 shows, no kinks are produced on the errors curves
by this method. There is only a slight increase of the abso-
lute error at point E in EN partitioning and it is apparently
unaffected by damping. In accordance with this, sensitivities
shown in the bottom part of the plot are unindicative. The
peak apparent at point E is negligible, since it occurs in the
10−3 range while the value lies in the 100 range.

IV. CONCLUSION

To summarize, it has been demonstrated that sensitivity
analysis represents a diagnostic tool for the unexpected ill-
behavior of SS-MRPT potential energy curves at certain ge-
ometries. The analysis does not provide any explanation for
why the effect occurs. It rather offers an insight on what quan-
tities of the theory are affected and why damping of the equa-
tions is helpful. By the inspection of right singular vectors of
coefficient sensitivity matrices, the analysis also reveals why
a cutoff of CAS coefficients is helpful in some cases and in-
effective in others.

It is apparent from the examples shown, that analyzing
singular values of sensitivity matrices is not a clear-cut issue.
It is hard to give a threshold value, above which a singular
value would point to a problem. It is rather an expressed in-
crease in sensitivity than its actual value, which can be re-
garded as an indicator. As reference value, either sensitivi-
ties of neighboring geometry points or those lying below the
largest one (if there is any) may be useful. In our examples,
we have regarded a singular value of Eq. (43) indicative if it
stood out of the others by at least one order of magnitude, and
an increase of at least 2–3 orders of magnitude has been called
significant for Eq. (45). A sensitivity out of proportion of the
others often appears in the form of a peak, i.e., it builds up in
a relatively narrow geometry range. Two types of coefficient
sensitivities were studied: that of the SS-MRPT energy and
the relaxed coefficients. Sensitivities getting large implies a
large change in the respective quantity upon orbital rotation.
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This effect is clearly undesirable, giving the motive of consid-
ering it a problem.

Our numerical experience indicates that the kinks pro-
duced on energy error curves vary a lot with orbitals: they
rather appear if using pseudo-canonical active orbitals and are
less likely to be observed with natural active orbitals. Chang-
ing the definition of the Fockian of Eq. (48) and the expres-
sion of the inhomogeneous term in Eq. (14) is also expected
to affect the appearance of the kinks. The problem is mani-
festly more severe in EN partitioning: the amplitude and the
number of kinks is often larger in EN than in MP.

A question not addressed in the present study is the sen-
sitivity of molecular properties as obtained by SS-MRPT. It
would be also desirable to arrive at a modified formulation of
SS-MRPT equations, which avoids the shoot up of sensitivi-
ties. According to our experience, the second order expression
of Ref. 5 is free from this effect, it however leaves the coeffi-
cients unrelaxed. The cure used for the relaxed formulation—
Tikhonov damping—represents a numerical workaround with
no physical motivation. The ultimate goal would clearly be to
take only physically well-grounded approximation steps.
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APPENDIX A: ANALYSIS WITH UN-NORMALIZED
SENSITIVITY MATRIX

Taking the example of coefficient sensitivity of the ampli-
tudes, the objective function for absolute changes would look

f =
∑

μ

(
tμ

I (c(0) + �c) − tμ

I (c(0))
)2

, (A1)

which can be expressed with the un-normalized sensitivity
matrix29

RI
μν = ∂tμ

I

∂c(0)
ν

, (A2)

in the form

f = �cT RT R �c. (A3)

Calculating the SVD of R written as

R = X ρ YT , (A4)

the canonical form of the objective function becomes

f =
∑

i

ρ2
i |γi |2, (A5)

with γ = YT �c. An analysis based on R instead of the nor-
malized matrix S may be advantageous if one would run into
an ill-defined division, e.g., an amplitude being almost zero
in this example. On the other hand, the normalized coefficient
sensitivity matrix Eq. (23) offers the advantage of canceling
the leading 1/c(0)

ν factor of Eq. (19). This prompts to prefer
normalized sensitivities to un-normalized ones.

APPENDIX B: ZERO-ORDER EXCITATION ENERGIES
IN EN PARTITIONING

Labeling convention is different from the text. Here i, j
is restricted to doubly occupied orbitals in function φμ and
us, vs is introduced for singly occupied actives. (In the text
i, j refers to both categories.) Hence

i, j doubly occupied, active or inactive,
us, vs active, singly occupied,

a, b virtual or singly occupied, active or inactive.

Single excitations

X (ia) = − f̃i i (μ) + f aa(μ) − 〈ia|ia〉 + 2〈ia|ai〉,
(B1)

X (usa) = − f̃us us (μ) + f aa(μ) − 〈usa|usa〉. (B2)

Double excitations

X (i j, ab) = − f̃i i (μ) − f̃ j j (μ) + f aa(μ) + f bb(μ) − 〈ia|ia〉
− 〈ib|ib〉 − 〈 ja| ja〉 − 〈 jb| jb〉
+ 〈ab|ab〉 + 〈i j |i j〉 + 2〈ia|ai〉 + 2〈 jb|bj〉
+ δi j (1 − δab)〈ab|ba〉 + δab(1 − δi j )〈i j | j i〉
− [δi j (1 − δab) + δab(1 − δi j ) + δabδi j ]

× [〈ia|ai〉 + 〈 jb|bj〉], (B3)

X (us j, ab) = − f̃us us (μ) − f̃ j j (μ) + f aa(μ) + f bb(μ)

−〈usa|usa〉 − 〈usb|usb〉 − 〈 ja| ja〉 − 〈 jb| jb〉
+ 〈ab|ab〉 + 〈us j |us j〉 + 2〈 jb|bj〉
− δab〈 jb|bj〉, (B4)

X (usvs, ab) = − f̃us us (μ) − f̃vs vs (μ) + f aa(μ) + f bb(μ)

−〈usa|usa〉 − 〈vsa|vsa〉 − 〈usb|usb〉
− 〈vsb|vsb〉 + 〈ab|ab〉 + 〈usvs |usvs〉
− δab〈usvs |vsus〉. (B5)
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