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Abstract

Unitary parametrization of the wave operator in the form suggested by Mayer is
studied in the multireference framework. The investigated unitary perturbation theory
(UPT) constructs a first correction in terms of the functions having nonzero interaction
with the reference state via the Hamiltonian. Parameters in the exponential of the wave
operator are determined by two dimensional eigenvalue equations. Due to the unitary
mapping, UPT is unaffected by the quasi-degeneracy problem, making it an ideal tool
for correcting multireference starting functions. Lack of size-consistency is however a
shortcoming of the method.

Applications of UPT as well as the related degeneracy-corrected PT (DCPT) are
presented on intruder prone examples like the symmetric dissociation of the water
molecule, the BeH2 system and the two lowest lying states of the scandium dimer. Size
consistency violation is analysed and evaluated on the example of the water dimer.
Tractability of excited states by UPT is examined by computing the singlet-triplet
splitting of the CH2 molecule.
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INTRODUCTION

Describing dynamic along with static correlation of the electrons in molecules has been a

persisting challenge of electronic structure theory. Among the strategies commonly used,

perturbation theory (PT) applied to a multi-determinantal reference function represents an

important branch. Although a multitude of methods have been developed in this field, the

technique that would confidently fulfill the basic expectations of extensivity, consistency,

intruder-free character and invariance to orbital rotations (in case the reference function

exhibits this property) seems to be yet missing.

Widespread methods of the ”diagonalize then perturb” type e.g. CASPT21,2 or MRMP3,4

struggle with size-inconsistency5,6. More importantly, this class of techniques are prone to

the intruder-state problem, inducing the need of active spaces larger than warranted by

static correlation. This latter problem can be managed by applying level-shifts7–11 which

however renders a hand tailored character to the theory. Application of two-body zero-order

Hamiltonians is a promising alternative, offering balanced description of correlation effects

at a larger cost12–17.

”Perturb then diagonalize” (also termed quasi-degenerate PT) approaches constitute an

other major field of development18,19. The chief benefit of these methods is their potential

of being size-extensive20. A drawback, particularly of the effective Hamiltonian theories

studied in the early days is their breakdown if any of the model functions become quasi-

degenerate with an external function. In response to this serious intruder-state problem the

model space has got partitioned into a primary and a secondary subspace in intermediate

Hamiltonian theories21,22 as well as in generalized Van Vleck PT23,24. State-specific pertur-

bation approaches emerge by taking the idea of primary model space to the extreme of one

single target state25,26. Multipartitioning in the context of effective Hamiltonians has been

advocated as another workaround to tackle the intruder problem27,28. This latter theory

however requires further refinement to ensure spatial symmetry conservation29.

The above brief and necessary incomplete summary only serves to highlight some funda-

mental concepts and problems of multireference PT (MRPT). For more detailed account on

this subject we refer to review articles30–35.
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In the present work we explore a non-standard, perturbation-like approach advocated by

Mayer36. Forerunners of the idea appeared in a work by Lepetit and Malrieu37 as well as in

a study by Assfeld et al.38. Both of the latter papers investigate the handling of the quasi-

degeneracy problem in PT by constructing two-by-two Hamiltonian matrices with the use of

an excited function, say i, and the reference function. Expansion coefficient of function i in

the first order wavefunction is taken to match the exact solution of the two-by-two matrix.

This approach avoids the problem of close to zero PT denominators by substituting the

well-known Rayleigh-Schrödinger amplitude formula

ci =
V0i

E
(0)
0 − E

(0)
i

(1)

for the divergence free expression

ci =
sin ϕi

cos ϕi

(2)

with

ϕi =
1

2
arctan

(
2H0i

H00 −Hii

)
, (3)

angle ϕi lying in the interval [−π/4, π/4]. By this modification the essential feature of first

order PT is conserved, i.e. just one excited state is addressed at a time, interaction of the

excited states is regarded as a higher order effect. The approach has a clear connection

to Jacobi-rotations: Eq.(2) derives from the Jacobi angle of the rotation involving state i

and the reference state, using intermediate normalization. Both Lepetit et al.37 and Assfeld

et al.38 studied the above idea in the context of single-reference PT, taking the Hartree–

Fock (HF) determinant as zero-order function. Assfeld and coworkers coined the name

degeneracy-corrected PT (DCPT), a terminology we adopt presently. An application of

DCPT in the context of generalized Van Vleck PT has been published by Khait et al.24 in

the multi-reference framework.

Several approximation methods are based on the technique of Jacobi rotations. Hoff-

mann in the 90’s explored a trigonometric parametrization of the wave operator of canonical

Van Vleck PT39. Jacobi-rotations also inspired Mayer36 who proposed a correction scheme

which handles Jacobi angles involving the reference state on an equal footing. Obviously,
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the outcome of a Jacobi sweep over the first row of the Hamiltonian depends on the ordering

of excited states i. In Mayer’s approach Jacobi-angles induced by every state i are first

computed, then utilized to carry out one single rotation step, producing a corrected wave-

function that makes no distinction among states i whatsoever. Construction of the corrected

wavefunction is fully analytical and involves only those states which have nonzero interaction

with the reference via the Hamiltonian. The latter property is reminiscent of a standard first

order wavefunction, hence the name unitary PT (UPT). This approach also avoids energy

denominators, amplitudes of the corrected wavefunction emerging from the unitary mapping

instead of Eq.(1). This feature has been demonstrated on the bond dissociation profile of

the hydrogen molecule, starting from the HF reference function.

Carrying out Jacobi rotations successively on the first row represents an iterative pro-

cedure leading to an exact eigenvector, eigenvalue pair upon convergence. Mayer’s UPT

can also be performed in an iterative manner. In the latter case only the elements of the

first order interacting subspace (first order configuration interaction, FOCI) contribute to

the corrected function in the first step. A second step requires a MR generalization of the

method, e.g. along the lines described presently. In this second step the expansion of the

wavefunction over determinants grows considerably, since all determinants which interact

with any element of the FOCI space may emerge. As the iteration proceeds, the wavefunc-

tion rapidly extends in the full-CI space. Convergence behavior of the interative application

of UPT is yet under study in our laboratory. The present work does not investigate this

issue, but focuses on the performance of one single correction step taken by UPT.

We consider a multi-determinantal wavefcuntion as a starting function for UPT. This

situation has not been addressed previously. The motivation of such a survey is to explore

whether the intruder-free nature of UPT may provide a simple method, reliable in difficult

MR situations. An immediate drawback of the theory is given by its violation of size-

consistency. Though size-consistency is a highly desirable property, only a few of the MRPT

methods possess it. For this reason we still consider it desirable to seize the performance of

UPT, accompanied by a numerical evaluation of size-inconsistency.
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METHODOLOGY

Correction schemes UPT and DCPT2 are summarized briefly in the following. For deeper

insight we refer to the original works by Mayer36 and Assfeld et al.38.

Unitary perturbation theory

As the starting point of our approach, let us consider a normalized reference function, Ψ0.

In order to develop a correction for the reference, we can take the normalized function Ψi

(commonly called an excited function), orthogonal to Ψ0. Adopting the standard notation

Hij = 〈Ψi|H|Ψj〉, the Hamiltonian written in the basis of Ψ0, Ψi takes the form:

hi =


 H00 H0i

Hi0 Hii


 .

The description given by Ψ0 and Ψi can be improved if combining them according to:

Ψ′
0 = cos ϕi Ψ0 + sin ϕi Ψ1

Ψ′
i = − sin ϕi Ψ0 + cos ϕi Ψ1 . (4)

Taking angle ϕi from Eq.(3), transformed functions Ψ′
0 and Ψ′

i diagonalize matrix hi, i.e.

H ′
0i = 0.

Transformation between Ψ0, Ψi and Ψ′
0, Ψ

′
i is governed by the two dimensional rotation

matrix:

ui =


 cos ϕi − sin ϕi

sin ϕi cos ϕi


 (5)

which can be expressed as a matrix exponential

ui = exp ai

with the antisymmetric ai involving the rotation angle:

ai =


 0 −ϕi

ϕi 0


 .
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Usually, in a space one works with, state Ψi is not the only state orthogonal to Ψ0.

Considering N orthogonal functions, interacting with Ψ0 via the Hamiltonian, matrix ai has

to be padded with zeros, accommodating ϕi in the (i + 1)st row and column:

Ai =




0 0 . . . −ϕi . . . 0

0 0 . . . 0 . . . 0
...

...

ϕi 0 . . . 0 . . . 0
...

...

0 0 . . . 0 . . . 0




. (6)

In the traditional Jacobi-diagonalization approach, transformations are performed succes-

sively with unitary matrices

Ui = exp Ai (7)

in such a way that the off-diagonal matrix elements of the Hamiltonian are decreased. Since

[Ui,Uj] 6= 0 ,

that is, two-by-two rotations do not commute, the outcome of a series of Jacobi-rotations,

e.g. a sweep on the first row

N∏
i=1

Ui (8)

is sequence-dependent, unless convergence is reached.

In his seminal paper36 Mayer suggested to replace the transformation given by Eq.(8)

with a mapping which treats excited states Ψi on an equal footing. This was obtained by

summing first the logarithms of matrices Ui to get

A =




0 −ϕ1 −ϕ2 . . . −ϕN

ϕ1 0 0 . . . 0

ϕ2 0 0 . . . 0
...

...

ϕN 0 0 . . . 0




,
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and then taking its exponential

U = exp A .

In general it may not be possible to give a closed form for a matrix exponential. Due to

the simple structure of matrix A however, its exponential is expressible with the use of

trigonometric functions:

U =




cos ϕ −x1 sin ϕ −x2 sin ϕ . . . −xi sin ϕ . . .

x1 sin ϕ 1 + x2
1(cos ϕ− 1) x1x2(cos ϕ− 1) . . . xix1(cos ϕ− 1) . . .

x2 sin ϕ x1x2(cos ϕ− 1) 1 + x2
2(cos ϕ− 1) . . . xix2(cos ϕ− 1) . . .

...
...

...

xi sin ϕ x1xi(cos ϕ− 1) x2xi(cos ϕ− 1) . . . 1 + x2
i (cos ϕ− 1) . . .

...
...

...

xN sin ϕ x1xN(cos ϕ− 1) x2xN(cos ϕ− 1) . . . xixN(cos ϕ− 1) . . .




, (9)

adopting the notations

ϕ =

(
N∑

i=1

ϕ2
i

)1/2

(10)

and

xi =
ϕi

ϕ
. (11)

The structure of the unitary matrix Eq.(9) clearly reflects the fact that no distinction is

made among basis functions Ψi for i ≥ 0. The first column of U gives the corrected function,

expanded on the basis {Ψi}N
i=0 according to

ΨUPT = cos ϕ Ψ0 +
N∑

i=1

ϕi

ϕ
sin ϕ Ψi . (12)

With angles ϕi determined from Eq.(3) and ϕ taken from Eq.(10), ΨUPT of Eq.(12) is the

wavefunction behind the method referred to as UPT. The corresponding energy expression

reads

EUPT = 〈ΨUPT|H|ΨUPT〉 (13)

= cos2 ϕH00 + 2 cos ϕ sin ϕ

N∑
i=1

xi Hi0 + sin2 ϕ

N∑
i,j=1

xi Hij xj .

7



As noted by Mayer, angle ϕ can also be considered a parameter, subject to optimization.

(Doing so, quantities xi do not change, since, based on Eq. (10), scaling of ϕ by α induces

the scaling of ϕi by α as well, leaving Eq. (11) uneffected.) The straightforward procedure

is to define ϕ based on the variational condition

〈ΨUPT|H|ΨUPT〉 = min.

resulting

ϕopt =
1

2
arctan




2
N∑

i=1

H0i xi

H00 −
N∑

i,j=1

xi Hij xj


 . (14)

The wavefunction of Eq.(12) calculated with the optimized angle ϕopt is designated as

OPTUPT in what follows.

Excited functions used in multiconfigurational UPT

In order to compute the wavefunction of either UPT or OPTUPT, excited functions Ψi have

to be specified. In the single reference approach, where Ψ0 is the HF determinant, Ψi’s are

simply the doubly substituted determinants. Considering a model space spanned by M + 1

orthonormal determinants {Φi}M
i=0 and a reference function expanded in the model space as:

Ψ0 =
M∑
i=0

ci Φi , (15)

excited determinants Φi, 1 ≤ i ≤ M are not orthogonal to Ψ0 (unless ci = 0). This

situation can be handled either by introducing the overlap into the expressions of UPT, or

by finding M orthonormal functions in the model space, orthogonal to Ψ0. The latter option

is particularly suited for UPT, since the wavefunction correction scheme of UPT can be

regarded an orthogonalization algorithm as well (called Mayer’s orthogonalization here).

To make this point apparent, we note, that the exponential of matrix A, Eq.(9) provides

not only the corrected function, ΨUPT, but a set of vectors orthogonal to it. These are

defined by the second, third etc. columns of matrix U . Let us now abandon the idea of
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determining angles ϕi from Eq.(3), and make instead the mapping

cos ϕ = c0

sin ϕ =
√

1− c2
0

xi = ci/ sin ϕ , i = 1, . . . , M .

In words, the first column of matrix U is identified with Ψ0, expanded on {Φi}M
i=0. Having

quantities xi and ϕ determined from this condition, columns 2, . . . , M +1 of matrix U define

functions Ψi. Expansion on the basis of {Φi}M
i=0 is readily obtained as

Ψi = −c0 Φ0 + Φi − ci

1 + c0

M∑
j=1

cj Φj , i = 1, . . . , M . (16)

It was shown recently, that functions produced by Mayer’s orthogonalization are exactly

those, which would be generated if projecting Ψ0 out of functions Φi, i = 1, . . . , M and

orthogonalizing the thus produced set by Löwdin’s symmetrical scheme40. In the applications

presented below, Ψi’s of Eq.(16) are considered in the multiconfigurational (MC) UPT and

OPTUPT schemes.

For indices i > M , Φi are trivially orthogonal to Ψ0, as they are orthogonal to the entire

model space. For this reason determinants Φi are considered as basis vectors Ψi for i > M .

Size-consistency issue of UPT

Let us first discuss the simplest case, the question of size-consistency of UPT in the single

reference framework, without optimizing angle ϕ. We shall assume two closed shell systems

A and B, and suppose that the Hamiltonian of the supersystem involves no inter-system

interaction:

HAB = HA + HB .

Quantities corresponding to subsystems are labeled by upper index, e.g. ΦA
i and ΦB

i are

determinants of the subsystems. Functions in the configuration interaction (CI) space of the

supersystem can be considered to be simple products of subsystem determinants, ΦA
i ΦB

j , since

antisymmetrization is immaterial in the lack of interaction41. Starting from the reference
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function ΦA
0 ΦB

0 , the UPT wavefunction for the supersystem involves excited determinants of

the type ΦA
0 ΦB

i and ΦA
i ΦB

0

ΨAB
UPT = cos ϕAB ΦA

0 ΦB
0 +

NA∑
i=1

ϕA
i

ϕAB
sin ϕAB ΦA

i ΦB
0 +

NB∑
i=1

ϕB
i

ϕAB
sin ϕAB ΦA

0 ΦB
i .

with the shorthands

ϕAB =

√
(ϕA)2 + (ϕB)2 , (17)

and

ϕA =

√√√√ NA∑
i=1

(ϕA
i )

2
.

Function ΨAB
UPT gives rise to the UPT energy for the supersystem

EAB
UPT =

(
cos2 ϕAB +

(
ϕB

)2
sin2 ϕAB

(ϕAB)2

)
HA

00

+ 2
cos ϕAB sin ϕAB

ϕAB

NA∑
i=1

ϕA
i HA

i0 +
sin2 ϕAB

(ϕAB)2

NA∑
i,j=1

ϕA
i HA

ijϕ
A
j

+ {A ↔ B} .

The above formula is to be compared with the UPT energy of a subsystem, e.g. A alone,

which reads

EA
UPT = cos2 ϕA HA

00 + 2
cos ϕA sin ϕA

ϕA

NA∑
i=1

ϕA
i HA

i0 +
sin2 ϕA

(ϕA)2

NA∑
i,j=1

ϕA
i HA

ijϕ
A
j .

Apparently, even in this simplest case, angle ϕAB brings a mixing of quantities in EAB
UPT,

spoiling the trigonometric coefficients. Taking the case of identical subsystems, the inconsis-

tency error is given by EAA
UPT − 2EA

UPT. In this expression, the trigonometric factors in front

of the three terms oscillate with ϕA and often happen to be of opposite sign. This indicates

that a cancellation of errors takes place, though it is hard to judge its extent, based on the

formulae.

Optimizing angle ϕAB brings a further mixing of subsystem quantities according to

tan
(
2ϕAB

opt

)
=




2
ϕAB

(
NA∑
i=1

HA
0iϕ

A
i +

NB∑
i=1

HB
0iϕ

B
i

)

HAB
00 − 1

(ϕAB)2

(
NA∑

i,j=1

ϕA
i

(
HA

ij + δijHB
00

)
ϕA

j +
NB∑

i,j=1

ϕB
i

(
HB

ij + δijHA
00

)
ϕB

j

)



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while for an isolated system A we have

tan
(
2ϕA

opt

)
=




2
ϕA

NA∑
i=1

HA
0iϕ

A
i

HA
00 − 1

(ϕA)2

NA∑
i,j=1

ϕA
i HA

ijϕ
A
j


 (18)

Examining again the prefactor of the three terms in EAA
OPTUPT − 2EA

OPTUPT they vary in a

narrower range and follow a less oscillatory pattern.

Finally, the effect of orthogonalization in the MC case is to be accounted for. The

orthogonalization described above happens to be a third source of consistency violation. In

the case of two noninteracting subsystems, the direct product nature of the starting function,

ΨA
0 ΨB

0 does not ensure a product form of the orthogonal functions, ΨA
i ΨB

0 or ΨA
0 ΨB

i . (This

would hold if e.g. eigenvectors of the Hamiltonian operating in the model space would be

considered.)

To gain an impression on the eventual size inconsistency, arising from the above sources,

a numerical evaluation is presented among the results.

Degeneracy corrected perturbation theory

The key point of the degeneracy corrected theory by Assfeld et al.38 is the formula for the

exact correlation energy of a 2× 2 system

Ecorr =
1

2

(
∆E

(0)
10 −

√(
∆E

(0)
10

)2

+ 4V 2
10

)

with ∆E
(0)
10 = H11 − H00 being the Epstein–Nesbet (EN) type42,43 zero-order excitation

energy. If there are more excited levels, the above formula is taken for each of the levels.

This means a complete neglect of the interaction of excited states. Summing up for states i,

the second order correction of DCPT reads

E
(2)
DCPT =

1

2

∑

i6=0

(
∆E

(0)
i0 −

√(
∆E

(0)
i0

)2

+ 4V 2
i0

)
. (19)

The first order wavefunction behind the DCPT2 energy expression is given by:

ΨDCPT = Ψ0 +
∑

i6=0

sin ϕi

cos ϕi

Ψi (20)

11



Angles ϕi play a central role both in DCPT2 and UPT, however parametrization of the

wavefunctions by ϕi angles differ considerably (compare Eqs. (20) and (12)).

The motivation behind DCPT2 was to find an expression free from the divergence of PT

as ∆E
(0)
i0 → 0. Obviously, Eq.(19) is unaffected by this problem, irrespective of the actual

definition of ∆E
(0)
i0 . In their test calculations, Assfeld et al. considered two choices for ∆E

(0)
i0 :

defined by either the EN or the Møller–Plesset44 (MP) partitioning.

Application of DCPT2 in the multireference framework is straightforward, once an or-

thonormal basis in the configuration space is defined. In the calculations presented below,

we apply EN zero-order energies

∆E
(0)
i0 = Hii −H00 .

Khait el al.23 analysed the MP version of DCPT in the context of Van Vleck PT and

found it unsatisfactory as it gives an overcorrection for those levels which are characterized by

negative or zero excitation energy at the zero order: ∆E
(0)
i0 ≤ 0. For this reason Khait el al.

introduced a damping by the hyperbolic tangent function in the DCPT2 formula. Malrieu et

al.37 also noted, that DCPT2 is expected to fall below the exact solution, since the interaction

of excited states brings a considerable positive contribution to the correlation energy. Malrieu

and coworkers stepped beyond DCPT2 by introducing the concept of minimal dressing, an

initiative that led to the development of size-consistent, self-consistent CI45.

RESULTS AND DISCUSSION

Symmetric dissociation of H2O

Simultaneous stretching of the two OH bonds in the water molecule is a typical example

where the quasi-degeneracy problem may show up. This affects theories that rely on a gen-

eralized valence bond type function (e.g. the antisymmetrized product of strongly orthogonal

geminals, APSG46) and neglect interaction of the dissociating bonds at zero-order13.

In the present example we adopt the APSG wavefunction as reference, with two basis

functions on each OH bonds. All other geminals are kept at the HF level. This gives rise to a
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reference function composed of four determinants, constructed in energy optimized, natural

basis. Dunning’s double-zeta polarized basis set is applied47.

Total energies and energy errors with respect to full CI (FCI) are displayed in Fig.1 as a

function of the OH bond distance. The intruder free character of MC-DCPT and the MC-

UPT approaches is apparent in the Figure. All three methods give a reliable description of

the bond dissociation process. The overestimating character of MC-DCPT is also obvious.

Interestingly MC-DCPT represents the best estimation among the three methods above 2 Å .

The largest error is committed by MC-UPT without optimizing angle ϕ: between 18 mEh and

60 mEh in the bond distance range examined. Optimizing angle ϕ brings an improvement,

the error of MC-OPTUPT is reduced to lie between 10 mEh and 38 mEh. Apart from the

opposite sign, this is comparable to the [-4,-30] mEh error range of MC-DCPT.

Size-inconsistency

To assess the extent of nonadditivity over two noninteracting subsystems, we present the re-

sults obtained for two distant water molecules in Dunning’s polarized valence triple-zeta ba-

sis48. The OH bonds are slightly stretched to warrant a multireference based PT treatment.

Tables 1 and 2 collect total energies, errors with respect to FCI as well as size-consistency

errors. The reference wavefunction in Table 1 is an APSG function while the results col-

lected in Table 2 were obtained with a complete active space (CAS) reference function. The

latter choice for the reference opens the possibility to compare the errors of MC-UPT with

the second order corrections by MRMP3,4 and NEVPT14,49. In both Tables results by the

second order of multiconfigurational PT (MCPT) are also displayed50–52.

Comparing the energy errors of MC-UPT and MC-OPTUPT obtained with the two

reference functions, a definite improvement is observed when stepping from APSG to CAS.

This is not the case for the size-consistency errors though: these remain on the same order.

Optimizing angle ϕ has practically no effect on size-inconsistency. For the APSG reference

(Table 1) the last three columns of MC-UPT and MC-OPTUPT fall in the same order, while

for the CAS reference (Table 2) the last column is already disturbingly large. In particular,

the energy error of the dimer by MC-OPTUPT in Table 2 can be essentially attributed to the

size-inconsistent nature of the theory. Large size-inconsistency in proportion to the energy
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error is especially striking for MC-OPTUPT and pMCPT2, since these two theories result

markedly small energy errors.

Keeping in mind the balanced treatment of both the monomer and the dimer, NEVPT2

with either contraction schemes outperforms all other methods listed in Table 2. The energy

error of both MRMP and MC-UPT are ten times larger than that of NEVPT2. In spite

of its size-consistent nature, uMCPT2 also drops behind due to the relatively large errors

committed in energy. In view of Tables 1 and 2 MC-OPTUPT and pMCPT appear to be

promising alternatives of NEVPT2, provided that size-inconsistency of the former theories

can be reduced.

Ground state of BeH2

The BeH2 system with the geometry points defined by Purvis and Bartlett53 has been the test

system of many MR based PT methods. Illustration of the geometry points is shown in Figure

3. Here we compute the molecule in a basis matching with Ref.34 to facilitate comparison

with GVVPT224 and SS-MRPT26,54. Reference function is provided by a CAS(4,4) model,

with two active orbitals of a1 and two of b1 symmetry (classified in C2v). Energy error curves

of MRPT methods plotted in Fig.2 run in the range of [5,20] mEh for MP partitioning and

[-5,5] mEh for EN partitioning. Error curves of MC-DCPT and the MC-UPT schemes are

similar to EN partitioning. The difference between MC-UPT and MC-OPTUPT is hardly

visible in Fig.2. It is notable that MC-UPT schemes give the least nonparallelity error:

difference between the largest and smallest error along the curve is only 2.3 mEh.

Singlet-triplet splitting of CH2

The example of the methylene molecule was selected to test the applicability of MC-UPT

methods for excited states. A CAS(6,6) model was computed as reference function, adopting

the valence double zeta basis of Dunning and Hay55, with one set of d functions on the carbon

atom. Separate orbital optimization was carried out for the ground state (triplet) and the

first excited state (singlet). In Table 3 we present the results for energies and energy errors.

Singlet-triplet splittings listed in the last column reflect that all methods get the order
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of this quantity correctly. Comparing MC-DCPT with the two MC-UPT methods, MC-

DCPT proves to be the less balanced. Optimizing angle ϕ brings a slight but systematic

improvement if contrasting MC-UPT with MC-OPTUPT. According to expectations, MC-

DCPT falls below FCI for both states. Although the smallest error is achieved by MC-DCPT

in Table 3, it is the least balanced theory. The error of MC-OPTUPT is somewhat larger

(around 10%) but it gives the best estimate for the singlet-triplet splitting with a cca. 3%

error.

Scandium dimer

As a final example we study the intriguing case of the scandium dimer. This system has

received considerable attention recently56, due to the fact that the ordering of the two lowest

states is highly sensitive to the choice of the CAS and the level shift parameters applied in

CASPT2 and MRMP57–59. Among numerous previous works, a recent third-order NEVPT60,

a second-order GVVPT261 and a multireference configuration interaction (MRCI)62 study

address this question with high numerical precision and including comparison with exper-

iment. Accurate numerical calculations agree on the symmetry of the lowest lying states

being 5Σ−
u for the ground state and 3Σ−

u for the first excited state. By taking the example

of Sc2 presently, we aim to show that MC-UPT type methods give reliable answer for the

question of ordering of these states. It is not our purpose however, to reproduce experimental

data, as this goal would require a more extensive study.

We adopt the basis set denoted TZVP+G(3df,2p), specified in detail in the Method

section of the report of Matxain et al.63. Matxain et al. in fact applied a smaller basis set

in their MRPT calculations64. Based on the studies of Miranda and Kaplan62, relativistic

corrections were not considered in our model. To select the orbitals included in the reference

CAS wavefunction, natural orbital occupation numbers of a full valence CAS(18,6) were

computed. Based on this, 9 active orbitals were determined as the smallest model space

necessary for describing non-dynamical correlation. Among the 9 active orbitals there are

three ag’s, one b3u, one b2u, two b1u’s, one b2g and one b3g, classified in D2h point group.

(All calculations were carried out under this symmetry constraint.) The totally symmetric

combination of the 4pz orbitals is included in the active space, in accordance with the
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suggestions of Camacho et al.60 and Soto et al.58.

Single point energies and energy difference of the two states are shown in Table 4 for MC-

UPT methods, second order NEVPT and MRMP. The reported calculations were carried

out at the internuclear distance of 2.65 Å , as most methods gave a minimum close around

this geometry, for both of the lowest states. Results by MC-CDPT are not included in the

Table as this curve reaches its minimum below 2.5 Å .

It is apparent in Table 4 that the CAS(9,6) reference fails to reproduce the correct or-

dering of the states. However, the energy of the two lowest states is fairly close by CAS(9,6)

(−0.003 eV) if comparing it to the value that is expected to be correct in this basis: some-

where between 0.08 and 0.12 eV60. As Table 4 reflects, all PT methods based on this refer-

ence set the order of the states right, indicating that the CAS(9,6) reference is an acceptable

starting point. Comparing the different MRPT methods, MC-OPTUPT outperforms the

MC-UPT variant. The 0.06 eV state energy difference given by MC-OPTUPT is compara-

ble in quality to the results of MRMP and NEVPT2 in this model and fairly close to the

0.08−0.12 eV range expected based on third order NEVPT calculations60. Both MRMP and

the partially contracted version of NEVPT2 give an energy spacing larger than expected,

while NEVPT2 with the strongly contracted scheme seems to produce an adequate result

here.

CONCLUSION

Unitary perturbation theory has been combined with Mayer’s orthogonalization and applied

to multireference starting functions to give a robust, intruder free first correction. The

method does not rely on the concept of a CAS starting function, it is applicable to a reference

of any type. Computational cost of MC-DCPT agrees with that of a second-order theory

(proportional to (M + 1) n2
occ n2

virt, where M + 1 is the dimension of the model space) while

MC-UPT and MC-OPTUPT is of third-order cost (proportional to (M + 1) n2
occ n4

virt), due

to the symmetrical energy formula Eq.(13). Energy errors and chemical energy differences

of MC-OPTUPT are typically similar to those of well-behaving MR PT techniques. Though

errors of MC-DCPT and MC-UPT are also encouraging, energy differences computed by
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these theories are less satisfactory.

Size-inconsistency is a weak point of MC-UPT approaches. Consistency violation domi-

nates the error already for a 20-electron system. This prompts against using MC-UPT when

the system is decomposed into noninteracting parts, and marks the path of further research

studies in connection with MC-UPT.
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Figure 1: Total energy (in Hartrees) and energy errors with respect to full CI (in milli-

Hartrees) of the H2O molecule as both O-H bonds are elongated. Reference function is an

APSG function46 with two basis functions on each OH bond. The ∠(HOH) angle is fixed at

104.0o. Dunning’s DZP basis set is applied47.

Figure 2: Energy errors of MR function based correction schemes with respect to FCI for

the ground state of the BeH2 system. Dunning’s DZ set47 is taken for the hydrogen atoms.

For beryllium the basis of Purvis et al.53 is used with the p function decontracted, leaving

the most compact primitive (exponent 5.693880) alone and contracting the remaining two

into a second p function (exponents 1.555630, 0.171855 and coefficients 0.144045, 0.949692

respectively). Illustration of the geometry points A, B, C, D, E, F, G, H, I is shown in Figure

3. Reference function is CAS(4,4). Data plotted for GVVPT2 are taken from Ref.34. Data

for SS-MRPT have been recomputed applying a Tikhonov-damping of ω = 0.00368.

Figure 3: Geometry points A, B, C, D, E, F, G, H, I of the BeH2 system53. Coordi-

nates of the hydrogen atoms in atomic units are (0,±2.54, 0), (0,±2.08, 1.0), (0,±1.62, 2.0),

(0,±1.39, 2.5), (0,±1.275, 2.75), (0,±1.16, 3.0) (0,±0.93, 3.5), (0,±0.70, 4.0), (0,±0.70, 6.0)

respectively at points A, B, C, D, E, F, G, H, I. The beryllium lies in the origin of the

coordinate system.
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METHOD TOTAL ENERGY, Eh ENERGY ERROR, mEh INCONSISTENCY

monomer dimer monomer dimer mEh

APSG -75.997192 -151.994385 180.73 361.45 0.00

MC-DCPT -76.225048 -152.429526 -47.13 -73.69 20.57

MC-UPT -76.148885 -152.286306 29.03 69.53 11.46

MC-OPTUPT -76.169387 -152.326606 8.53 29.23 12.17

pMCPT2 -76.180899 -152.354078 -2.98 1.76 7.72

uMCPT2 -76.200857 -152.401716 -22.94 -45.88 0.00

FCI -76.177919 -152.355837 0.00

Table 1: Total energies and energy errors for a single H2O molecule (monomer) and two

noninteracting H2O molecules (dimer). Reference function is an APSG function46 with two

basis functions on each OH bond. Dunning’s pVTZ basis is applied48, geometry is specified

by R(OH)= 1.3 Å and ∠(HOH)=104.0o. Energy error is computed as E − EFCI, size-

inconsistency is defined as Edimer − 2Emonomer. Of the two MCPT2 variants ’p’ denotes

the original, projected formulation50 while ’u’ refers to the size-consistent or unprojected

theory52. Both MCPT2 calculations adopted the Davidson-Kapuy partitioning, see also51.

26



METHOD TOTAL ENERGY, Eh ENERGY ERROR, mEh INCONSISTENCY

monomer dimer monomer dimer mEh

CAS -76.006585 -152.013171 171.33 342.67 0.00

MC-DCPT -76.215323 -152.413085 -37.40 -57.25 17.56

MC-UPT -76.166995 -152.321409 10.92 34.43 12.58

MC-OPTUPT -76.177052 -152.341862 0.87 13.98 12.24

pMCPT2 -76.178325 -152.349997 -0.41 5.84 6.65

uMCPT2 -76.193558 -152.387117 -15.64 -31.28 0.00

MRMP -76.166583 -152.337050 11.34 18.79 -3.88

NEVPT2 SC -76.179660 -152.359319 -1.74 -3.48 0.00

NEVPT2 PC -76.180133 -152.360266 -2.21 -4.43 0.00

FCI -76.177919 -152.355837 0.00

Table 2: Total energies and energy errors for a single H2O molecule (monomer) and two

noninteracting H2O molecules (dimer). Reference function is a CAS(4,4) for the monomer

while it is CAS(8,8) for the dimer. No level shift was applied when computing the MRMP3,4

correction. Acronym ’SC’ refers to the strongly contracted version of NEVPT2, ’PC’ denotes

the partially contracted theory14,49. For other particulars see Table 1.
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METHOD TOTAL ENERGY, Eh ENERGY ERROR, mEh S-T SPLITTING

triplet singlet triplet singlet mEh

CAS(6,6) -38.962086 -38.940324 69.28 68.35 21.76

uMCPT2 -39.019682 -38.995787 11.68 12.89 23.90

MC-DCPT -39.033611 -39.008972 -2.25 -0.29 24.64

MC-UPT -39.026355 -39.003201 5.01 5.48 23.15

MC-OPTUPT -39.027129 -39.003732 4.24 4.95 23.40

FCI -39.031365 -39.008678 22.69

Table 3: Energy errors (E−EFCI) and singlet-triplet splittings (Esinglet−Etriplet) of the CH2

molecule in the polarized VDZ basis of Dunning and Hay55. Zero-order reference function

is obtained by a CAS(6,6) calculation. Geometry is R(CH)= 1.0780 Å , ∠(HCH)= 132.9o

for the triplet state and R(CH)= 1.1086 Å , ∠(HCH)= 102.0o for the singlet state. The

size-consistent or unprojected version of MCPT2 was computed in the IPEA partitioning69.
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METHOD TOTAL ENERGY T-Q SPACING

E(5Σ−
u ) E(3Σ−

u ) E(3Σ−
u )− E(5Σ−

u )

Eh mEh eV

CAS(9,6) -1519.4611 -1519.4612 -0.11 -0.003

MC-UPT -1519.8445 -1519.8442 0.34 0.009

MC-OPTUPT -1519.8849 -1519.8828 2.07 0.056

MRMP -1519.9640 -1519.9573 6.71 0.183

NEVPT2 SC -1519.9283 -1519.9241 4.20 0.114

NEVPT2 PC -1519.9295 -1519.9221 7.39 0.201

Table 4: Total energies and energy spacing of the lowest 5Σ−
u and 3Σ−

u levels of the Sc2

molecule in the TZVP+G(3df,2p) basis set63. Reference function is obtained by a CAS(9,6)

calculation. Small terms in the determinantal expansion of the reference were discarded

(coefficient absolute value below 6.5·10−4 for the 5Σ−
u and below 5.8·10−4 for the 3Σ−

u state).

This does not affect the CAS energy in the digits tabulated. In all MRPT calculations

the first twelve occupied orbitals were kept frozen. Geometry is R(ScSc)= 2.65 Å for both

states.
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