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Abstract

The Frobenius norm of operator QW is minimized with respect to level shift parameters applied

to the zero order spectrum, where W is the perturbation while Q is the reduced resolvent of the

zero order Hamiltonian. The stationary condition leads to a simple formula for the level shifts

which eliminates degeneracy-induced singularities. Such level shifts may increase the radius of

convergence of the perturbation series, and may improve low-order perturbative estimations – as

it is found on the cases of a simple matrix eigenvalue problem and the one-dimensional quartic

(anharmonic) oscillator.
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I. INTRODUCTION

Perturbation theory (PT) continues to attract investigations due to its unsolved problems

concerning convergence properties, the flexibility of partitioning, and related questions [1–

4]. The theory of resolvents, or Green functions, may serve as a powerful tool to develop

new solutions to open problems in PT. Green function theory being somewhat misterious

to many chemists, a well written didactic survey on the quantum chemical application of

Green functions has been topical for some time and would be highly appreciated. In this

connection, one of the present authors (PRS) feels it necessary to mention that 17 years ago,

looking for a publisher for his book on second quantization[5], Professor Rudolf Zahradńık,

to whom this article is dedicated, kindly offered many invaluable advises in this matter.

Among other propositions, he suggested to cover also Green function theory in the same

volume. It may be a shame, but PRS was not able to follow this advise, not being well

prepared for this task at that time. Since then, we have performed some research in this

area[6, 7], but the aforementioned didactic introduction is still in delay. In the present paper,

however, we briefly review an important aspect of Green function (GF) theory, discussed

by Kato[4] a long time ago, namely its application to the convergence problem in PT. It

will be seen that, although GF theory alone does not solve the problem of convergence,

its suggestive formal results may induce useful thoughts towards enhancing convergence

properties of the PT series. The encouragement of Professor Rudolf Zahradńık is herewith

gratefully acknowledged.

A. Level shifts in perturbation theory

In PT, one starts with an (arbitrary) split applied to the total Hamiltonian

H = H0 + W (1)

and normally assumes that the spectrum of H0 is known:

H0Ψ0
i = E0

i Ψ
0
i . (2)
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The well-known PT formulae emerge in terms of these zero order quantities and the matrix

elements of W in the basis of Ψ0
i .

It has been realized a long time ago, that for any given splitting expressed by Eq.(1),

the partitioning of H can be freely changed by adding and substracting an operator that is

diagonal in basis Ψ0
i :

H = H0 +
∑

i

ηi|Ψ0
i 〉〈Ψ0

i |
︸ ︷︷ ︸

H0′

+ W −∑

i

ηi|Ψ0
i 〉〈Ψ0

i |
︸ ︷︷ ︸

W ′

(3)

where ηi-s are arbitrary parameters called level shifts. The level shifts obviously do not

affect the zero order wave functions, they merely shift the zero order energy levels.

Level shift parameters have been applied previously in a number of works with various

purposes. With the aim of improving the convergence properties in particular Feenberg,

Goldhammer[8, 9], Amos[10], Dietz et al.[11, 12], Finley et al.[13? , 14] have introduced

appropriately chosen shift parameters. Recently, optimal level shifts have been determined

from the condition that the energy perturbed up to the third order should be stationary

with respect to ηi-s [1, 2, 15–18]. Here we shall investigate the applicability of level shift

parameters deduced in a different manner.

B. On the convergence of the PT series

It has been known for a long time[4] that the theory of Green functions provides a suffcient

condition for the convergence of the PT series. To see this, we consider the operator

G(z) = (z −H)−1 (4)

where H is the Hamiltonian operator, and z is a complex scalar variable. Accordingly,

G(z) is an operator-valued function of z which is called the resolvent of H or the Green

function. The resolvent is an analytic function of z except for the points where z coincides

an eigenvalue of H. In these points G(z) has simple poles.

An important property of the resolvent operator is that eigenvalues of H can be extracted

from G(z) by a contour integration:

Ek =
1

2πi

∮
z Tr G(z) dz (5)
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where the integration has to be extended to a path which contains exclusively the k-th

(isolated) eigenvalue (cf. Fig. 1.). Validity of this statement can be immediately seen by

inserting the spectral resolution of H and performing the integration via Cauchy’s theorem

for contour integrals.

If one splits the Hamiltonian to a zero order part (H0) and a perturbation (W ) as in

Eq.(1), and defines

G0(z) = (z −H0)−1 (6)

as the GF of H0, than G(z) fulfills the relation

G(z) = G0(z) + G0(z)W G(z) (7)

which is called the (simple form of) Dyson equation1This result is easily proved by mul-

tiplyting Eq.(7) by the inverse of G0(z) (from the left) and the inverse of G(z) (from the

right), when simply the definition of the partitioning H = H0 + W is recovered.

Eq.(7) has A formal solution of Eq.(7) looks:

G =
(
1−G0W

)−1
G0 (8)

which can be expanded into a Taylor series

G = G0 + G0WG0 + G0WG0WG0 + . . . (9)

Upon integrating this equation on the appropriate contour and making use of Eq.(5), one

gets:

Ek = E0
k + E1

k + E2
k + . . . (10)

with Ei denoting the i-th PT correction to the energy. Accordingly, the convergence of

this series depends upon the validity of expansion (9) for all z values touched during the

integration2. At a given z value, the convergence of Eq.(9) is known to depend on the norm

of operator G0W : if and only if ||G0(z)W || < 1, the series is convergent.

The above observation is quite interesting since it appears as if we formulated the con-

dition for convergence of the PT series. However, there are an infinite number of ways how

1 The true Dyson equation emerges after projecting Eq.(7) into a subspace; after this projection the simple
peturbation operator W has to be replaced by a much more complicated self-energy operator.

2 This contour should embed the k-th pole of both G and G0
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an ’appropriate’ contour can be set up, and finding the necessary and sufficient condition

for convergence assumes that one has specified the most suitable path for the integration,

which is usually unknown. Therefore, in practice, this observation yields only sufficient but

not necessary criteria for the convergence of the PT series. The punctual convergence condi-

tions, necessary and sufficient, therefore, still remain unknown in the Rayleigh-Schrödinger

perturbation theory.

II. THE NORM OF QW

Apart from the problem of finding the most appropriate integration path, i.e. the appro-

priate z values, it is evident that quantity ||G0W || plays a determining role in the problem

of convergence. One may hope for example that its minimization for a certain selected z

value may improve the convergence properties.

An important quantity, related to G0 is the reduced resolvent Q defined for the ground

state as

Q(E0
0 −H0) = 1− |Ψ0

0〉〈Ψ0
0|. (11)

In spectral resolution Q can be expressed as

Q = −∑

i 6=0

|Ψ0
i 〉〈Ψ0

i |
E0

i − E0
0

. (12)

In words, Q is the inverse of (E0
0 − H0) in the subspace orthogonal to the ground state.

Unlike G0(z), Q is a regular quantity if the ground state is nondegenerate in the zero

order spectrum. As its name refers to, Q can be deduced from G0(z) by applying the

aforementioned reduction and taking it at z = E0
0 . The role of the reduced resolvent in PT

can be summarized by recalling the compact PT energy formulae at the lowest orders:

E2 = 〈WQW 〉 (13)

E3 = 〈WQ(W − 〈W 〉)QW 〉 (14)

etc. In these formulae, as well as in higher orders, the PT corrections are constructed from

the powers of operator QW . It appears, therefore, a natural idea to minimze the square

norm of this operator, ||QW ||2 with respect to any free parameters that are at our disposal.

As discussed above, free level shift parameters can always be introduced in PT, these

therefore can be utilized to minimize ||QW ||2. The first thing one has to do is to choose a
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norm in the operator space. In this work, we define the norm of operator A as

||A||2 = Tr (AA†) (15)

In a basis set representation this norm is expanded as

||A||2 =
∑

ik

AikA
∗
ik =

∑

ik

|Aik|2, (16)

that is the 2-norm or Frobenius norm in matrix theory.

Evaluating ||QW ||2 with this definition we get:

||QW ||2 =
∑

ik

|〈i|QW |k〉|2

=
∑

ik

〈i|QW |k〉〈k|WQ|i〉

=
∑

i

〈i|QW 2Q|i〉

=
∑

i6=0

〈i|W 2|i〉
(E0

i − E0
0)

2
,

where the resolution of identity was used to get rid of the summation over k. Applying now

the level shifts (3) we get

||QW ||2 =
∑

i6=0

〈i|W 2|i〉 − 2ηi〈i|W |i〉+ η2
i

(E0
i − E0

0 + ηi)2
(17)

where the level shift of the ground state, η0, was set zero to fix the energy origin.

To determine ηi values that are optimal in this sense, we require

∂

∂ηk

||QW ||2 = 0, (18)

which yields

ηk =
〈k|W 2|k〉+ 〈k|W |k〉(E0

k − E0
0)

〈k|W |k〉+ (E0
k − E0

0)
. (19)

In what follows, level shifts obtained from this relation will be identified as QW-optimized

ones. Similarly, the partitioning defined by them will be referred to as QW-optimized

(shortly: QW-opt) partitioning.

III. PROPERTIES OF THE QW-OPTIMIZED PARTITIONING

First we intend to show that the QW-opt partitioning is unique, that is the resulting

shifted denominators do not depend on the initial partitioning. To see this, we evaluate
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the shifted denominators using abbreviations ∆k = E0
k − E0

0 , Wkk = 〈k|W |k〉 and W 2
kk =

〈k|W 2|k〉

(20)

∆k + ηk = ∆k +
W 2

kk + Wkk∆k

Wkk + ∆k

=
∆2

k + W 2
kk + 2Wkk∆k

Wkk + ∆k

=
(Wkk + ∆k)

2 − (Wkk)
2 + W 2

kk

Wkk + ∆k

= Wkk + ∆k +
〈W 2

kk〉c
Wkk + ∆k

(21)

where the second connected moments of the perturbation operator,

〈W 2
kk〉c = W 2

kk − (Wkk)
2 (22)

are introduced. To arrive at our final formula for the shifted denominators we observe that

Wkk + ∆k = Hkk − E0
0 , (23)

by which

∆k + ηk = Hkk − E0
0 +

〈W 2
kk〉c

Hkk − E0
0

(24)

In this expression, both the quantities Hkk − E0
0 and the connected moments 〈W 2

kk〉c are

independent on the initial partitioning3. Therefore we see that the QW-optimization results

uniquely defined energy denominators.

A second property of the QW-opt partitioning can be inferred from (19) or (24) observing

that these formulae do not present explicit coupling between the states k. (There is, how-

ever, and implicit coupling expressed by the presence of the square of W in the connected

moments.) This uncoupled nature of QW-optimization makes it markedly different from

the energy-optimized partitionings[1, 2, 15–19] where the coupling between different states

represents a serious computational difficulty. The simplicity exhibited by Eqs. (19) or (24)

is a great advantage from the computational point of view, but gives us a warning that the

power of this simple optimization might not be strong enough.

3 With no loss of generality, one can choose W00 = 0. This can always be achieved – without affecting the
partitioning – by a simple shift of the origin of the energy scale. Then, E0

0 = H00 which clearly expresses
a partitioning-independence of Eq.(24).
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The same conclusion is supported by the observation that the QW-opt denominators are

numerically often quite close to the so called Epstein-Nesbet (EN) [20, 21] denominators

Hkk−H00. Namely, if W00 = 0, the EN partitioning results from Eq.(24) simply by neglect-

ing the second connected moment of W , which is supposedly a small quantity. The results

obtained in the QW-opt partitioning for modest perturbations will thus be close to those of

the EN partitioning. Moreover since the correction term 〈W 2
kk〉c/(Hkk −E0

0) is always posi-

tive, the QW-opt denominators are slightly larger than the EN ones. Low order corrections,

therefore, are expected to be in absolute value smaller in QW-opt partitioning as compared

to EN corrections.

An interesting property of the QW-opt partitioning is connected to the fact that all

shifted denominators are definitely positive. This is because (Hkk − E0
0) ≥ 0 by definition

and the second connected moments 〈W 2
kk〉c are always positive quantities (these moments

are zero if and only if evaluated with an exact eigenfunction of H, when all PT corrections

are zero anyway). Accordingly, any eventual degeneracy of the zero order spectrum will be

lifted upon QW-optimization.

To have a closer look into the degeneracy problem, let us evaluate the limit of the second

order QW-opt correction when a particular state k becomes degenerate with the ground

state. As Eq.(24) indicates, ηk → ∞ in this limit, thus the contribution of this state to

the second order correction becomes zero. This is not the accurate value that would be

obtained from degenerate PT, but it is certainly a better etimate than the divergent result

of non-degenerate PT. The result of QW-opt partitioning in such a degenerate limit will

be the elimination of the effect of degenerate levels, a damping of quasidegeneracies, while

summing up slightly modified EN-type contributions from non-degenerate states.

Difference between the EN and QW-opt partitionings is expected to be major if the

perturbation is strong, i.e., 〈W 2
k k〉c-s are large. In these cases QW-optimization appears to

be a promising tool. The accuracy of the results, however, can only be checked by numerical

calculations.

IV. NUMERICAL ILLUSTRATION

Due to the close relation between QW-opt and EN partitionings, we cannot expect the

former to be very useful to treat electron correlation effects where the Møller-Plesset[22]
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partitioning is usually superior to the EN partitioning. There are however, special situations

when QW-optimization is advantageous. In this paper we shall illustrate this on a matrix

diagonalization problem and on the example of the anharmonic oscillator.

A. Perturbing a 2x2 matrix

First we study a simple 2-by-2 matrix eigenvalue problem. This is a rather special example

but allows us a detailed investigation on the performance of QW-optimization.

Consider the Hermitian matrix and its splitting to a zero order part and a perturbation

H =




a w

w b


 =




a 0

0 b + η




︸ ︷︷ ︸
H0

+




0 w

w −η




︸ ︷︷ ︸
W

. (25)

The reduced resolvent is

Q =
1

b− a + η




0 0

0 1


 (26)

The second, third and fourth order corrections, respectively, turn out to be:

E2 = − w2

b− a + η
(27)

E3 = − ηw2

(b− a + η)2
(28)

and

E4 = w2 w2 − η2

(b− a + η)3
(29)

From the condition that ||QW ||2 is minimal, one obtains the optimal value of η:

η =
w2

b− a
. (30)

Substituting this value into the above results, one obtains the QW-opt corrections, while

the standard Rayleigh-Schrödinger PT formulae in the EN partitioning emerge by setting

η = 0. These should be compared to the exact eigenvalue

E =
b + a

2
−

√√√√
(

b− a

2

)2

+ w2 (31)

In Fig.2. we plot the energy corrections up to the 4th order as a function of w, choosing a=1

and b=2. Fig. 2.a. shows that for small w values all low-order energies are accurate, but

9



they behave differently as w increases. The standard second and fourth order corrections

(i.e., those with η = 0 deviate from the exact curve to the greatest extent. When using

optimal η-s, the second and fourth order curves remain close to the exact one, while the

third order result is less accurate (note that odd order corrections are zero in the standard

partitioning).

In a wider interval, Fig.2.b. depicts the energy errors of the same energies. Again, the

standard second and third order results diverge very soon, while the optimized curves exhibit

a systematically improving behaviour with increasing order.

B. Anharmonic oscillator

A physically more interesting example is provided by the quartic anharmonic oscillator

having the Hamiltonian

H(γ) = −1

2

d2

dx2
+

1

2
x2 + γx4, (32)

where the coupling parameter γ is a measure of anharmonicity. This system has been

extensively studied[23–27], and it is known[23, 28] that if choosing H0 = H(γ = 0) as the

zero order Hamiltonian, the Rayleigh-Schrödinger PT series is divergent for any γ 6= 0.

It appears to be interesting, therefore, to study the convergence properties of the QW-opt

partitioning for this case. In the present work, we performed a numerical study by evaluating

large order energy corrections, for various γ values.

The choice H0 = H(γ = 0) will be referred to as the ’standard’ partitioning. If we put

all diagonal perturbations to the zero order, i.e., requiring Wkk = 0 for all states k, we

can speak about an EN partitioning. Finally, the QW-opt partitioning results if using the

shifted denominators of Eq.(24).

Fig. 3. shows the convergence of the PT expansion for small and medium γ values. It

is well illustrated that the PT series in the standard partitioning is never convergent, while

the EN partitioning may converge for small γ. (It may of course also be possible that the

EN result also start to diverge at larger orders.) However, the results obtained in the QW

partitioning turn out to be the best for all cases as to their convergence properties, althought

its small-order estimations are not necessarily more accurate.

To see the convergence numerically for a large value of the coupling constant, we evaluated

the PT corrections in QW-opt partitioning for γ = 50 up to order 2500. The results are
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plotted in Fig. 4 for the large-order part and some of them are collected in Table I. (The

results of the EN partitioning are not computed here since the corresponding PT series is

divergent even for smaller γ values). At order 2500, the energy does not seem to be converged

to 4 digits, since the energy contributions are in the 10−5 order of magnitude. This shows

that the convergence is very slow, but there is no apparent sign of divergence.

The above results indicate that, while the convergence radius for the quartic oscillator in

the standard partitioning is zero, the EN and QW-optimized partitionings may result finite

convergence radii. In the case of the QW-opt partitioning the convergence radius can be

quite large, and it might also be possible that it is infinite. To decide this, further numerical

and – preferably – analytic calculations are required.

Acknowledgment This work was supported by the grants OTKA T-35094-43685 and

TET-211/6/02.

11
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Figure legends

Fig.1 Integration contour to get the energy of state k

Fig.2 Eigenvalue corrections for matrix (25) as a function of parameter w measuring the

strength of perturbation. (a): eigenvalue estimates, (b) differences of estimated eigenvalues

from the exact one

Fig.3

Fig.4 Large order behaviour of perturbed energies of quartic oscillator in the strong-

copuling limit (γ = 50)
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n En
n∑

i=1
Ei

1 38.0000000 38.0000000

2 -6.79284227 31.2071577

3 -4.11989193 27.0872658

4 -2.77990065 24.3073652

5 -2.01212717 22.2952380

6 -1.52904999 20.7661880

7 -1.20396842 19.5622196

8 -0.97398290 18.5882367

9 -0.80487850 17.7833582

10 -0.67667558 17.1066826

20 -0.20208716 13.6355834

40 -0.05365966 11.6116823

60 -0.02326577 10.9166085

80 -0.01246184 10.5801887

100 -0.00752193 10.3884604

200 -0.00136293 10.0577779

300 -0.00044720 9.97848353

400 -0.00019358 9.94884744

500 -0.00010029 9.93488668

600 -0.00005955 9.92716938

700 -0.00003946 9.92233745

800 -0.00002853 9.91899457

900 -0.00002208 9.91649326

1000 -0.00001797 9.91450714

1500 -0.00000934 9.90814155

2000 -0.00000600 9.90439782

2500 -0.00000407 9.90192042

TABLE I: Convergence of the PT series for the quantic anharmonic oscillator in the QW-optimized

partitioning for γ = 50
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