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Abstract A variational principle is formulated for Löwdin’s bracketing func-
tion. Setting the bracketing function stationary leads to the eigenvalue equa-
tion of the resolvent operator. An Eckart-type inequality is derived for the
wavefunction optimized this way. A linearized approximation of the resol-
vent eigenvalue equation – reminiscent of the simplest coupled electron pair
(CEPA0) treatment – is examined. We prove that the asymmetric energy for-
mula of the resulting approximate function is a strict lower bound.
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1 Introduction

Bound states of quantum systems are nowadays routinely computed by quan-
tum chemical approximation methods. An important principle underlying a
class of these techniques – the so-called variational methods – is the equivalence
of the Schrödinger-equation and the minimization of the Rayleigh-quotient,
serving as upper bound. Lower bounds, in comparison, play no such distin-
guished role.

In fact, lower bounds are not as easily accessible as the Rayleigh-quotient.
One of the difficulties hindering widespread application is that the bounding
property is often subject to some condition. A further discouraging observation
is that lower bounds are computationally more involved than the expectation
value of H, with e.g. H2 or H−1 appearing.
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Löwdin’s bracketing function[1], f(ε)1

f(ε) = ⟨φ|H + H
P

ε−H
H|φ⟩ (1)

provides an example for the features mentioned. It gives e.g. a lower bound to
the ground state eigenvalue of H, if the argument ε satisfies

E0 < ε < PE0 . (2)

In the above φ is the normalized reference function, E0 is the ground state
energy while PE0 is the lowest eigenvalue of PHP , with

P = I − |φ⟩⟨φ| ,

and

O = |φ⟩⟨φ| .

Tightness of f(ε) depends on two factors: (i) tightness of the upper bound,
ε and (ii) the derivative of the function evaluated at the exact eigenvalue,
f ′(E0). Direct application of the bracketing function is scarce, as the expression
involves the inverse of P (ε−H)P , making it computationally difficult or even
impractical.

Approximations of the bracketing function often rely on a perturbative
partitioning, i.e. H = H(0) + V , which allows to write f(ε) as

f(ε) = E(0) + ⟨φ|V + V
P

ε−H
V |φ⟩ = E(0) + ⟨φ|t|φ⟩ ,

provided that H(0)|φ⟩ = E(0)|φ⟩ . It is usual to apply Bazley’s inner projec-
tion[2,3] to the reaction operator, t above[4,5], an estimation ensuring strict
lower bound at the cost of the further condition that t is positive. Lower bounds
based on inner projection have been studied extensively, using model systems
for which positivity of t can be easily ensured[6,7]. While the Hamiltonian of
molecular systems does not offer a trivial splitting for H(0) and V leading to a
positive reaction operator, one may envisage tuning the partitioning by level
shifts[8], to achieve it. Unfortunately, such a treatment may interfere unfa-
vorably with the tightness of the approximation, according to our experience.
The bracketing function is not in the forefront of current quantum chemistry,
though is has been found implicit in coupled cluster approaches based on the
method of moments[9].

The long-term goal of our studies on lower bounds is to devise approx-
imations based on the bracketing function, without applying inner projec-
tion. At the present stage we formulate and prove some theorems which – in
our view – represent good ground for further investigations. First we show a
variational property of the bracketing function, setting an analogy with the

1 Notation P
ε−H

is a shorthand for the reduced resolvent, defined correctly as

P (αO + P (ε−H)P )−1 P , with scalar α ̸= 0[1].
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Rayleigh-quotient. A linear variational procedure is devised then to determine
the wavefunction based on the stationary condition. Linearization of the equa-
tions leads to an expression showing analogy with the simplest coupled electron
pair (CEPA0)[10,11] wavefunction, with the resolvent (or Green’s function)
substituted for the Hamiltonian. We find that the asymmetric energy formula
calculated with this wavefunction is equivalent to the bracketing function of
the reference φ, if no truncation is applied to the projector P .

2 Löwdin’s bracketing function

Taking a normalized reference function, φ the function f(ε) of Eq.(1) has the
following properties[1]

– Ei is an exact eigenvalue of H if, and only if f(Ei) = Ei;
– f(ε) has simple poles at the eigenvalues of PHP ;
– f(ε) is monotonically decreasing in each sector (sectors are intervals defined

by the neighboring eigenvalues of PHP ).

It follows fromMcDonald’s theorem[12] that there is strictly one eigenvalue,
Ei in each sector. As a consequence of the above, considering ε an upper bound
to Ei in a given sector, f(ε) is a lower bound to Ei, and vice versa, justifying
terminology. For example, by the condition of Eq.(2) ε is an upper bound to
E0, lying in the bottom-most sector, f(ε) is therefore a lower bound to E0.
The bracketing property of f(ε) is illustrated in Fig.1.

There exists an alternative form of f(ε)[1], given by the formula

f(ε) = ε + ⟨φ|G|φ⟩−1 (3)

with G standing for the resolvent

G = (H − ε)
−1

.

Let us note here, that the pole structure of f(ε) is not obvious to see based
on form (3). One one hand, appearance of G may give the impression that
discontinuities would appear at the eigenvalues of H, i.e. at ε = Ei. To see
that this is not the case, one may expand φ in terms of the exact eigenstates
of H, denoted by Ψi. Provided that ⟨Ψi|φ⟩ ̸= 0, the limit of the second term
on the right hand side of Eq.(3) is zero, giving f(ε) → Ei as ε → Ei. On
the other hand, f(ε) having poles at the eigenvalues of PHP is not apparent
from Eq.(3). To make it obvious, the expectation value of the inverse operator
(H − ε)−1 can be expressed with the determinant of its matrix representation
H and a minor to give

⟨φ|G|φ⟩−1 =
det(H− Iε)

det(PHP−P ε)
,

with I being the unit matrix and P the same in space P . The expression above
shows clearly the zero denominator at the eigenvalues of PHP .

It is expression (3) of the bracketing function, which is found useful for
proving that the stationary condition of f(ε) is equivalent to the Schrödinger-
equation.
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2.1 Variational principle for f(ε)

The bracketing function, considered as a functional of the normalized reference
function φ, is stationary if and only if φ is an exact eigenfunction of H. The
corresponding eigenvalue is f(ε). In formulae:

δf(ε) = 0 ⇐⇒ H |φ⟩ = E |φ⟩ ,

with E = f(ε) .
To prove the statement, let us formulate a Lagrangian by adding to f(ε)

the normalization condition, supplied with multiplier λ:

L = ε + ⟨φ|G|φ⟩−1 − λ (1− ⟨φ|φ⟩) .

Performing the variation one obtains

δL = − ⟨φ|G|φ⟩−2⟨δφ|G|φ⟩ + λ⟨δφ|φ⟩ + c.c. .

Since δφ is arbitrary, the condition δL = 0 leads to

G|φ⟩ ⟨φ|G|φ⟩−2 = λ|φ⟩ , (4)

the eigenvalue equation ofG, with λ⟨φ|G|φ⟩2 being the eigenvalue. Multiplying
Eq.(4) by φ from the left and integrating, the multiplier is found to be

λ = ⟨φ|G|φ⟩−1 ,

yielding ⟨φ|G|φ⟩ for the eigenvalue. Substituting λ in Eq.(4), the equation can
be written as

G |φ⟩⟨φ|G|φ⟩−1 = |φ⟩ .

Multiplying the above by G−1 gives

|φ⟩⟨φ|G|φ⟩−1 = (H − ε) |φ⟩ ,

which can be rearranged to

E |φ⟩ = H |φ⟩

with

E = ε + ⟨φ|G|φ⟩−1 . (5)

Comparison with Eq.(3) reveals, that the eigenvalue is duly f(ε) . Q.E.D.
It is interesting to observe, that variation of f(ε) leads to the eigenvalue

equation of G which is obviously equivalent to the eigenvalue equation of
H. Once φ is an exact eigenfunction, ε drops from expression (5) of f(ε).
Inspection of Eq.(1) also shows that as φ tends to an exact eigenfunction, f(ε)
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gradually becomes the constant function ⟨φ|H|φ⟩, with only one profitable
intersection with the identity function.2

The variational principle, together with the bracketing property of f(ε)
offers a way to search an eigenfunction of H by setting f(ε) stationary with re-
spect to φ. The approach is analogous to upper bound (c.f. Rayleigh-quotient)
based variational methods. At difference with upper bound minimization, here
appears a scalar ε which can be used for root control. Setting δf(ε) = 0 is ex-
pected to result that eigenfunction, which corresponds to the eigenvalue lying
in the same sector as ε. In general, ε may estimate the eigenvalue in its own
sector from above or from below. The stationary condition for f(ε) implies
lower bound maximization in the former case and upper bound minimization
in the latter.

At this point it becomes apparent that the inverse method of Scrinzi[13], is
related to Löwdin’s bracketing function. Scrinzi’s approach can be considered
a special case of setting δf = 0, with a distinct choice for the reference function
φ = (H− ε)ψ, to get rid of the operator inverse. The inverse method has been
shown in turn to be closely related to Temple’s lower bound[14], and equivalent
to the generalized variance method[15]. Consequently, the bracketing function
shows relation to all three of these lower-bound techniques.

2.2 Variation in a subspace

Apart from tuning the value of ε, roots can also be controlled by performing
variation in a subspace. To obtain the corresponding equation, we formulate
a projector

X =
′∑
i

|Ψi⟩⟨Ψi|

collecting those eigenfunctions of H – denoted by Ψi – which we wish to omit
from φ. The projector complementary to X is denoted by Y

Y = I −X .

We assume that the reference function lies in subspace Y

Y |φ⟩ = |φ⟩ , (6)

and restrict variations to φ so that δφ remains in subspace Y

Y |δφ⟩ = |δφ⟩ .

It appears practical here to work with the form of the bracketing function,
where the norm of φ is explicitly introduced:

f(ε) = ε + ⟨φ|G|φ⟩−1⟨φ|φ⟩ . (7)

2 In the limit where φ becomes exact, all other intersections occur exactly at the singular
points of f(ε), c.f. Eq.(1).
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Variation of f(ε) above leads to

⟨δφ|
(
− G⟨φ|G|φ⟩−1⟨φ|φ⟩ + 1

)
|φ⟩ = 0 .

Since δφ is arbitrary but lying in Y , we can write

Y GY |φ⟩⟨φ|Y GY |φ⟩−1⟨φ|φ⟩ = |φ⟩ , (8)

where Eq.(6) has also been used. In parallel with the previous section, Eq.(8) is
the eigenvalue equation of the resolvent reduced to space Y . To relate Eq.(8) to
an equation containing H reduced to space Y , let us multiply with (Y GY )−1

to get

⟨φ|Y GY |φ⟩−1⟨φ|φ⟩ |φ⟩ = (Y GY )−1 |φ⟩ .

Projector Y corresponding to eigenfunctions of H, the inverse of Y GY (in
subspace Y ) can be written as

(Y GY )−1 = Y (H − ε)Y , (9)

leading to

YE |φ⟩ = Y HY |φ⟩

with

YE = ε + ⟨φ|Y GY |φ⟩−1⟨φ|φ⟩ . (10)

We see, that the eigenvalue equation of Y HY is equivalent to the eigen-
value equation of Y GY , provided that Y corresponds to exact eigenstates. For
complicated systems, exact solutions are hardly available to form projector X.
It is therefore of practical interest to examine what happens if X is built with
approximate eigenstates of H. In such circumstances the stationary condition
leads to the eigenvalue equation of the reduced resolvent, or equivalently, that
of (Y GY )−1. Relation (9) however becomes invalid. Consequently, the eigen-
value problem of Y HY and Y GY can not be expected equivalent, when Y
and H do not commute.

It is important to note at the same time, that the eigenvalue equation of
Y GY yields a strict lower bound – the formula of Eq.(10) – even if X is build
with approximate eigenstates. This originates from the inequality ⟨φ|G|φ⟩ ≤
⟨φ|Y GY |φ⟩, which leads to YE of Eq.(10) estimating E of Eq.(5) from below.
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2.3 Eckart-like inequality

Once an energy is set stationary as a function of the parameters of a wavefunc-
tion Ansatz, one may ask about the quality of the optimized wavefunction. In
this context, the Eckart condition[16] is cited most often, which involves the
overlap

S = ⟨Ψ0|φ⟩ ,

computed with the exact wavefunction, Ψ0. Eckart estimates |S|2 from below,
using the expectation value (i.e. the upper bound) and the two lowest roots
of H. An analogous estimate for |S|2, using the bracketing function (i.e. the
lower bound) can be obtained as follows.

Let us focus on the ground state eigenfunction, and assume that ε lies in
the bottom-most sector of the bracketing function. Writing the expansion of
the reference function on the basis of the orthonormal eigenfunctions of H as

φ = S |Ψ0⟩ +
∑
i̸=0

ci |Ψi⟩ ,

the bracketing function of Eq.(3) can be expressed as

f(ε) = ε+

|S|2 1

E0 − ε
+
∑
i ̸=0

|ci|2
1

Ei − ε

−1

.

Assuming the exact eigenvalues energy ordered, i.e. E0 ≤ E1 ≤ . . . , the esti-
mation

1

Ei − ε
≤ 1

E1 − ε
for i ≥ 2

holds, since ε < E1. Using normalization of φ, written in the form

1− |S|2 =
∑
i ̸=0

|ci|2 ,

the bracketing function can be estimated from below as

f(ε) ≥ ε+

(
|S|2 1

E0 − ε
+ (1− |S|2) 1

E1 − ε

)−1

.

Let us perform now the rearrangement

f(ε) − ε ≥
(
|S|2 1

E0 − ε
+ (1− |S|2) 1

E1 − ε

)−1

and consider two cases, based on the ordering of E0 and ε. If ε conforms with
Eq.(2), the difference f(ε) − ε is necessarily negative. If on the other hand
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ε < E0, f(ε)− ε is positive and the same holds for the right hand side of the
above inequality. Both cases allow therefore to write

(f(ε) − ε)
−1 ≤ |S|2 1

E0 − ε
+ (1− |S|2) 1

E1 − ε
.

Simplification of the above results the Eckart-like inequality

(E0 − ε)(E1 − f(ε))

(f(ε)− ε)(E1 − E0)
≤ |S|2 . (11)

Since both φ and Ψ0 are normalized, 1 ≤ |S|2, and |S|2 becomes 1 when φ
coincides with Ψ0. The significance of Eq.(11) is, that φ becomes exact (i.e.
|S|2 −→ 1 ) as f(ε) is set stationary (hence f(ε) −→ E0 ).

3 An approximate linear variational procedure

As seen in Section 2, a stationary condition for the bracketing function leads
to the eigenvalue equation of the resolvent, G. Presently we consider φ a
normalized approximate function and wish to derive a correction to it, based
on the stationary condition of f(ε). For this end, we take an orthonormal basis
⟨φi|φj⟩ = δij and assume that φ = φ0.

3 Basis functions φi , i > 0 are often
called excited function, a terminology we adopt.

We wish to find coefficients ci in the linear parametrization of the wave-
function

|Φ⟩ = |φ⟩ +
∑
i ̸=0

ci |φi⟩ . (12)

Substituting Ansatz (12) into

G |Φ⟩ = |Φ⟩⟨Φ|G|Φ⟩ ,

the expectation value of G is readily found by projection with ⟨φ0|

G00 +
∑
i ̸=0

G0ici = ⟨Φ|G|Φ⟩ , (13)

with the notation Gij = ⟨φi|G|φj⟩ for matrix elements.
Coefficients ci can be determined by projection with excited functions ⟨φj | .

Performing a linearization one arrives at the equation∑
i ̸=0

(Gji − δijG00) ci = − Gj0 , (14)

3 An orthonormal basis with φ being one of the basis vectors may not present itself right
away. This is the case e.g. when φ is a so-called multideterminantal function. However, it is
always possible to construct an orthonormal and complementary set to φ with an appropriate
orthogonalization procedure[17,18].
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which can be solved by inverting
(
PG−G00P

)
with PG being the matrix of

G in the space of excited functions (i.e. built of Gij , i, j > 0) and δij being
the elements of P , again with i, j > 0 .

Equations (14) and (13) represent the working formulae of an approximate
linear variational procedure, reminiscent of the simplest coupled electron pair
approximation, CEPA0[10,11] of many-body theory. As CEPA0 applies to the
Schrödinger-equation, matrix elements of H appear where those of G stand
above. Besides being parallel, an important difference between the above equa-
tions and CEPA0 concerns the space spanned by excited functions. In the orig-
inal, so-called single reference, formulation of CEPA0, φ is the Hartree-Fock
determinant and φi , i > 0 are restricted to determinants directly interacting
with φ via H, i.e. doubly excited.4 No such restriction is applied above, since
nothing can be said in general of the second quantized particle rank of operator
G.

Function Φ of Eq.(12) is not normalized to 1, hence ⟨Φ|G|Φ⟩ computed
according to Eq.(13) is to be substituted to Eq.(7) to get an approximate
lower bound to E0. Having linearized the coefficient equation, f(ε) computed
this way is not necessarily a lower bound even if ε fulfills Eq.(2).

Besides expressing the energy with G and Φ, one may think of bringing H
into play also. Interestingly, the asymmetric energy formula

Eas = ⟨φ|H|Φ⟩

does give a strict lower bound with the choice ε = H00 < PE0 . To see
this, let us introduce a partitioning of matrices of G and H − ε, defined by
projectors O and P

G

(
G00 g

g† PG

)
,

and

(H− εI)

(
0 h

h† (
PH− εP

)) ,

where PG and PH stand for the matrix representation in the space of excited
functions and elements of vectors g and h are Gi0 and Hi0, respectively, with
i > 0.

With the notation above, the column vector of coefficients ci can be ex-
pressed as

c† = −
(
PG−G00P

)−1
g† ,

based on Eq.(14). The asymmetric energy formula reads

Eas = ε + hc† = ε − h
(
PG−G00P

)−1
g† , (15)

4 Restriction of the space of excited functions is an important characteristic of CEPA0,
which on one hand makes it applicable in practice. On the other hand it sets a difference
with Eq.(1). In particular, P in Eq.(1) must be restricted to doubles to arrive at the CEPA0
energy formula.
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while f(ε), expressed with φ, takes the form

f(ε) = ε + G−1
00 , (16)

noting that G00 = ⟨φ|G|φ⟩ . From (H− εI)G = I follow the equations

h PG = 0 (17)

and

hg† = 1 . (18)

Adding −hG00P to Eq.(17) we get

h
(
PG−G00P

)
= − hG00P

an eigenvalue equation for h in space P . Vector h is eigenvector to the inverse
matrix also, with the eigenvalue inverted:

h
(
PG−G00P

)−1
= − hG−1

00 P .

Multiplying the above with −g† from the right, and using Eq.(18), we find

− h
(
PG−G00P

)−1
g† = G−1

00 ,

which proves the equivalence of Eas and f(ε), by comparison with Eqs.(15)
and (16).

Finally, some notes on the lower bound property of Eq.(15) are due. While
it is beneficial, that a strict lower bound can be obtained with an approximate
eigenfunction of G, the value itself corresponds to a bound computed with
the reference function. This means that no profit from solving the coefficient
equation manifests in Eq.(15). It is appropriate to add here, that the lower
bound feature of Eq.(15) applies only if the full space of excited functions is
considered in the coefficient equation, Eq.(14). Once a truncation (CEPA0-
type or other) is applied to space P , the equivalence of Eqs.(15) and (16) is
dismissed.

It is also interesting to add, that comparing form

f(ε) = ε − h
(
PH− εP

)−1
h†

of the bracketing function with Eq.(15), one may wonder whether vectors(
PG−G00P

)−1
g† and

(
PH− εP

)−1
h† are equivalent. This is not the case,

it is only the scalar product of these vectors with h which are equal.
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Fig. 1 Graphical illustration of the bracketing property of f(ε) of Eq.(1).

4 Conclusion

The stationary condition of Löwdin’s bracketing function leads to the eigenvalue-
equation of the resolvent. The bounding property of the energy formula is con-
ditional, with a scalar playing a root controlling role. Based on the variational
property and an Eckart-type inequality, Löwdin’s bracketing function offers
a way to refine a lower-bound systematically and improve the wavefunction
simultaneously.

Applicability of the stationary condition is seriously hindered by the ap-
pearance of the resolvent. In practice, approximations are necessary for G, the
nature of which are crucial from the point of view of theory (e.g. conservation
of bounding property) as well as performance. It is possible to eliminate the
resolvent by supposing a suitable form of the reference function, a technique
applied e.g. in the inverse method for lower bounds. Further studies on the
relation between this latter approach and the bracketing function may help to
elucidate the conditions on scalar ε, necessary and sufficient for the bounding
property of the outcome of the inverse method.
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10. J. Č́ıžek, J. Chem. Phys. 45, 4256 (1966)
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