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Abstract

Resonance (vibrational) Raman Optical Activity (ROA) spectra of six chiral single-walled

carbon nanotubes (SWCNTs) are studied by theoretical means. Calculations are performed

imposing line group symmetry. Polarizability tensors, computed at the π-electron level, are

differentiated with respect to DFT normal modes to generate spectral intensities. This com-

putational protocol yields a ROA spectrum in good agreement with the only experiment on

SWCNT, available at present.

In addition to the conventional periodic electric dipole operator we introduce magnetic

dipole and electric quadrupole operators, suitable for conventional k-space calculations. Con-

sequences of the complex nature of the wavefunction on the scattering cross section is dis-

cussed in detail. Resonance phenomenon is accounted for by the short time approximation.

Involvement of fundamental vibrations in the region of the intermediate frequency modes

is found to be more notable in ROA than in Raman spectra. Calculations indicate exception-

ally strong resonance enhancement of SWCNT ROA signals. Resonance ROA profile of the

(6,5) tube shows an interesting sign change that may be exploited experimentally for SWCNT

identification.
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1 Introduction

As modern applications require increasingly more precise control over even the absolute config-

uration of single-walled carbon nanotubes (SWCNTs), significant attention has turned towards

separation and characterization of chiral SWCNTs.1,2 Large scale preparation procedures3 yield

mixtures of these nanotubes with a variety of geometrical structures, described by the so-called

chiral vector (n,m).4,5 Except for the n = m (armchair) and m = 0 (zigzag) cases, all SWCNTs

are inherently chiral, which results from the lack of mirror symmetry in their structure. Although

length, diameter or even chiral vector coordinate specific samples can be prepared routinely us-

ing advanced separation methodologies, the right-handed (P) and left-handed (M) enantiomers are

often present in racemic mixtures due to achiral synthetic conditions.6

Various solutions for enrichment in a single enantiomer emerged only recently and are still

actively investigated.7–9 Techniques under current development exploit enantiomer specific inter-

actions between a SWCNT and a carefully designed chiral bonding agent.9,10 Chiral complexa-

tion were carried out with DNA strands,11 chiral polymers,12 nanotweezers13,14 and chiral surfac-

tants15,16 and then standard separation ideas, chromatography,11,17 extraction12–14,18 and ultracen-

trifugation15,16 yielded optically active SWCNT samples. Bottom-up approaches like chemical

synthesis19 and specific SWCNT templated selective nanotube growth20,21 represent promising

alternatives to gain ultimate experimental control over SWCNT structure.

Raman spectroscopy is a standard tool of SWCNT characterization, it is however blind to

chiral information as per se. There are only a limited number of studies on SWCNT optical activ-

ity. Most of these consider electronic circular dichroism spectroscopy, either from the experimen-

tal7,12–16,22–24 or from the theoretical side.25–28 Raman optical activity (ROA) is an emerging, alter-

native chiroptical technique for chiral SWCNT characterization. To the best of our knowledge, our

previous work was the first theoretical study on SWCNT resonance ROA (RROA).29 The recently

reported study of Magg et al.30 is the first experiment in this line. Let us note for completeness that

handedness of an individual SWCNT can also be investigated by scanning probe microscopy31,32

and transmission electron microscopy.33
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The present work is concerned with theoretical description of the vibrational RROA phe-

nomenon for SWCNTs. In the RROA process either the incident or the Raman scattered photon

is in resonance with an electronic transition of the system. Optical activity accompanies inelas-

tic light scattering, which involves a vibrational transition.34 In the most frequent arrangement

of SCPU(180◦)-ROA, backscattered circular polarized (SCP) light is measured originating from

unpolarized (U) incident laser beam. ROA is an excellent complementary method to electronic

circular dichroism, as it samples the numerous vibrations of the system, often revealing a wealth

of structural information.34–36 Regarding that some of the well-established techniques for SWCNT

characterization are based on the Raman effect,37 e.g. single nanotube spectroscopy, the related

optical activity spectroscopy may gain special significance in the future.

In lack of experiment our previous theoretical work suggested that the (6,5) tube exhibits excep-

tionally large RROA signal at the experimentally most relevant 532 nm incident light wavelength.

Recently, Magg et al.30 proved that RROA is indeed measurable in spite of experimental chal-

lenges, such as small enantiomeric excess and small sample concentration. In the experiment of

Magg et al. enhancement of the ROA intensity originates in the resonance between Stokes-shifted

photons and the second electronic transition of the (6,5) nanotube.30

Computations are indispensable for assigning ROA spectra. Spectrum simulation essentially

involves the calculation of spectral line positions (i.e. vibrational frequencies) and line intensities.

Vibrational normal modes are usually obtained within the harmonic approximation. This step of the

computation represents the bottleneck in the case of large (finite) molecules38 or periodic systems

with large unit cells. Here, the helical symmetry of the chiral SWCNTs was partially exploited to

make the normal mode computation manageable.39,40 Let us note that advanced alternatives such

as iterative subspace techniques41,42 or linear scaling evaluation of the molecular Hessian43 might

change this trend in the near future.

Simulation of spectral intensities necessitates to compute derivatives of ROA polarizability

tensors with respect to the normal coordinates.34,44 In this regard, relying on the linear response

of single determinantal models [either Hartree–Fock or Kohn–Sham density functional theory
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(DFT)]38,44,45 has been found sufficient in most cases for reproducing experimental intensities.46–50

Approximate methods based on the fragmentation of a large molecule51–53 extended the size of

reachable systems significantly, but are inapplicable to the indivisible delocalized π-electron sys-

tem of the nanotubes. One can not rely on efficient ab initio ROA implementations38,54,55 for mod-

eling non-finite SWCNTs either, for the following reasons: (i) lack of ROA polarizability tensor

expressions suitable for periodic systems; (ii) cost-efficient treatment of resonance is rarely avail-

able;55 (iii) restrictions to real valued wavefunctions and corresponding purely real or imaginary

polarizability tensors.

These limitations are overcome in our present implementation by (i) introducing a formula for

the magnetic dipole and the electric quadrupole operators that is periodic (i.e. commutes with

translational operators) in analogy with the well-known expression for the periodic electric dipole

operator,56 applied frequently e.g. for simulating Raman spectra of periodic systems.57–59 Regard-

ing point (ii) we adopt the short time approximation of Jensen et al.55 to account for the resonance

phenomenon. Considering point (iii) genuinely complex ROA polarizability derivatives are evalu-

ated with complex, (translationally) periodic wavefunctions. Scattering cross section expressions,

valid in case of complex polarizability tensors, as formulated according to the general ROA theory

of Nafie,34,60,61 are implemented.

Similarly to our previous studies,29,62 spectral cross sections are computed at the π-electron

level, while structure optimization and vibrational modes are obtained with DFT. This computa-

tional protocol was validated by comparison to experimental Raman and accurate theoretical ROA

spectra of common chiral fullerenes, such as C76 and C84.29,62 For systems with just slightly curved

surface, like C76 or C84, a tight-binding (TB) approximation at the π-electron level already gives

qualitatively good spectra, which has been adopted for a periodic RROA computation previously.29

The TB model of Ref. 29 was improved here in two regards, the so-called band polarization terms

(see Appendix B) were included and a simple level-shift is added to the one-particle energies,

which correction was successful in case of C76 in Ref. 62.

In what follows we first give a comprehensive account of the theoretical approach underly-
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ing our calculations. In Sect. 2 the selected π-electron model and the computation of spectral

intensities are introduced briefly, but the focus is kept on features that have not been discussed

previously29,62 and which are necessary for treating periodic systems. These theoretical advance-

ments were partly implied, but not dwelled on in our previous report.29 Our novel applications are

presented in Sect. 3, giving RROA spectra for six chiral SWCNTs with relatively small diameter.

While our previous report resorted to the three most important fundamental modes of the (6,5)

tube, we now account for all fundamental vibrations. Note that defect induced bands, bands orig-

inating from higher scattering processes, etc. that appear in experimental Raman spectra are not

considered in the present study. Besides simulating RROA spectra, we compute dependence of the

ROA signal on the incident laser frequency for some spectral bands.

2 Theory

2.1 Tight-binding π-electron model

A symmetry-adapted version of the tight-binding (TB) π-electron model, introduced in our previ-

ous reports,29,62,63 is applied presently. Elements of the model are briefly recapitulated for com-

pleteness. The present TB model is a Hückel-type π-electron model that is periodic symmetry

adapted and its first-neighbour interaction terms are bond-length dependent so that derivatives

with respect to Cartesian coordinates can be formulated.

Notation k ∈ [−π/a, π/a] is adopted for the irreducible representations of the translational

group (k is the so-called quasi-momentum). We assume that a quasi-one-dimensional system is

aligned parallel with axis z and the lattice constant is denoted by a.

The field-independent Hamiltonian is given as

Ĥ =

∫
dk
∑
µ ν

Hµν(k)
∑
σ

â+
µσ(k) âνσ(k) , (1)

where σ stands for the spin-index and operators â+
µσ(k) (âνσ(k)) create (annihilate) the so-called
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Bloch-orbitals, φµ(k, r). Orthonormalized orbitals (one centered on each carbon atom), denoted

by χµ(r), are used to generate elements of the orthonormal translational symmetry adapted basis

according to

φµ(k, r) =

√
a

2π

1√
2N + 1

N∑
n=−N

einka T̂na χµ(r) . (2)

Operator T̂na translates with n · a in direction z and µ = 1, . . . , 2q with 2q standing for the number

of atoms in the reference cell. (The analogues of AO χµ(r) in the neighboring unit cells of the

reference one will be referred to as χµ−2q(r) = T̂−1
a χµ(r) and χµ+2q(r) = T̂aχµ(r), respectively.)

N denotes the number of unit cells that tends to infinity when the thermodynamic limit is taken.

Due to the nearest neighbour approximation, the lattice sum for Hµν(k) takes the particularly

simple form

Hµν(k) = e−ikahµ,ν−2q + hµ,ν + eikahµ,ν+2q (3)

with the so-called hopping integral

hµ,λ = −h0 e
−ζRµλ ,

involving two parameters, h0 and ζ , which are fitted to experimental excitation energies of ethylene

and polyacetylene.64,65 In the above, Rµλ stands for the bond length. Note that hµ,λ is nonzero only

if sites µ and λ are first neighbours.

Diagonalization of the TB model Hamiltonian yields the bands [εi(k)] and the corresponding

crystal orbitals (COs):

ϕi(k, r) =
∑
µ

Cµi(k)φµ(k, r) . (4)

2.2 Spectral intensities

When assuming periodic symmetry, spectral line intensities are more involved than in the case of

finite systems. This subject, merely mentioned previously,29 is addressed here in detail.

The SWCNTs of our interest exhibit their second excitation energy around 2 eV, lying close
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below commonly applied experimental incident frequencies (e.g. 532 nm=2.33 eV). This calls

for a ROA formulation suitable for resonance. Explicit treatment of vibronic transitions66–68 is

out of question due to the large number of states to be considered. For this reason we account

for the resonance by applying the short time approximation (STA).55 Polarizabilities35,55 needed

for the scattering cross sections of Raman and ROA processes within the STA are similar to the

formulae valid in the far from resonance case. The chief difference is the appearance of a damping

parameter, Γ that is related to the lifetime of a virtual excited state in a reciprocal manner. For the

sake of simplicity, we resort our investigation to the Stokes process.

Assuming a single determinant model for a quasi-one-dimensional system exhibiting transla-

tional symmetry, a general expression for polarizabilities within the STA29,63 is given by

ταβ[dα, Vβ] = 2

∫ occ∑
j

virt∑
a

(
(dα)ja(k) (Vβ)aj(k)

ωaj(k)− ω − iΓ
+

(Vβ)ja(k) (dα)aj(k)

ωaj(k) + ω + iΓ

)
dk , (5)

which is the extension of the STA polarizability expression of Ref. 55 to the periodic case. Indices

j (a) refer to occupied (virtual) COs and ω denotes the frequency of the incident light (~ = 1).

Orbital energy difference is denoted by ωaj(k) = εa(k)− εj(k) for a given k value. Greek indices

α, β, γ, .. stand for Cartesian components. Finally, Vβ is a unified notation for multipole moments.

Choosing the electric dipole (dβ) for Vβ in Eq. (5) gives the electric-dipole–electric dipole polar-

izability (ααβ), substituting the magnetic dipole (mβ) for Vβ leads to the electric-dipole–magnetic

dipole polarizability (Gαβ), while using the electric quadrupole (Θβ̄ = Θβγ) as Vβ generates the

electric-dipole–electric quadrupole polarizability (Aαβ̄). (For transparency, hyperindex β̄ = βγ is

simply denoted by β when used with V .)

Orientational averaging leads to certain combinations of polarizability tensor matrix elements,

the so-called invariants.34,60 Using the symmetric and anti-symmetric part of τ :

τSαβ = (ταβ + τβα)/2 (6)

τAαβ = (ταβ − τβα)/2 (7)
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the invariants are expressed as34,61

s(α)2 =
1

9
(ααα)S(αββ)S∗ =

1

9
Tr(αS)2 (8)

βS(α)2 =
3

2
(ααβ)S(ααβ)S∗ − 1

2
Tr(αS)2 (9)

βA(α)2 =
3

2
(ααβ)A(ααβ)A∗ (10)

βS(G)2 = Im
{

3

2
(ααβ)S(Gαβ)S∗ − 1

2
Tr(αS)Tr(GS∗)

}
(11)

βS(A)2 =
1

2
ωRe

{
(ααβ)S(εαγδAγ,δβ)S∗

}
(12)

βA(A)2 =
1

2
ωRe

{
(ααβ)A

[
(εαγδAγ,δβ)A∗ + (εαβγAδ,γδ)

A∗
]}

, (13)

where εαβγ is the Levi-Civita symbol.

For real valued orbitals, αAαβ = 0 leads to a simplification of the above invariants,55 as a matter

of fact βA(α)2 = βA(A)2 = 0. For infinite systems, αAαβ does not vanish, as a consequence of basis

functions of Eq. (2) being complex valued. Appearance of antisymmetric invariants complicates

the theory on one hand, on the other hand it offers an enrichment of experimental observables.

So far, symmetric invariants have been sufficient for computing ROA spectral intensities of finite

molecules within the far from resonance approximation or STA.34 Contribution of the antisymmet-

ric invariants might be detectable for the first time for periodic systems. By variation of experi-

mental conditions, it may even become possible to deduce the value of βA(A) itself and compare

it to theoretical results, which could provide further verification of the so far only theorized levels

of ROA description.69,70

Cross sections for the SCPU(180◦) experimental arrangement are finally expressed as34,61

dσRaman
u (180o) = Kp

[
90 s(αp)2 + 14 βS(αp)2 + 10βA(αp)2

]
, (14)

∆dσROA
u (180o) =

4Kp

c

[
12 βS(Gp)2 + 4 βS(Ap)2 + 2 βA(Ap)2

]
, (15)

with Kp = (1/2ωp)(1/90) (µ0/(4π))2 (ω − ωp)3 ω. Here, µ0 stands for the permeability of vac-

uum, c denotes the speed of light and ωp is the harmonic vibrational frequency of normal mode p.
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Upper index p refers to polarizability derivative, computed with respect to normal mode Qp, taken

at the equilibrium geometry, i.e.

τ pαβ =

(
∂ταβ
∂Qp

)
0

. (16)

2.3 Periodic multipole moments

Working with periodic symmetry necessitates to revise not only spectral intensities, but also multi-

pole moments. Multipole operators used commonly for finite systems lead to aperiodic, occasion-

ally ill-defined matrix elements for periodic systems.71–73 Difficulties originate on one hand in the

system being infinitely extended. For an infinite system, the concept of multipoles itself, arising as

low order terms of a Taylor expansion with respect to the spatial coordinate, becomes questionable.

We adopted in Ref. 29 and apply here an approach where all operators describing light-matter

interaction exhibit translational symmetry. This facilitates relying on multipoles as long as the

wavelength of the incident light is orders of magnitude larger than the lattice constant, which con-

dition is fulfilled for the 532 nm incident light. Once the translational symmetry adapted multipoles

are formulated, conventional k-space considerations can be used to simulate ROA spectra.

In this section the multipole operators underlying our study are presented briefly. Of the three

multipoles necessary for ROA spectral intensities, the electric dipole received by far the most

consideration under the periodic boundary condition. Our notion that any form of the electric

quadrupole and the magnetic dipole operators, applicable for periodic systems is not available in

the literature is confirmed by a recent review.74

Reformulation of the conventional coordinate operator of r̂, assuming that it is acting on a

lattice periodic function, has been known for long71–73 as

r̂ = ieikr̂∇̂ke
−ikr̂ − i∇̂k , (17)

with ∇̂k = ( ∂
∂kx
, ∂
∂ky
, ∂
∂kz

). In the field of quantum chemistry, it was Otto56 who first considered

Eq. (17) for periodic systems, resorting to the first term on the right hand side, arguing that this
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term conserves translational symmetry. The translational symmetry adapted coordinate

R̂ = ieikr̂∇̂ke
−ikr̂ = r̂ + i∇̂k , (18)

has become the cornerstone of many linear response based implementations for molecular prop-

erty computation75–78 since then. It has been established based on the vector potential method79,80

as well as in the framework of the modern theory of polarization81,82 that the electric dipole cor-

responding to operator R̂ of Eq. (18) indeed describes the interaction between the homogeneous

electric field and a translationally periodic system.

We proceed now by formulating a magnetic dipole and an electric quadrupole showing periodic

symmetry, in analogy with the line of thought presented by Otto.56 The present approach can be

interpreted as omission of any polarization current induced by the second term on the right hand

side of Eq. (17), as the electromagnetic field is relatively weak and the band gap is nonzero.56,83

Using a similar, somewhat heuristic argument, in which only the periodically symmetric terms are

kept, Wannier formulated72 the following expression for the vector potential in the periodic case:

Â(r) =
1

2
B× (r̂ + i∇̂k) =

1

2
B× R̂ , (19)

with B being the field strength of the homogeneous magnetic field. (Here and in the following

atomic units are used, thus ~ = 1, e = 1, and me = 1.) Subjecting the perturbation of p̂ · Â(r)

corresponding to B to simple manipulations, one can recognize a translationally periodic magnetic

dipole operator:

p̂ ·
(

1

2
B× R̂

)
= B ·

(
1

2
R̂× p̂

)
= −B · M̂ . (20)

Note that the same operator is obtained, if the translationally symmetric coordinate, R̂ is substi-

tuted to the usual expression of the magnetic dipole operator:

M̂ = −1

2
R̂× p̂ . (21)
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Operator M̂ is clearly periodic, since both R̂ and p̂ commute with T̂na. Further justification of

Eq. (21) is provided on the grounds of the modern theory of orbital magnetization (MTOM).84,85

As presented in Appendix A, orbital magnetization computed with M̂ is equivalent to the MTOM

expression for nonmetallic systems.

Analogously, the traceless quadrupole moment, expressed with the translationally invariant

coordinate, R̂ reads

T̂αβ = − 3

2
R̂α R̂β + δαβ

1

2

∑
λ

R̂
2

λ . (22)

Expression of Eq. (22) obviously commutes with T̂na.

Matrix elements of the above periodic multipole operators with COs – necessary to evaluate

Eq. (5) – are collected in Appendix B. Note that in the case of SWCNTS the reformulation of

Eq. (18) affects only coordinate z and the related components of the magnetic dipole and electric

quadrupole. Coordinates x and y remain unaffected, our system being quasi-one-dimensional.

For the sake of completeness we note that a velocity based formulation offers an alternative

route to compute spectroscopic properties of periodic systems. Utilizing the equation of motion

(EOM) for periodic systems:86

p̂ = i[Ĥ, R̂] = i[Ĥ, ieikr̂∇̂ke
−ikr̂] , (23)

and considering eigenfunctions of the Hamiltonian (non-diagonal) matrix elements of the coordi-

nate can be expressed via matrix elements of the momentum, the latter being obviously translation-

ally invariant. The simplicity of this approach has motivated many implementations.86–88 However,

relying on the velocity formulation has several drawbacks. Molecular properties based on the ve-

locity or length (i.e. coordinate operator) formulation might differ significantly with non-complete

basis sets.86 Moreover, if the model Hamiltonian does not commute with r̂ (e.g. involves exact

Hartree-Fock exchange), use of the periodic coordinate operator can not be avoided.89,90
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3 Results and discussion

3.1 Computational details

The above presented Raman and ROA theory applicable for semiconductor SWCNTs is imple-

mented in our own program. We discuss here the most important aspects of computations, and

refer to our previous reports29,62,63 for further details.

Raman and ROA spectra were simulated for six semiconducting, chiral SWCNTs, with chiral

indices4,91 (6,5), (7,5), (11,1), (9,5), (11,4), and (13,2). We considered P type handedness25 for

all the tubes, which corresponds to the (-) enantiomer in case of (6,5). Diameter of the tubes

studied lies in the range of 7.5–11.0 Å, their curvature is therefore comparable to or smaller than

the curvature of C76 and C84. Large curvature may induce ill-effects in the present theoretical

approach, because it has been demonstrated that second and further neighbour interactions are

not negligible92 in that case. It has also been shown that the ROA spectrum computed at the TB

level is prone to significant errors in the extreme case of C28.62 For this reason we have selected

nanotubes similar in diameter to the model fullerenes for which the computational protocol was

tested successfully.29,62,63

A specific feature of our treatment is that the π-electron model of Sect. 2 is used for calculat-

ing spectral intensities, while geometry optimization and the computation of dynamical (Hessian)

matrix elements is carried out at the density functional level of theory. The VASP program pack-

age93 was applied for the latter utilizing the local density approximation (LDA) with the projector

augmented wave method, 400 eV plane wave energy cutoff and a 1× 1× 5 gamma point centered

Monkhorst–Pack set of k-points. For further details see Refs. 39 and 40.

In order to reduce computational effort normal modes of carbon nanotubes in their translational

unit cell are calculated with imposing helical symmetry. The translational unit cell of a nanotube—

containing 2q atoms—can be built from two carbon atoms in its helical unit cell using rotations

and screw axis symmetry operations.94,95 Analogously, instead of calculating all elements of the

6q × 6q force constant matrix, it is sufficient to compute a 6 × 6q part of the Hessian describing
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the interaction of the two atoms in the reference helical cell with all atoms in the translational unit

cell. Finally, one can apply the above symmetry operations to construct the 6q×6q dynamical ma-

trix40,96,97 and to assign the resulting normal modes (of the translational unit cell) to the irreducible

representations in the helical line group.94,95

Based on these helical symmetry considerations,94,95,98–100 26 Raman and ROA active funda-

mental vibrations were identified in the previous work of Rusznyák et al.,96 prior to the evaluation

of the polarizability tensors here. The assignment of the theoretical spectra on Figures 1 and 3

were performed by utilizing these symmetry considerations. Among these the RBM, G−, and G+

modes have been the most relevant experimentally.4,5 The RBM mainly consists of radial move-

ment of the carbon atoms perpendicular to the SWCNT cylinder. The G− and G+ modes originate

from the in plane vibrations of graphene and consist mainly of in plane stretching perpendicular

and parallel, respectively, to the axis of the SWCNT. The remaining one one-dimensional and 11

pairs of doubly degenerate fundamental modes, lying in the region of the so-called intermediate

frequency modes (IFM),101–104 have been less frequently observed105. Let us note that only the

fundamental IFMs are studied here, the combinational or defect induced modes of the IFM region

are not considered presently.

Polarizability derivatives, c.f. Eq. (16), are computed by numerical differentiation with respect

to only the 26 Raman and ROA active normal coordinates. For cost efficiency, numerical differ-

entiation is preferable to analytical derivatives as only 26 · 2 + 1 = 53 different polarizabilities

are to be computed in case of a three-point numerical procedure. At contrast with this, the analyt-

ical treatment requires differentiation with respect to all Cartesian coordinates of all atoms in the

translational unit cell, even if only 26 normal modes are to be considered eventually.

Scattering cross sections were evaluated at the incident light frequency of 532 nm, relatively

close to resonance in the case of all six SWCNTs. A system independent damping parameter,

Γ = 40.8 meV(= 1.5 mEh) was applied in all presented computations. This choice is close both

to the experimentally and computationally obtained value of 30 − 50 meV broadening106–108 for

SWCNTs lying in the same diameter range as our structures.
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Following the protocol established previously in the case of fullerenes,62 excitation energies

of the present TB model are shifted so that the resulting lowest unoccupied-highest occupied CO

energy difference of the TB model (ωLH(k)) without the level-shift matches the experimental first

excitation energy (E11)109,110 of the given nanotube. The final expression for the denominators in

Eq. (5) accordingly reads

ωaj(k) + (E11 − ωLH(k))± ω ± iΓ . (24)

Let us note that this correction was not yet applied in our previous RROA study.29

Integration over the Brillouin zone is carried out numerically utilizing the Monkhorst–Pack

scheme.111 Numerical tests indicated relatively fast convergence of the Raman/ROA cross sections

with the number of integration grid points, Nk (i.e. spectra obtained with Nk = 21 could not be

distinguished from that of Nk = 61). For this reason Nk = 21 was applied in all examples.

Raman and ROA cross sections for a given vibrational frequency are depicted as Lorentzian

curves with 5 cm−1 linewidth. The spectral regions (e.g. Figure 1) are split into two intervals to

allow for better perceptibility of the less intense spectral bands in the smaller wavenumber region.

Visual comparison is further assisted by normalizing areas below spectral curves separately for the

split intervals. Relative normalization factor (f ), shown in figure labels as “xf” for each interval

and nanotube type, gives the ratio of the areas under the spectral curve of (11,4) and of the actual

nanotube.

3.2 Resonance Raman spectra

We begin the analysis with the comparison of TB and experimental SWCNT Raman spectra to

assess the accuracy of our computational method.

Spectral peak positions in the case of the (6,5) tube being (316, 1549, 1594) cm−1 for the

(RBM, G−, G+) vibrations agree well with the recent experimental data30,105 of (309, 1526-1528,

1589) cm−1. Regarding the remaining modes besides (RBM, G−, G+), their LDA frequencies are

compared in Table 1 to recent theoretical (extended tight-binding, ETB) results as experimental
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information is only available for a couple of these transitions,101–104 while the ETB results were

computed for all vibrations of our interest. The two sets of computed data in Table 1 agree within

30–40 cm−1. This is acceptable, based on the fact that ETB results match measured frequencies

within 20–30 cm−1, when the experimental values are available,105 and the quality of LDA and

ETB frequencies are comparable in the case of RBM, G−, and G+.

Table 1: Vibrational frequencies of the three most important one-dimensional (RBM, G−,
G+) and the 11 doubly degenerate (irrep E) fundamental vibrational modes of the (6,5)
SWCNT in cm−1 units computed with the ETB105 method and the presently applied LDA
approach (see Sect. 3.1).

modes RBM G− G+

LDA 79 189 316 355 429 650 846 861 1525 1549 1563 1592 1594 1600
ETB 86 213 294 397 407 616 874 881 1521 1575 1548 1568 1588 1570

Computed intensities are displayed in Figure 1, showing Raman spectra of the six selected

SWCNTs. The three most intense vibrational transitions can be recognized at first sight: the

strongly diameter dependent RBM in panel A and the G− and G+ modes in panel B, the latter

around 1600 cm−1. (For most cases IFMs are an order of magnitude less intense than the RBM

and G modes and can only be observed in Figure 1 in the cases of (7,5) and (13,2). The intensities

of the IFMs are comparable for all six examples, the reason for their appearance on the (7,5)

and (13,2) spectra is that the intensity of their G+ mode is at least an order of magnitude weaker

compared to the G+ intensity of the other four selected nanotubes.)

The intensity ratio for RBM, G−, and G+ in the case of the (6,5) tube is 1/144:1/16:1 by

the present TB approach, in qualitative agreement with the experimental trend (the same ratio is

approximately 1/70:1/7:130), though the intensity of the RBM and G− is underestimated compared

to G+. This parallels the previous finding29,62 on the reliability of the absolute intensity values

of the present TB model, i.e. the more stretching character a vibration exhibits, the better the

electron-phonon coupling is described. Intensity of vibrations with significant bending or torsion

component is less satisfactory than those being essentially stretching modes. Since bending and

torsion character increases in the sequence G+, G−, and RBM, we expect the TB intensity of G+
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Figure 1: Unpolarized backscattering Raman cross sections of selected SWCNTs at 532 nm. Spec-
tra of panel A are normalized over the wavenumber interval [0, 800] cm−1, panel B over [800, 1800]
cm−1. Relative normalization factors are computed with respect to the spectrum of (11,4). See text
for further notations.

to be the most reliable, while the intensity of the RBM is probably the most underestimated by our

model.

As relative normalization factors shown in Figure 1 reflect, Raman intensities are highly sen-

sitive to excitation energies of the given SWCNT. Excitation energies and spectral intensities dis-

played for the G+ band in Table 2 supplement this information in order to rationalize the occasional

orders of magnitude change in the intensity. Exceptionally large amplification occurs for nanotubes

with electronic transitions close to 2.3 eV (c.f. E22 and E33 in Table 2).

Resonance amplification depends strongly on the incident light frequency. This effect is illus-

trated by Figure 2, showing the intensity as a function of ω, the so-called resonance profile, on the

example of the RBM, G+, and G− modes of the (6,5) tube.

The largest intensity increase due to resonance is observed around 1.26–1.27 eV, in good agree-

ment with the experimental value of the first electronic excitation energy,115 as a trivial conse-

quence of the level shift introduced in Eq. (24). A zoom into the tail of the curves, displayed in

the inset of Figure 2, shows two additional maxima. The peak around 2.2 eV is in accordance with
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Table 2: Relative maxima of Raman and ROA intensities of the G+ band by the TB method
relative to the intensity of the most intense band (at 3194 cm−1) of the routinely measured
organic molecule, methyloxirane.112 Non-resonance (ω = 532 nm) methyloxirane spectra
are computed by the G09 program package,113 utilizing the B3LYP density functional and
the aug(sp)-cc-pVDZ basis.54 Geometrical parameters of the SWCNTs are taken from the
database of Rusznyák et al.114 Experimental electronic excitation energies E11, E22, and E33

are collected from Refs. 109 and 110. Number of atoms in the translational unit cell is de-
noted by 2q. See text for further details.

SWCNT Diameter [Å] 2q E11 [eV] E22 [eV] E33 [eV] Raman ROA
(6,5) 7.5 364 1.27 2.19 3.60 3.2·108 4.1·109

(7,5) 8.2 436 1.21 1.93 3.68 9.7·106 2.9·108

(11,1) 9.0 532 0.98 2.03 2.88 1.4·108 3.2·109

(9,5) 9.6 604 1.00 1.85 3.05 4.2·108 5.7·109

(11,4) 10.5 724 0.90 1.74 2.78 1.6·108 4.5·108

(13,2) 11.0 796 0.95 1.44 3.08 1.1·107 2.1·108
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Figure 2: Resonance Raman profile of SWCNT (6,5) using TB approximation. The RBM intensity
is scaled by a factor of 700, while G− is multiplied by 10 to match the magnitude of G+.

the second electronic transition energy assessed by the density of states computed based on the

(level shifted) TB model, as well as with the experimental value of E22=2.19 eV. The position of

the peak in the middle, around 1.7 eV, corresponds to the difference between the first and second

Van Hove peaks of the density of states (1.71 eV) in agreement with the experimentally observed

E12=1.73 eV transition. The 1→2 transition requires circularly polarized light with nonzero per-

pendicular component to the tube axis,116 which is also allowed in our case. Based on Figure 2,
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approximately 1000 nm laser frequency is the optimal choice for the largest amplification by reso-

nance.

The above findings allow to shortly conclude that the TB Raman spectra is in qualitative agree-

ment with experimental and theoretical data available in the literature.

3.3 Resonance ROA spectra

Comparing the TB ROA spectrum for the (6,5) tube, depicted in Figure 3, with the recent measure-

ment of Magg et al.,30 sign of the G modes as well as the intensity ratio 1:5 of G− and G+ match

the experiment perfectly. Experiment and theory are also in accord in the RBM being much less

intense than G+, their intensity ratio of 1:83 compares to the cca. 1:100 value of the experiment.

Regarding the sign of RBM, the theoretical and experimental spectra are in contradiction. The

source of this discrepancy might be either the approximate nature of our model or experimental

difficulties or both and deserves further investigation.

Considering the experiment, the close to one signal-to-noise ratio in the region of the RBM

could be improved, which is important, because in such situations the RBM intensity value might

be strongly affected by the emissive background removal procedure. Furthermore, by careful anal-

ysis Magg et al. find that the contribution of (10,0) and (9,3) contaminants to the Raman spectrum

in the RBM region (around 309 cm−1) is comparable to or even larger than the signal of (6,5) itself

(see Figure S2 of Ref. 30). This effect (easily argued by a stronger resonance enhancement of the

contaminants at 532 nm) might have shown up in the ROA spectrum as well, since (9,3) is chiral.

Unfortunately our implementation is not suitable for computing the ROA spectrum of the metallic

(9,3) tube, we are therefore not able to investigate this aspect.

Reliability of our semi-empirical approach considering the sign of the RBM ROA signal would

also be highly desirable to verify by comparison to more involved theoretical treatments. This is

however out of the applicability of any program available presently. Such an efficient and accu-

rate implementation would probably require the full exploitation of helical symmetry at least at

the DFT level of theory, like it has been reported recently by Dovesi et al. for the case of dipole
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polarizabilities.117 An alternative line of improvement could be to include vibronic detail in the

formulation of the ROA polarizability tensors,66–68 because Ref. 30 finds the Stokes-shifted fre-

quencies in close resonance with the E22 transition of the (6,5) nanotube instead of the 532 nm

laser frequency. Excitation energy values of Table 2 suggest that one cannot assume strong reso-

nance with only one electronic transition for all SWCNTs and generally cannot rely on the single

excited state limit.66 Approaches taking into account a couple of excited states have been proposed

for small molecules,67,68 but their application for SWCNTs is still too demanding.
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Figure 3: Unpolarized backscattering ROA cross sections of selected SWCNT at 532 nm. Spectra
of panel A are normalized over the wavenumber interval [0, 800] cm−1, panel B over [800, 1800]
cm−1. Relative normalization factors values are computed with respect to the spectrum of (11,4).
See text for further notations.

Returning to the analysis of Figure 3, significant contribution of IFMs to the ROA spectra is

observed, which represents a marked difference compared with the Raman spectra. Both the signs

and positions of the IFM bands are beneficially diverse, making ROA a promising tool for the

identification SWCNTs and derivatives thereof.

Maximal ROA (absolute) intensity values relative to methyloxirane, collected in Table 2, are

one or two orders of magnitude larger than the same quantities for Raman. This effect can be
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explained with the structure of chiral SWCNTs. The long helical motif in the arrangement of the

carbon atoms can give large contribution to the ROA signal, while the Raman scattering is rela-

tively indifferent to this structural pattern. This observation is in accord with previous studies on

hexahelicene derivatives, where increased ROA signal was attributed to collective carbon skeleton

vibrational motions of extended helical structural elements.118,119

Similar to the Raman effect, ROA intensities also depend strongly on the incident light fre-

quency. The interesting new feature of the resonance ROA profile of the (6,5) tube, depicted in

Figure 4, is the sign change for all major peaks as ω passes through the first excitation energy. This

opens a possibility to distinguish overlapping bands (for instance in the region of the most intense

G+ mode) in a mixed sample, using a well chosen incident light frequency. In contrast with res-

onance Raman curves, enhancement originating from resonance with the 1→2 or 2→2 electronic

transitions can not be observed clearly in Figure 4. The strongest ROA signal is therefore expected

from resonance with the first electronic transition.
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Figure 4: Resonance ROA profile of SWCNT (6,5) using TB approximation. The RBM intensity
is scaled by a factor of 200, while G− is multiplied by 3 to match the magnitude of G+.

In accord with our previous prediction,29 Magg et al.30 provide experimental evidence in the

case of the (6,5) tube that SWCNTs can indeed exhibit remarkably strong Raman and ROA signals.

Inspecting Table 2, the same theoretical prediction holds for all six investigated nanotubes. (Note

that there are two differences in the computational model used for the nanotubes and the methy-
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loxirane spectra, the latter being the reference in Table 2. First, it was possible to employ a much

more sophisticated computational model for methyloxirane. Second, the comparison is made with

532 nm incident light where resonance occurs only in the case of the nanotubes. However, our aim

was to estimate the methyloxirane spectra with the experimentally most relevant 532 nm as well

as possible, since it is frequently measured, and to compare the strength of the estimated nanotube

ROA signal to that reliable reference.)

Based on a previous analysis29,63 we judge that Raman and ROA cross sections obtained by the

present computational protocol are overestimated by a rough factor of 100–1000, which mainly

originates from the error of the TB model compared to DFT. Relative ROA intensities of Table 2

are accordingly expected to be on the order of 105–106 in practice (in contrast to the 108–109 values

suggested by Table 2). For comparison, the same relative intensity (with respect to methyloxirane)

is just 103–104 in case of chiral fullerenes.29,62 The exceptionally strong ROA signal of SWCNTs

compared to the effect produced by small molecules at the same incident light frequency can be

attributed both to the resonance enhancement and to the extended helical pattern of the chiral

nanotubes.

4 Conclusion and outlook

Theoretical resonance Raman and ROA spectra of chiral SWCNTs are reported, based on the

combination of scattering tensors computed at the π-electron level with DFT vibrational modes.

Comparison with the recent experimental ROA spectrum of the (6,5) tube30 represents further

validation of the present computational protocol, in addition to previous assessments based on

chiral fullerenes.29,62,63 The theoretical model applied here improves upon our previous studies in

the followings: (i) level-shifts according to Eq. (24) are used to correct for one-particle electronic

energy differences; (ii) band polarization terms are included when computing matrix elements

of multipole operators, c.f. Eq. (30). Periodic forms for the magnetic dipole and the electric

quadrupole operators are introduced here [Eq. (21) and Eq. (22)] in analogy with the commonly
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applied periodic electric dipole. Contribution of antisymmetric invariants to Raman and ROA

scattering cross sections, c.f. Eq. (14) and Eq. (15), is discussed in detail.

Comparison of the theoretical spectrum for the (6,5) nanotube with the experiment of Ref. 30

reveals good agreement in terms of both sign and relative intensity for all bands, except for the

signal sign of the radial breading mode. This disagreement can not be resolved based on the data

available to us presently and requires further investigation.

Besides the recently measured (6,5) tube, ROA spectra of five more chiral SWCNTs are pre-

sented. These may aid forthcoming experiments in absolute configuration determination. Notable

contribution of the fundamental intermediate frequency modes is a common feature of computed

ROA spectra. This represents an enrichment compared to Raman that may assist nanotube identifi-

cation. Based on the computations we judge that the ROA signal of chiral SWCNTs is at least five

to six orders of magnitude stronger than that of commonly measured small, organic compounds.

The reason for this is the resonance enhancement on the one hand and the uniquely long helical

arrangement of the carbon atoms of the chiral SWCNTs on the other hand. Resonance ROA profile

of the (6,5) tube shows an interesting sign change in the region of the first electronic excitation.

This might also be exploited for experimental identification of components of a nanotube mixture.

The magnitude of resonance enhancement in the case of Raman and ROA of SWCNTs is

comparable. This may motivate extension of well-developed techniques of Raman microscopy

to the field of ROA. Among other related chiral structures multilayer graphenes and multi walled

nanotubes can also exhibit ROA if the mirror planes of their (achiral) monomers are not coinciding.
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A Connection of M̂ to MTOM

The MTOM formula for the orbital magnetization of nonmetallic systems can be expressed with

the following matrix element of the magnetic moment:84

(Mα)jj(k) = − i
2
εαβγ

〈
∇kβuj(k, r)|H̄(k)|∇kγuj(k, r)

〉
, (25)

with H̄(k) = e−ikrHeikr and uj(k, r) denoting the periodic part of the COs of Eq. (4), i.e.

ϕj(k, r) = eikruj(k, r) .

In comparison, the analogous matrix elements of the periodic magnetic dipole operator, M̂ of

Eq. (21), with COs reads

(Mα)jj(k) = −1

2
εαβγ

〈
uj(k, r)e

ikr
∣∣∣Rβ pγ

∣∣∣eikruj(k, r)〉 . (26)

Let us proceed with the substitution of Rβ = ieikr∇kβe
−ikr and of the EOM of periodic systems

[Eq. (23)] into the above magnetic dipole formula:

(Mα)jj(k) = − i
2
εαβγ

( 〈
uj(k, r)

∣∣∣∇kβe
−ikrHeikr∇kγ

∣∣∣uj(k, r)〉
−
〈
uj(k, r)

∣∣∣∇kβ∇kγe
−ikrH

∣∣∣eikruj(k, r)〉) . (27)

One can exploit the Schrödinger equation in the second term of the right hand side as

H|eikruj(k, r)〉 = εj(k)|eikruj(k, r)〉
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and recognize that the resulting expression cancels, since

εαβγ εj(k) 〈∇kβuj(k, r)|∇kγuj(k, r)〉 = 0

due to the properties of the cross product.

Finally, one finds the first term on the right hand side of Eq. (27) is in complete agreement with

the corresponding MTOM expression in Eq. (25).

B Matrix elements of multipole operators

The zero differential overlap (ZDO) approximation is applied for matrix elements of the multipole

operators of Sect. 2.3 taken with the basis functions of Eq. (2). Within the ZDO approximation

any multiplicative operator takes the matrix element

〈φµ(k, r)|Â|φν(k′, r)〉 = Aµµ(k) δµνδkk′ . (28)

The above treatment of multipoles is consistent with the TB model Hamiltonian.

Considering the occupied-virtual matrix element of the electric dipole, conventional tech-

niques120,121 lead to the result

(dα)ja(k) = −
∑
µ,ν

C∗µj(k)

[
(r̂α)µν + i〈φµ(k, r)| ∂

∂k
|φν(k, r)〉+ iSµν(k)

∂

∂k

]
Cνa(k)

= −
∑
µ

C∗µj(k)(Rα)µCµa(k) + iUja(k) , (29)

where Sµν(k) = δµν is the overlap matrix of the symmetry adapted basis of Eq. (2), (Rα)µ is the α

coordinate of atom µ in the reference unit cell and the CO derivatives with respect to k, i.e.

∂

∂k
Cµa(k) =

∑
p 6=a

Upa(k)Cµp(k) , (30)
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are determined relying on the (coupled-)perturbed approach.120,121 Let us note again that this so-

called band polarization term—which depends on Uja(k)—was not included in our previous re-

port,29 hence the present ROA spectrum of the (6,5) nanotube differ from the one in Ref. 29.

Matrix elements of the magnetic dipole operator can be expressed with the corresponding com-

ponents of the coordinate and momentum operator after inserting the resolution of identity in the

CO basis between operators R̂ and p̂:

(mα)ja(k) = (M̂α)ja(k) =
εαβγ

2

∑
q

(dβ)jq(k) (pγ)qa(k) , (31)

where the momentum matrix elements are obtained via the periodic EOM of Eq. (23) as:

(pγ)qa(k) = i
[
εa(k)− εq(k)

]
(dγ)qa(k) . (32)

Analogously, the CO matrix elements of the electric quadrupole operator read:

(Θαβ)ja(k) = (T̂αβ)ja(k) =
1

2

∑
s

[
3(dα)js(k) (dβ)sa(k)− δαβ

∑
λ

(dλ)js(k)(dλ)sa(k)
]
. (33)
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(98) Vuković, T.; Milošević, I.; Damnjanović, M. Carbon Nanotubes Band Assignation, Topol-

ogy, Bloch States, and Selection Rules. Phys. Rev. B 2002, 65, 045418.

(99) Alon, O. E. Number of Raman- and Infrared-Active Vibrations in Single-Walled Carbon

Nanotubes. Phys. Rev. B 2001, 63, 201403.

(100) Alon, O. E. from Spatial Symmetry to Vibrational Spectroscopy of Single-Walled Nan-

otubes. J. Phys. Condens. Matter 2003, 15, S2489–S2500.

(101) Alvarez, L.; Righi, A.; Rols, S. Excitation Energy Dependence of the Raman Spectrum of

Single-Walled Carbon Nanotubes. Chem. Phys. Lett. 2000, 320, 441–447.

(102) Fantini, C.; Jorio, A.; Souza, M.; Ladeira, L.; Souza Filho, A.; Saito, R.; Samsonidze, G.;

Dresselhaus, G.; Dresselhaus, M.; Pimenta, M. One-Dimensional Character of Combination

Modes in the Resonance Raman Scattering of Carbon Nanotubes. Phys. Rev. Lett. 2004, 93,

087401.

36



(103) Singh, D. K.; Iyer, P. K.; Giri, P. K. Distinguishing Defect Induced Intermediate Frequency

Modes from Combination Modes in the Raman Spectrum of Single Walled Carbon Nan-

otubes. J. Appl. Phys. 2012, 111, 064304.

(104) Wang, J.; Yang, J.; Zhang, D.; Li, Y. Structure Dependence of the Intermediate-Frequency

Raman Modes in Isolated Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2012, 116,

23826–23832.

(105) Lim, Y.-S.; Nugraha, A. R. T.; Cho, S.-J.; Noh, M.-Y.; Yoon, E.-J.; Liu, H.; Kim, J.-H.;

Telg, H.; Ha, E. H.; Sanders, G. D. et al. Ultrafast Generation of Fundamental and Multiple-

Order Phonon Excitations in Highly Enriched (6,5) Single-Wall Carbon Nanotubes. Nano

Lett. 2014, 14, 1426–1432.

(106) Rafailov, P. M.; Jantoljak, H.; Thomsen, C. Electronic Transitions in Single-Walled Carbon

Nanotubes: A Resonance Raman Study. Phys. Rev. B 2000, 61, 16179.

(107) Park, J.; Oyama, Y.; Saito, R.; Izumida, W.; Jiang, J.; Sato, K.; Fantini, C.; Jorio, A.; Dres-

selhaus, G.; Dresselhaus, M. Raman Resonance Window of Single-Wall Carbon Nanotubes.

Phys. Rev. B 2006, 74, 165414.

(108) Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M. S. Raman Spectroscopy

of Graphene and Carbon Nanotubes. Adv. Phys. 2011, 60, 413–550.

(109) Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B.

Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science 2002, 298,

2361–6.

(110) Haroz, E. H.; Bachilo, S. M.; Weisman, R. B.; Doorn, S. K. Curvature Effects on theE33 and

E44 Exciton Transitions in Semiconducting Single-Walled Carbon Nanotubes. Phys. Rev. B

2008, 77, 125405.

37



(111) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B

1976, 13, 5188–5192.

(112) Sebestik, J.; Bour, P. Raman Optical Activity of Methyloxirane Gas and Liquid. J. Phys.

Chem. Lett. 2011, 2, 498–502.

(113) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-

man, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09

Revision C.1. Gaussian Inc. Wallingford CT 2009.

(114) Structure and Phonon Band Structure Database of Common SWCNTs, See

Http://wigner.elte.hu/∼adam/chirality/.

(115) Kavan, L.; Frank, O.; Green, A. A.; Hersam, M. C.; Koltai, J.; Zólyomi, V.; Kürti, J.;

Dunsch, L. In Situ Raman Spectroelectrochemistry of Single-Walled Carbon Nanotubes:

Investigation of Materials Enriched with (6,5) Tubes. J. Phys. Chem. C 2008, 112, 14179–

14187.
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