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Abstract

A linearized multi-reference Coupled Cluster (MR-LCC) theory is formulated based on the

Antisymmetrized Product of Strongly Orthogonal Geminals (APSG) reference state. The role

of dispersive interbond interactions is discussed. The presented theory has lead to qualitatively

correct potential curves for the case when both OH bonds dissociate in H2O, a result that cannot

be achieved by adding only perturbative corrections to APSG. The potential curve obtained for

the He...He problem practically coincides with the full CI (FCI) result, showing the unexpected

accuracy of the MR-LCC approach in this case.

1 Introduction

Reference states in quantum chemical calculations are used as zeroth order states obtained at a

simpler level to be corrected by perturbative or more sophisticated theories. Coupled Cluster (CC)
∗To whom correspondence should be addressed
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theory1–6 for example offers a powerful tool to describe molecular electronic structure for single

reference (SR) problems, i.e. when the electronic wave function can be qualitatively described by

a single Slater-determinant. Many chemical processes require the use of two or more determinants

even for a qualitative description. Just like Multi-Reference (MR) Perturbation Theory (PT),7–15

the MR generalization of CC theory is a widely discussed problem, for which several ideas have

been proposed, each having their advantages and disadvantages.16–33

A central problem in MR-CC theory is the construction of permitted excitations and their am-

plitudes by ensuring the same number of amplitude equations as the number of unknowns, pre-

serving at the same time the commutation of excitation operators. The latter condition is essential

to ensure extensivity manifested in the SR case by the ansatz

|Ψ〉= eT̂ |HF〉,

where |HF〉 is the SR state (typically the Hartree-Fock determinant) and T̂ is the excitation operator

T̂ = T̂1 + T̂2 + ... =
occ

∑
i

virt

∑
p

t p
i p+i−+

occ

∑
i< j

virt

∑
p<q

t pq
i j p+q+ j−i−+ ... , (1)

where i, j, ... refer to occupied and p,q, ... refer to virtual indices relative to the Fermi vacuum |HF〉

and T̂1, T̂2, ... describe single, double, ... excitations, respectively. Creation/annihilation indices cat-

egorized into disjoint subsets results in the important fact that terms in T̂1, T̂2, ... commute, ensuring

extensivity of CC corrections. The simple categorization is clearly impossible if the reference state

consists of several determinants. Of possible workarounds we mention the Jeziorski-Monkhorst

Ansatz34
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|Ψ〉= ∑
µ

Cµ eT̂µ |Φµ〉,

which deals with the MR reference state |Φ〉 = ∑
µ

Cµ |Φµ〉, and cluster operators T̂µ are defined

similar to eq.(1), the occupancies referring to that of |Φµ〉. Special attention has to be paid in these

theories to eliminate possible redundancies in excitations and amplitudes.35 One may obtain a

theory free of the redundancy problem by picking up a dominant component |Φ0〉 in |Φ〉 and define

occupancies with respect to this pivot determinant.36–38 The coupled-cluster correction developed

specifically for the GVB wavefunction by Head-Gordon and co-workers also relies on the concept

of the pivot.39–41 The alternative approach of devising an internally contracted theory has received

much interest lately.42–45

The MR problem leads to complications also in PT. In SR-PT the formalism remains simple

since |HF〉 and excited determinants altogether form eigenvectors of a one-body operator, the Fock-

ian (F̂). If the reference state |Φ〉 is of multi-reference character, no one-body operator emerges as

a zero-order Hamiltonian, whose eigenvectors could be easily constructed. To resolve this prob-

lem, Dyall46 was the first to propose the use of two-body zero-order Hamiltonian. In our Labora-

tory,47–51 we have developed a MRPT using this philosophy applied to the APSG52–62 reference

state.

A method "between" simple PT and the more sophisticated CC theory is Linearized Coupled

Cluster (LCC) formulation.63–69 It emerges from CC by dropping all nonlinear terms in the ampli-

tude equations. It was shown that LCC equations can also be derived by optimizing the partition via

level shifts in a PT framework.70,71 This latter statement holds both in the SR and MR cases.70–73

The present paper outlines a linearized CC (LCC) theory based on the APSG reference state.
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The formulation ensures extensivity, provides a uniquely soluble set of amplitude equations and is

free from the deficiencies of the PT presented in Ref. 51 concerning description of simultaneous

single bond dissociations. Our theory is related to that of Li et al.,74,75 with notable differences.

The present formulation relies strongly on the quasi-particle picture of geminals47–50,76–85 and

strictly maintains the size-consistency of the approach. Another difference is the way geminal

subspaces are chosen: we start from localized molecular orbitals and optimize them variationally,

while Li et al.74,75 use the "maximum similarity rule" introduced in Ref. 74.

2 Theoretical Background

2.1 Geminals

A generalization of the one-determinant Hartree-Fock wave function is the Antisymmetrized Prod-

uct of Strongly Orthogonal Geminals (APSG) wave function composed of two-electron orbitals ψi:

|Ψ〉= ψ+
1 ψ+

2 · · ·ψ+
N |vac〉, (2)

The two-electron operators (ψ+
i ) create geminals, and they are expanded in terms of one-electron

operators corresponding to spin orbital χµ :

ψ+
i = ∑

µ<ν
Ci

µν χ+
µ χ+

ν . (3)

In this respect, expression (2) is a multi-determinantal wave function in terms of one-electron

orbitals containing some proportion of the correlation effects. Because of the special structure of

eqs.(2-3), this is called intra-geminal correlation.
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The two-electron orbitals ψi(1,2) = ψ+
i |vac〉 are constrained to satisfy the strong orthogonality

condition
∫

ψi(1,2)ψk(1,2)dr1 = 0 i 6= k, (4)

which, according to Arai,86 is equivalent to expanding the geminals in mutually exclusive subsets

of one-electron orbitals, called Arai subspaces.

In APSG theory, both the geminal coefficients Ci
µν and one-electron basis orbitals χµ are opti-

mized variationally, the latter via an MCSCF-type iteration. The geminal coefficients come from

solving the set of self-consistent equations arising from the variational principle:

Ĥ eff
i ψ p

i = E p
i ψ p

i , (5)

where i is the geminal index, p ∈ {0,1, ...,ni} the state index and Ĥ eff
i is an effective Hamiltonian

defined over the spin orbital basis functions assigned to geminal i:

Ĥ eff
i = ∑

µ,ν∈i
heff

µν χ+
µ χ−ν +

1
2 ∑

µ,ν ,λ ,σ∈i
[µν |λσ ]χ+

µ χ+
ν χ−σ χ−λ . (6)

In the above formula heff is the ’effective core’ responsible for the inter-geminal electrostatic and

exchange interaction:

heff
µν = hµν + ∑

k 6=i
∑
λ ,σ

Pk0
λσ [µλ ||νσ ],

where Pk0
λσ is the density matrix of the ground-state geminal ψ0

k :

Pk0
λσ = 〈ψ0

k |χ+
σ χ−λ |ψ0

k 〉, (7)
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and [µλ ||νσ ] is the antisymmetrized two-electron integral written in the [12||12] convention. For

more details, we refer to Ref. 61.

2.2 Perturbation theory based on geminals

While APSG theory includes only intra-geminal correlation effects, inter-geminal corrections can

be introduced via perturbation theory.47–51 The basic concepts of this formulation are summarized

below. We start from the second quantized Hamiltonian written in terms of the energy-optimized

spatial orbitals

Ĥ = ∑
m,n

∑
σ

hmnm+
σ n−σ +

1
2 ∑

m,n,l,s
∑

σ ,σ ′
[mn|ls]m+

σ n+
σ ′s

−
σ ′ l

−
σ , (8)

where m,n, l,s stand for the spatial part and σ ,σ ′ for the spin part of spin orbital χµ . Because of

strong orthogonality, each basis orbital belongs to one of the mutually exclusive orbital subsets.

So instead of the sum over basis orbitals, we can introduce first a summation over the subsets

(geminals) i, then a summation over the orbitals m belonging to that specific subset:

∑
m
≡∑

i
∑
m∈i

leading to a natural separation of the full Hamiltonian (8) in geminal indices:47,48

Ĥ = ∑
i

Ĥi +∑
i, j

′
Ĥi j + ∑

i, j,k

′
Ĥi jk + ∑

i, j,k,l

′
Ĥi jkl,

where the prime after the sums indicates that the summation indices cannot coincide. The one-

geminal Hamiltonian will obviously be
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Ĥi = ∑
m,n∈i

∑
σ

hmnm+
σ n−σ +

1
2 ∑

m,n,l,s∈i
∑

σ ,σ ′
[mn|ls]m+

σ n+
σ ′s

−
σ ′l

−
σ

The two-geminal part becomes:48

Ĥi j = Ĥ1-CT + Ĥdisp + Ĥ2-CT,

where the terms refer to different ’geminal-geminal interactions’. The first term decreases the elec-

tron number by one on one geminal while increasing it by one on the other, this is a ’delocalization

interaction’ or a ’one electron charge transfer’ (1-CT) term:

Ĥ1-CT = ∑
m∈i

∑
n∈ j

∑
σ

hmnm+
σ n−σ + ∑

m,n,l∈i
∑
s∈ j

∑
σ ,σ ′

[mn|ls]m+
σ n+

σ ′s
−
σ ′l

−
σ + ∑

m,l,s∈i
∑
n∈ j

[mn|ls]m+
σ n+

σ ′s
−
σ ′l

−
σ

The second term does not change the electron number on the geminals, it describes ’dispersive

interaction’:

Ĥdisp =
1
2 ∑

m,s∈i
∑

n,l∈ j
∑

σ ,σ ′


[mn|ls]m+

σ n+
σ ′s

−
σ ′l

−
σ − [mn|sl]m+

σ n+
σ ′s

−
σ l−σ ′


 (9)

The last term of the two-geminal Hamiltonian annihilates both electrons on one geminal while

putting two extra electrons on the other geminal, it is a ’two electron charge transfer term’ (2-CT):

Ĥ2-CT =
1
2 ∑

m,n∈i
∑

l,s∈ j
∑

σ ,σ ′
[mn|ls]m+

σ n+
σ ′s

−
σ ′l

−
σ

Similar formulas can be derived for the three- and four-geminal Hamiltonian as well. With these

formulas a standard Rayleigh-Schrödinger PT can be outlined with Ĥ0 = ∑
i

Ĥ eff
i (cf. eq.(6)) be-
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ing the zero-order Hamiltonian, and Ĥ − Ĥ0 the perturbation operator.48,50 Of various possible

corrections, we detail here the second order dispersion correction emerging from the perturbation

operator of eq.(9):

E(2)
disp =−∑

i, j
i< j

Sp,q=0

∑
p,q

∣∣ ∑
m,s∈i

∑
n,l∈ j

(
[mn|sl]− 1

2 [mn|ls])Pip
smP jq

ln

∣∣2

Eq
j +E p

i −E0
i −E0

j
−

−1
4 ∑

i, j
i< j

Sp,q=1;
Mp,q

S =0

∑
p,q

∣∣ ∑
m,s∈i

∑
n,l∈ j

[mn|ls]Pip
smP jq

ln

∣∣2

Eq
j +E p

i −E0
i −E0

j
− (10)

−∑
i, j
i< j

Mp,q
S =±1

Mp
S +Mq

S=0

∑
p,q

∣∣ ∑
m,s∈i

∑
n,l∈ j

[mn|ls]±Pip
sm

∓P jq
ln

∣∣2

Eq
j +E p

i −E0
i −E0

j
,

where E p
i are the eigenvalues of the geminal Hamiltonian (5), Sp and Mp

S stand for the quantum

number of two- electron Ŝ2 and Ŝz operators corresponding to the p-th state of the geminal, Pip
ms is

an element of the transition density matrix defined as

Pip
sm = ∑

σ
〈ψ0

i |m+
σ s−σ |ψ p

i 〉

and ±Pip
sm is the spin-flip transition density matrix:

±Pip
sm = ∑

σ
〈ψ0

i |m+
σ s−σ |ψ p

i 〉

with ψ p
i is an MS 6= 0 spin-polarized triplet geminal, + referring to MS = +1 and − to MS =−1.

(Note that in previous papers48–50 the second order correction (10) was displayed erroneously).

It is apparent that this formula has a serious drawback: it exhibits a singularity when the ground
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state of two geminals, e.g. i and j become degenerate, E p
i = E0

i and Eq
j = E0

j . This is perfectly the

case when i and j label two dissociating bonds (geminals). As shown in,51 this feature makes the

second order formula inapplicable to describe processes like the symmetric dissociation of H2O,

see also curve ’APSG + PT2’ in Fig.2.

In what follows we elaborate a theory free from this deficiency.

3 MR-LCC Theory with the APSG reference state

Here we investigate whether an MR-LCC treatment can cure the problem of dispersion correction

for simultaneous dissociation of two single bonds. Previously, an MR-LCC formulation was used

to describe ’one-electron delocalization’ corrections.84

The time-independent Schrödinger equation with the exponential CC ansatz is written with the

APSG reference state as:

ĤeT̂ |APSG〉= EeT̂ |APSG〉.

Projecting the Schrödinger equation by 〈APSG|e−T̂ and using the fact that the APSG wave

function is normalized, the following energy equation is obtained:

〈APSG|e−T̂ ĤeT̂ |APSG〉= E (11)

Restricting ourselves to Linearized Coupled Cluster (LCC) approximation means a truncation of

the Baker-Campbell-Hausdorff expansion after the second term (linear in T̂ ):

e−T̂ ĤeT̂ ≈ Ĥ +[Ĥ, T̂ ] (12)
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The cluster operator can be expanded in terms of excitation operators X̂k:

T̂ = ∑
k

tkX̂k, (13)

where X̂k will be specified later, and tk-s are the ’amplitudes’, for which the MR-LCC amplitude

equations are to be solved. Multiplying the Coupled Cluster Schrödinger equation

e−T̂ ĤeT̂ |APSG〉= E|APSG〉

from the left by 〈APSG|X†
j and applying the linearization approximation (12) we obtain

〈APSG|X̂†
j [T̂ , Ĥ]|APSG〉= 〈APSG|X̂†

j Ĥ|APSG〉 ,

assuming X̂†
j |APSG〉 = 0. Substituting the expansion of the cluster operator (13), we get a linear

equation system for the cluster amplitudes ti

∑
i
〈APSG|X̂†

j (X̂iĤ− ĤX̂i)|APSG〉
︸ ︷︷ ︸

A ji

ti = 〈APSG|X̂†
j Ĥ|APSG〉

︸ ︷︷ ︸
b j

(14)

symbolized by

A t = b .

These are the MR-LCC amplitude equations.

Before solving eq.(14), a decision is to be made on the type of excitations included in the cluster

operator. It is possible e.g. to resort to dispersive amplitudes only. In this case the excitations

appearing in eq.(13) are specified as:
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T̂ =
disp

∑
k

tkX̂k = ∑
i< j

ni

∑
p

n j

∑
q

t pq
i j ψ+

ipψ+
jqψ−

j0ψ−
i0 . (15)

In (15) p and q run over the excited states of geminals i and j respectively (ni is the number

of excited states of geminal i), and ψ+
ip and ψ+

jq refer to the excited state creation operators of the

corresponding geminal while ψ−
i0 and ψ−

j0 annihilate ground-state geminals (they are both solutions

of eqs.(5)). When working with dispersive amplitudes only, it is the ’dispersive’ Hamiltonian

which contributes to inhomogeneous vector b of the LCC equations. This is a direct consequence

of the fact, that Ĥdisp conserves the particle number on each of the geminals and so does the cluster

operator (15). The dispersive PT correction of eq.(10) is closely related to the dispersive-only

MR-LCC theory: it arises by neglecting all off-diagonal terms in matrix A of eq.(14).

With the (15) definition of the cluster operator we have 〈APSG|T̂ = 0, the energy formula (11)

consequently simplifies to the form

E = 〈APSG|Ĥ + ĤT̂ |APSG〉 .

Terms of the BCH-expansion with second or higher power of T̂ do not contribute to the energy,

since the ’dispersive’ Hamiltonian can interact with two excited geminals at most.

Based on analogy with single reference LCC theory, one may include in the cluster opera-

tor all types of excitations which generate a function that has nonzero interaction with the APSG

wavefunction via the Hamiltonian (the so-called first order interacting subspace). This treatment

involves dispersive as well as charge transfer states, see Ref. 51 for a categorization of the various

excitations. Parametrization of the cluster operator in terms of geminal creation/annihilation oper-

ators can be carried out analogously to the dispersive case. Alternatively, one may formulate the
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theory using determinantal and/or internally contracted excited states. As far as excited functions

span the same space, their actual form is irrelevant, due to the invariance of LCC theory to a unitary

transformation.87

4 Applications

A numerical study on the performance of MR-LCC theory based on the APSG wavefunction is

presented in this section, on the two-geminal example of two He atoms and the water molecule.

The latter is treated in the frozen core approximation, hence involves four geminals. Apart from

total energies, the second derivative of the potential curves at around equilibrium is also examined.

We study the influence of the dimension of Arai subspaces, the effect of dispersive excita-

tions by themselves and the role of excitations involving spin-polarized triplet geminals. Acronym

’MRLCC|DISP’ is used to refer to the dispersive parametrization (15) of the cluster operator. Dis-

persive excited states may involve spin-polarized triplet geminals (coupled to an overall singlet).

When spin-polarized geminal states are omitted, ’noSP’ appears in the acronym. Abbreviation

’MRLCC’ refers to a calculation where all states constituting the first order interacting subspace

(including dispersives) are considered when solving the MR-LCC equations. This approach is

termed full MR-LCC at some points. Occasionally, the results are compared with the dispersive

second-order PT correction of eq.(10), denoted as ’PT2’. FCI values are used as benchmark, in

case of water symmetric dissociation FCI refers to frozen core full CI calculations.

12



4.1 The He. . .He interaction

The interaction of two helium atoms is investigated in cc-pVDZ basis set,88 with all orbitals as-

signed to either of the geminals. This gives 5 as the dimension of each Arai subspace.

In Fig.1. the APSG energies are presented along with MR-LCC results as compared to the

FCI energies. The MR-LCC curve is depicted by restricting the excitations to dispersive ones

("APSG-MRLCC|DISP"), as well as the full MR-LCC curve ("APSG-MRLCC").

Fig.1. reflects the fact that the APSG method describes only intra-geminal correlation, thus it

cannot describe inter-geminal dispersion. (The shallow well depth apparent in Fig.1. is a genuine

basis set superposition effect). Adding the correction of dispersive amplitudes in an MR-LCC

scheme, approximately half of the expected well depth is recapitulated. An interesting feature

of this example is that a full MR-LCC calculation provides a potential curve which cannot be

distinguished by visual inspection from the FCI result, the exact one in the given basis set. (The

difference between these results appears in the ninth digit.) Inter-geminal (in this example also

interatomic) correlations tend to zero at infinite distance, the APSG energy therefore matches the

FCI result in this limit.

4.2 Symmetric dissociation of water

4.2.1 Role of dispersive amplitudes

As a second example the symmetric dissociation of a water molecule is investigated. As seen

in Fig.2. the APSG wave function alone describes this process qualitatively well. Second order

dispersive perturbative corrections lead to a divergent energy curve, see ’APSG + PT2’ in Fig.2.

This can be corrected if accounting for dispersive excitations by the MR-LCC theory: the curve
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’APSG-MRLCC|DISP’ shows an acceptable agreement with a slight overestimation of the abso-

lute energy for large OH distances. At around equilibrium, the second order results are closer to

the FCI ones than those obtained by MR-LCC, see Fig.3. Having a closer look at the energy val-

ues, it is apparent that while CC-correction improves the absolute energies, it does not necessarily

improve relative energies.

4.2.2 Role of spin-polarized states

Among dispersive amplitudes, those corresponding to spin-polarized excitations were found to

have an especial importance. These are states that contain X̂k excitation operators in Eq.(15) with

ψ+
ip = ∑

m<n∈i
Cip

mnm+
α n+

α being an MS = +1 geminal creation operator and ψ+
jq = ∑

m<n∈ j
C jq

mnm+
β n+

β an

MS = −1 one, or vice versa. The two spin-polarized triplets with opposite MS quantum numbers

can be coupled into a singlet four-electron state. Omitting these spin-flip triplets, one obtains the

curve denoted by ’APSG-MRLCC|DISP noSP’ in Fig.2. Apart from badly overestimating the

dissociation energy, this curve goes through a singularity at around 3.0 Å, rendering the potential

curve meaningless. This is a typical example of an LCC singularity caused by a zero eigenvalue

of coefficient matrix A.

4.2.3 Role of charge transfer and virtual excitations

As Figs. 2. and 3. reflect, dispersion correction alone is enough to describe water dissociation

without a divergent potential energy surface. Moreover, dispersion correction accounts for much

part of the correlation effect in the example of Fig.2. This is not a general observation however,

the error committed by ’APSG-MRLCC|DISP’ depends largely on the number of orbitals assigned

to geminals. To show this, in the next example only two orbitals are assigned to the geminals de-
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scribing the OH bonds, while lone pairs remain at the Hartree-Fock level, with only one function

per geminal. This is called the Generalized Valence Bond (GVB) function89 (also called as best

orbital description in Ref. 53). In Fig.4. it is again visible that dispersive excitations described

by MR-LCC give a qualitatively correct result. However the total energy shows hardly any im-

provement at around equilibrium, while a rough 40% of the error of GVB is accounted for in the

dissociation limit.

Taking into account all excitations yielding the first order interacting subspace, curve labeled

’GVB-MRLCC’ in Fig.4. is obtained. Apart from dispersion, this method takes into account the

effect of ’charge transfer’ (i.e. annihilating one or two orbitals of a geminal and creating orbitals

on other geminals and also excitations to those orbitals that do not belong to the subset of any

of the geminals). Inspection of Fig.4. reveals that the total energy is much improved by ’GVB-

MRLCC’ at around equilibrium. The curve however shows a hump at intermediate bond distance

and results in an overestimation of the correlation energy in the dissociation limit. It is interesting

to investigate the effect of omitting spin-polarized excitations on the ’GVB-MRLCC’ results. The

curve produced by this approach is labeled ’GVB-MRLCC noSP’ in Fig.4. Apparently, removal

of spin-polarized geminal states cures the shape of the potential energy curve. On the other hand

regarding the dissociation energy, neither ’GVB-MRLCC’ nor ’GVB-MRLCC noSP’ is accurate.

Fig.5. shows that at equilibrium bond distance we are quite close to the FCI results, while at infinite

distance both approaches are erroneous by tens of millihartrees.

Staying with a GVB reference function described above, Fig.6. displays the water dissocia-

tion profile calculated in 6-31G* basis set. One can observe that ’dispersive states’ by themselves

(GVB-MRLCC|DISP) produce a curve of qualitatively correct shape, though minor improvement

in total energy. When all states of the first-order interacting space are considered, we experience
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again a hump, but the effect in the polarized basis is considerably greater (GVB-MRLCC). The

breakdown of the GVB-MRLCC curve at large bond distance is similar to the behavior observed

for the imperfect pairing (IPP) approximation by Head-Gordon and co-workers.39 The analysis

of a two-geminal dissociation case has revealed that the reason behind the ill-behavior of IPP is

the presence of a spurious singlet-singlet coupling term in the wavefunction.40 The reason of the

erroneous curve obtained by GVB-MRLCC may also lie with the incorrect spin state of the frag-

ments, as described by APSG in the dissociated limit. Omitting spin-polarized geminals (GVB-

MRLCC noSP) from the full MR-LCC treatment cures the shape of the curve on this example

also.

4.2.4 Force constants for water

Table 1. shows force constants of the water molecule, calculated by taking 5 equidistant points

along the symmetric stretching, near equilibrium with 2 ·10−4 Å difference in bond length. Either

’APSG’ or ’GVB’ is regarded as reference. In the former case each virtual orbital is given to

one of the geminals (a full geminal calculation), while in case of ’GVB’ only two orbitals are

assigned to the bonding geminals. Comparing force constants of the geminal based methods we

see that ’APSG’ overestimates the force constant, ’GVB’ does the opposite. Dispersive excitations

described by MR-LCC (APSG-MRLCC|DISP) give a better picture than a PT correction (APSG

+ PT2). Keeping the ’GVB’ function as the reference, a full MR-LCC correction considerably

improves the results (GVB-MRLCC).
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5 Conclusion

A linearized MR-LCC method based on the APSG reference state was introduced. The theory is

size-extensive and no redundancy problems appear, the system of amplitude equations is uniquely

soluble. The theory is able to correct the deficiencies of the PT formulation based on the disper-

sive states, namely the incorrect description of simultaneous single bond dissociations due to zero

denominators in the dissociation limit. Addition of single and double excitations of the determi-

nants present in the APSG reference further improves the results. In case of the He...He interaction

the MR-LCC results get very close to the FCI calculations. Omission of the spin-polarized states

from the dispersive Coupled Cluster method also leads to divergences in the symmetric dissoci-

ation of water. When performing full MR-LCC calculations (this case was investigated for the

GVB wave function only), we experienced the opposite thing, spin-polarized triplet geminal states

were responsible for incorrect dissociation behaviour. Among the methods investigated, this latter

one gives the smallest error. It is however necessary to perform further studies on a wider set of

examples, before a decision on the preferred correction scheme to APSG could be made.
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Figure 1: Energy of the helium dimer as a function of interatomic distance in cc-pVDZ basis set.
There are 5 functions on each helium in the APSG Wavefunction. See text for acronyms.
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Figure 2: Water symmetric dissociation in 6-31G basis set with bond angle fixed at ] (H-O-H) =
110.6◦. An APSG wavefunction is assumed as reference. Frozen core approximation is applied.
The APSG reference has 4 orbitals on the bonding and 2 on the non-bonding geminals. See text
for acronyms.

Table 1: Force constants for water symmetric stretching in 6-31G basis set, ] (H-O-H) = 110.6◦

. See text for acronyms. GVB reference contains two orbitals on the bonding geminals and one on
the non-bondings, APSG reference has 4 orbitals on the bonds and 2 on the non-bonding

geminals.

Method Force constant / [Eh/a2
0]

APSG 1.06
GVB 0.86

APSG + PT2 0.92
APSG-MRLCC|DISP 1.01

GVB-MRLCC 0.96
frozen core FCI 0.98
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Figure 3: Water symmetric dissociation around equilibrium in 6-31G basis set. See text for
acronyms and the legend of Fig.2. for other particulars.
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Figure 4: Water symmetric dissociation in 6-31G basis set with bond angle fixed at ] (H-O-H) =
110.6◦. A GVB wavefunction is assumed as reference and frozen core approximation is applied.
The GVB reference contains two orbitals on the bonding and one on the non-bonding geminals.
See text for acronyms.
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Figure 5: Water symmetric dissociation around equilibrium in 6-31G basis set. See text for
acronyms and the legend of Fig.4. for other particulars.
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Figure 6: Water symmetric dissociation in 6-31G* basis set with bond angle fixed at ] (H-O-H)
= 110.6◦. A GVB wavefunction is assumed as reference and frozen core approximation is applied.
The GVB reference contains two orbitals on the bonding and one on the non-bonding geminals.
See text for acronyms.
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