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Ring approximation within an internally contracted multireference (MR) Coupled

Cluster (CC) framework is worked out and tested. Derivation of the equations utilizes

MR based, generalized normal ordering and the corresponding generalized Wick-

theorem (MR-GWT). Contractions among cluster operators is avoided by adopting

a normal ordered exponential Ansatz.

Original version of the MR ring CCD (MR-rCCD) equations (Mol. Phys. 115,

2731 2017) is rectified in two aspects. On one hand, over-completeness of double

excitations is treated by relying on the concept of frames. On the other hand, re-

striction on maximal cumulant rank is lifted from two to four. This is found essential

for obtaining reliable correlation corrections to the energy.

The MR function underlying the approach is provided by the Generalized Valence

Bond (GVB) model. Pair structure of the reference ensures a fragment structure of

GVB cumulants. This represents a benefit when evaluating cumulant contractions

appearing as a consequence of MR-GWT. In particular, cumulant involving terms

remain less expensive than their traditional, pair-contracted counterpart, facilitating

an O(N6) eventual scaling of the proposed MR-rCCD method.

Pilot applications are presented for covalent bond breaking, deprotonation energies

and torsional potentials.

Keywords: coupled cluster doubles, ring approximation, internal contraction, mul-

tireference generalized Wick-theorem, pair-function, cumulants

a)also atDoctoral School of Chemistry, ELTE
b)Electronic mail: szabados@caesar.elte.hu; orcid.org/0000-0001-7376-2637

1

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
05

07
5



MR-rCCD

I. INTRODUCTION

Coupled cluster (CC) theory is remarkably successful in capturing dynamical correlation

effects when describing the electronic structure of molecular systems.1 The singles and dou-

bles CC scheme with perturbative triples, CCSD(T)2 is an established ”gold standard” in

situations where the Hartree–Fock (HF) method represents an appropriate starting point.

Research efforts invested in efficient implementation has recently allowed to push the range

of application of CCSD(T) to incredibly large systems.3,4 When formulated properly, single

reference based CC schemes are applicable also in situations where dynamical and static

correlation are intertwined: methods based on the Ansatz of Oliphant and Adamowiz,5,6

Ivanov and Adamowiz7,8 or those harnessing the so-called CC moments9 are typical ex-

amples. Efficient implementation of these approaches have been addressed also.10–13 The

idea put forward by Rolik and Kállay14 represents an alternative single reference type tech-

nique, incorporating multireference (MR) effects via formulating the theory in terms of

quasi-particles.

Adopting a single reference based methodology for an inherently MR problem is often

accompanied by undesirable pivot dependence, rationalizing the development of genuine

MR-CC techniques. Considerations based on the Bloch equation15,16 have been tradition-

ally pursued in this field, applying a formulation either in the Hilbert-space17–20 or in the

Fock-space.21–23 Jezioski-Monkhorst (JM) parametrization17 of the wave operator has been

prevalent in Hilbert-space approaches, involving an individual cluster operator assigned to

each model space function. At difference with this, Fock-space theories assume a single

cluster operator when composing the valence universal wave operator. The normal ordered

exponential form for the wave operator

Ω = : exp (T ) : (1)

proposed by Lindgren24 has been prevalent in Fock-space theories, application of Eq.(1) in

the Hilbert-space context is relatively rare. In the above and throughout this work colons

indicate MR based, generalized normal order (MR-GNO).25–27

An example for a Hilbert-space formulation exploiting Eq.(1) is the theory put forward

by Mukherjee25 and developped by Mukherjee and coworkers,28 currently categorized as

an internally contracted (ic), Hilbert-space MR-CC theory. The ic concept applied within
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MR-rCCD

MR-CC (icMR-CC) circumvents several difficulties associated with the JM Ansatz.29–31 The

issue of sufficiency conditions, the unfavorable scaling of the theory with the number of

determinants contributing to the reference as well as the ”proper residual” problem32,33 is

mitigated. In return, the wave operator of Eq.(1) introduces difficulties in MR generalized

Wick-theorem (MR-GWT)25,27,34,35 based matrix element evaluation, leading to a tremen-

dous blow-up in the number and complexity of the contractions to derive and implement.

At the time of its introduction, decay of cumulant norm was anticipated with increasing cu-

mulant rank, conceivably allowing to put MR-GWT in practice.27 It has been demonstrated

later, that high rank cumulants remaining comparable in magnitude to their low rank coun-

terparts hinders cumulant rank based cutoff e.g. in covalent bond breaking situations.36,37 A

further problem associated with the wave operator of Eq.(1) is that its inverse is nontrivial

to devise, impeding similarity transformation16 based manipulations.

Due to the complications associated with Eq.(1), icMR-CC formulations put in practice

to date have mostly been employing the traditional

Ω = exp (T ) (2)

form of the wave operator. The similarity transformed Hamiltonian is straightforward to

introduce in this framework, the Baker-Campbell-Hausdorff (BCH) expansion, however,

includes terms beyond four nested commutators when the cluster operator involves non-

commuting excitations. Truncation of the BCH expansion is a common practice, reasoned

with the anticipated smallness of cluster amplitudes, provided that the reference function is

of sufficiently good quality. Matrix elements are typically evaluated based on the traditional

Wick-theorem, with the closed shell core portion of the reference serving as Fermi-vacuum.

The first icMR-CC implementations based on Eq.(2) are due to Evangelista and Gauss,38

followed closely by Hanauer and Köhn.39 A cluster operator in MR-GNO was later intro-

duced in the argument of the exponential by Hanauer and Köhn in order to achieve size

extensivity.40 Among alternative routes explored within the domain of ordinary exponential

parametrization, sequential transformation41 or the assumption of a unitary wave operator

implying an anti-Hermitian cluster operator42–44 may be mentioned.

One of the difficulties common to icMR-CC formulations irrespective of the parametriza-

tion of the wave operator is the redundancy among excited functions. Orthogonalization
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MR-rCCD

procedures involving redundancy filtering are commonly applied as remedy.28,42,45,46 Various

ways of redundancy filtering have been extensively explored by Hanauer and Köhn.39,40 Al-

ternatively, Nooijen47–49 advocates so-called many-body residuals instead of projections with

redundancy filtered excited functions. Large number and complexity of the terms needing

implementation is another adverse feature of icMR-CC techniques, that is usually addressed

by applying automated derivation tools, possibly invoking symbolic algebra.12,45,50–54

Among the scarce use of the normal ordered exponential Ansatz of Eq.(1) out of the scope

of Fock-space theory, one may mention works elated by Nooijen48,55 and Mukherjee.56–59

Applications of MR-GWT in the context of Hilbert-space CC theories are more numer-

ous, encompassing Canonical Transformation (CT) theory,60 several studies by Nooijen and

coworkers45,49,55,61 or Mukherjee and coworkers.62 The challenge presented by MR-GWT

may be met by truncation based on cumulant rank45,54 or based on operator rank.55,61

Original CT e.g. works with cumulants up to rank 2, while its quadratic extension in-

volves cumulants of rank 3 in addition.42,54 Besides neglecting cumulants beyond rank 2,

terms quadratic in rank 2 cumulants are also discarded in state specific equation of motion

theory.45 Many-body residuals are in fact beneficial in this respect, cumulant involvement

of the contributing terms being less complex.49 Cumulant based truncation is occasionally

avoided by transcribing MR-GNO form of operators into normal order with respect to a

genuine vacuum, following MR-GWT based manipulations, just for the purpose of matrix

element evaluation by ordinary Wick-theorem.49,55,61

The work reported here presents the first results on utilizing the Ansatz of Eq.(1) and

MR-GWT in the context of internally contracted, Hilbert-space MR-CC, as suggested by

Mukherjee et al.25,28 In particular, we report the ring approximation introduced by Č́ıžek,63

extended for this framework. The theory presented in Ref.64 was largely motivated by

the known correspondence between the random phase approximation (RPA) and ring CC

doubles (rCCD) when based on the HF reference65–67 together with the extended RPA

(ERPA) put forward by Pernal.68–70 The reason for opting for the icMR-CC framework of

Mukherjee et al.25,28 is that it facilitates an ic ring MR-CC doubles (icMR-rCCD) formulation

paralleling ERPA at a large extent.

Our original icMR-rCCD theory64 preceded numerical realization that has subsequently

revealed two essential weaknesses which are presently amended. One deficiency constitutes

lack of redundancy handling when solving the projected residual equations. Presently a
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MR-rCCD

treatment based on the concept of frames71,72 is introduced to resolve this issue. Application

of frames in MR based electronic structure methodology is rare though not unprecedented.73

The second amendment affects the cutoff in MR-GWT based evaluation of matrix elements.

Contrary to previous experience, we find unacceptably large errors in correlation energies

when neglecting cumulants beyond rank two. This may be reasoned with the lack of com-

mutators in the present theory. Cumulant rank based cutoff is consequently lifted from rank

2 to rank 4, implying python assisted derivation and implementation of the terms additional

to those reported in Ref.64

Ring approximation applied in this work represents one of the means of keeping at bay

the incredibly large number of terms generated by MR-GWT. Pair structure of the reference

wavefunction is a second ingredient that contributes to achieving an icMR-rCCD method

applicable in practice. The antisymmetrized product of strongly orthogonal geminal (APSG)

function74,75 assumed as reference lends a beneficial fragment structure to cumulants,76,77

that is further simplified when assigning not more than two orbitals to an electron pair,

resulting in the function known as Generalized Valence Bond (GVB).78 The fact that nonzero

cumulants can appear solely with all indices assigned to the same electron pair ensures that

cumulant involving contractions are less expensive than their pair-contracted counterpart.

As a consequence, the O(N6) scaling characteristic of HF based rCCD remains valid for the

icMR-rCCD worked out presently.

A common trait of the here proposed icMR-rCCD method and previously reported gem-

inal based correlation schemes is the inherent utilization of the two-electron fragment struc-

ture of the reference. Excited functions contributing to the correction typically inherit a

geminal structure characteristic of the ground state.73,79–87 In the ic framework proposed

here, geminal structure of the reference naturally gets harnessed at the level of cumulants.

The paper is organized as follows. Basic notations introduced in Section II A. are followed

by the derivation of the icMR-rCCD equations in Section II B., with some of the formulae

deferred to Appendix A for transparency. Details on cumulant structure and evaluation

are presented in Section II C. and Appendix B. Parametrization of the cluster operator is

developed in Section II D., redundancy treatment is briefly outlined in Section II E. with

more details provided in Appendix C. Formal considerations are closed by some remarks on

size consistency and extensivity in Section II F. Pilot numerical applications, given in Section

III. help to assess icMR-rCCD compared to ERPA and to an appropriate benchmark. The
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MR-rCCD

role of cumulant based cutoff as well as various parametrizations of the cluster operator are

also illustrated numerically.

Since we shall be concerned solely with internally contracted theory, the ’ic’ designation

is omitted from acronyms further on.

II. THEORY

A. Notations

The tensor notation of Harris et al.88 is adopted, apσ = a†pσ standing for the creation

operator of spin-orbital pσ that is assumed to be the product of spatial orbital p and spin

function σ. In general, upper and lower indexed quantities are related to each other by

hermitian conjugation. Spin summation is implied in excitation operators of rankK, denoted

as

Ep1...pK
q1...qK

=
∑

σ1,...,σK

ap1σ1...pKσKq1σ1...qKσK
,

ensuring commutation with total spin, [S2, Ep1...pK
q1...qK

] = 0 . Throughout this paper we apply

MR-GNO25,27,35 associated with arbitrary reference function Φ . The normal product form

of the Hamiltonian, HN reads as

HN = H − 〈Φ|H|Φ〉 .

Based on MR-GWT25,27,35 the normal product form, HN involves one-body and two-body

terms expressed with MR-GNO fermion products

HN = : H1 : + : H2 : . (3)

Terms of HN can be written with the aid of spin-free excitation operators as

: H1 : =
∑

p,q

f qp : Ep
q : , (4a)

: H2 : =
1

2

∑

p,q,r,s

vqspr : Epr
qs : . (4b)
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MR-rCCD

In the above colons (:) indicate MR-GNO, vqspr =
∫
ϕ∗
p(1)ϕ∗

r(2)r−1
12 ϕq(1)ϕs(2)dr1dr2 is the

two-electron integral, f qp stands for the element of the generalized Fockian, given by

f qp = hqp +
∑

r

v̄qrpr nr (5)

where hqp is the one-electron integral including kinetic energy and nuclear-electron repulsion

terms and the antisymmetrized two-electron integral is defined as

v̄qspr = 2vqspr − vqsrp .

The expression of the Fockian in Eq.(5) implies natural orbitals of Φ, moreover spin density

is assumed to be zero, allowing to write

〈Φ|apαqα|Φ〉 = 〈Φ|apβqβ |Φ〉 = δpq np .

The hole occupation number is introduced as

n̄p = 1 − np ,

with occupation number np and hole occupation number n̄p both falling in the interval [0, 1] .

We shall primarily be concerned with an APSG reference function. Strong orthogonality

being equivalent to an expansion of geminals in mutually disjoint subsets of orthonormal

orbitals,89 the APSG wavefunction takes the form

|ΦAPSG〉 =

N/2∏

P=1

∑

p∈P

cp a
pαapβ|vac〉 , (6)

where P is the geminal index, cp is the geminal coefficient, |vac〉 denotes the bare vacuum

and N stands for the even number of electrons in the system. Note that Eq.(6) involves

singlet geminals with sz = 0 (so-called perfect pairing) and orbitals that are natural or-

bitals of ΦAPSG , cp being related to np as |cp|2 = np. The wavefunction widely known as

GVB78 represents a special case of APSG, geminals accommodating two orbitals at most.

While some of the results below concern an arbitrary reference, others resort to an APSG

construction. Track shall be kept by using notation Φ or ΦAPSG, respectively.
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MR-rCCD

B. Ring coupled cluster doubles equation

We start by presenting the internally connected MR-CCD equations obtained in the spirit

of Mukherjee et al.25,28 The procedure parallels the textbook derivation of HF based CCD16,

with the differences that (i) the expectation values are evaluated using MR-GWT27,35 and

(ii) a normal ordered exponential wave operator,Eq.(1) is used instead of the exponential of

MR-GNO operators. The latter step is taken in order to avoid contractions between terms

of the cluster operator. Introduction of the similarity transformed Hamiltonian is avoided

for the complications associated with the inverse of the wave operator of Eq.(1).

The normal ordered exponential Ansatz, put forward by Lindgren24 is written as

|ΨCCD〉 = : exp (T ) : |Φ〉 , (7)

for an arbitrary reference function Φ . The cluster operator is expressed with spin-free double

excitations as

T =
1

2

∑

i,j
a,b

tijab E
ab
ij , (8)

indices i, j, a, b referring to spatial orbitals. While no particle/hole character is associated

with the orbitals, a distinction between indices i, j and a, b is still implied. Letters i, j, . . .

are used for orbitals that are bound to contribute an occupation number in the leading (i.e.

pair-contracted) term when evaluating matrix elements of the CCD equations by MR-GWT.

Similarly, orbitals that are bound to contribute a hole occupation number in the leading term

are denoted by a, b, . . . . Letters p, q stand for arbitrary indices in this respect. At this point

no restriction is imposed on indices i, j, a, b in Eq.(8). This shall be amended in Section

II D., in knowledge of the eventual structure of the ring CCD equations. Cluster amplitude

tijab is not anti-symmetric with respect to permutation of either its upper or lower indices. At

the same time tijab is invariant to permuting both its upper and lower indices, i.e. tijab = tjiba.

Substituting Eq.(7) into the

HN |Ψ〉 = ∆E |Ψ〉 (9)

Schrödinger equation with ∆E = E−〈Φ|H|Φ〉 and E denoting the eigenvalue corresponding

8
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MR-rCCD

to Ψ , projection of Eq.(9) with 〈Φ| yields the MR-CCD energy correction

∆E = 〈HN : exp (T ) :〉 =
1

2

∑

i,j
a,b

〈
HN : Eab

ij :
〉
tijab + O(t2)

=
∑

i,j
a,b

ninjn̄
an̄bBab

ij t
ij
ab + O(t2) , (10)

making use of 〈Φ| : exp (T ) : Φ〉 = 1 , a consequence of the definition of MR-GNO. Brackets

here and further on stand for the expectation value taken with Φ . In the last line of Eq.(10)

we have introduced

ninjn̄
an̄bBab

ij =
1

2

〈
HN : Eab

ij :
〉
, (11)

many-body expression of Bab
ij being given in Appendix A. The leading term of Bab

ij is v̄abij ,

followed by cumulant involving terms which give zero upon Φ becoming the HF determinant.

Indices of particle/hole occupation numbers appearing in subscript or superscript follow

indexing of the associated tensor element, e.g. Bab
ij in Eq.(11). It has no meaning beyond

that, in particular ni = ni and n̄a = n̄a .

The CCD amplitude equation is obtained by projecting the Schrödinger equation with

〈Φ| : Eij
ab : , leading to

〈
: Eij

ab : HN : exp (T ) :
〉

= ∆E
〈
: Eij

ab : : exp (T ) :
〉
. (12)

Expanding both sides and resorting to terms of ∆E linear in t, the amplitude equation takes

the form

2ninjn̄an̄bB
ij
ab +

〈
: Eij

ab : HN : T :
〉

+
1

2

〈
: Eij

ab : HN : T 2 :
〉
C

+ O(t3) = 0 , (13)

where subscript C refers to the connected part of the expectation value (the disconnected

part canceling with the linear term of the energy correction).

The MR-CCD equations of the present formalism are given by Eq.(13) in the approx-

imation where ∆E is linear in T . Main differences between Eq.(13) and its HF based

counterpart stem from MR-GNO and the associated MR-GWT. A first observation is that

matrix element evaluation by MR-GWT generates a plethora of cumulant involving terms

9
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MR-rCCD

beyond the leading, pair-contracted expressions. In Eq.(13) cumulants up to rank 6 appear

in the matrix element linear in T , the quadratic term involves cumulants up to rank 8 when

evaluated without any neglect. A further remark concerns the expansion of the left hand

side of Eq.(13) in powers of T . This is a non terminating series due to the appearance of

cumulants in MR-GWT and due to the fact that cumulants do not vanish with their rank

increased.

Terms of Eq.(13) are consequently evaluated by introducing approximations. It is already

apparent at this stage, that cluster amplitudes are assumed small enough to allow for ne-

glecting based on powers of t . A further step in the direction of breaking down the number

of terms is to evoke the ring approximation introduced by Č́ıžek.63 The ring approximation

generalized for the MR case in Ref.64 resorted to terms linear in cumulants and involved a

truncation beyond cumulant rank Λ2 . Both of these restrictions are abandoned presently,

keeping all terms conforming with the Riccati type amplitude equation

B† + 2AT t + 2 tA + 4 tMBMt = 0 (14)

characteristic of ring CCD. Tensor M in the above includes product of occupation numbers

along its diagonal

Mab
ij = δijδabnin̄

a .

Elements of tensors A and B are given in Appendix A. Inspection of Appendix A reveals

that the ring approximation retains just a handful of terms in Eq.(13). Rank of cumu-

lants involved in Eq.(13) is also effectively reduced, the highest cumulant rank appearing in

Eq.(14) being Λ4 .

Generalization of the ring approximation as described in Ref.64 is not invariant to rotation

among orbitals of degenerate occupation number at the level of APSG, i.e. within the core

(ni = 1) and virtual (n̄a = 1) subset. While this is a common feature with HF based ring

CCD, orbital invariance is restored in the present formulation by allowing the full tensor

F to enter tensor A , c.f. the first two terms of Eq.(A3) in Appendix A. Rotation among

orbitals of fractional occupation number is allowed only within geminal subspaces indexed

by P in Eq.(6). Even this latter freedom is eliminated in the present MR-rCCD by requiring

the APSG 1-RDM to be diagonal.
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MR-rCCD

C. Cumulants

Cumulants λK are introduced via their relation to reduced density matrices (RDM), γK .76

The corresponding spin-orbital expressions, up to rank K = 4, necessary in the present

approach, read

γ1 = λ1 , (15a)

γ2 = λ2 +
1

2
λ1 ⊗ λ1 , (15b)

γ3 = λ3 + λ2 ⊗ λ1 +
1

6
λ1 ⊗ λ1 ⊗ λ1 , (15c)

γ4 = λ4 + λ3 ⊗ λ1 +
1

2
λ2 ⊗ λ2 +

1

2
λ2 ⊗ λ1 ⊗ λ1 +

1

24
λ1 ⊗ λ1 ⊗ λ1 ⊗ λ1 . (15d)

Notation of Ref.37 is admitted in the above, ⊗ standing for the antisymmetrized tensor

product with index permutations performed only between terms of the product and never

within one term. Factors 1/m! compensate m!-tuple counting where m equivalent terms are

present in the product.

The structure of the APSG wavefunction together with cumulant decomposition of the

RDM-s, Eq.(15) ensures that cumulants of rank 2 and above exhibit what is termed here

‘geminal connectedness’. Under ‘geminal connectedness’ it is understood that nonzero ele-

ments occur for all orbital indices of λ belonging to the same geminal.76 This is a consequence

of the APSG wavefunction being an antisymmetrized direct product of complete active space

functions. The fact that these active spaces are furnished with two electrons brings further

simplification: RDM elements of rank γ3 and above are zero when indexed by orbitals of

the same geminal. As a consequence γAPSG
K is not contributing to the nonzero elements of

the λAPSG
K for K = 3, . . . Focusing on intrageminal elements, the APSG cumulants satisfy

the simplified relations90

λAPSG
3 = −λ2 ⊗ λ1 −

1

6
λ1 ⊗ λ1 ⊗ λ1 , (16a)

λAPSG
4 = −λ3 ⊗ λ1 −

1

2
λ2 ⊗ λ2 −

1

2
λ2 ⊗ λ1 ⊗ λ1 −

1

24
λ1 ⊗ λ1 ⊗ λ1 ⊗ λ1

= −1

2
λ2 ⊗ λ2 +

1

2
λ2 ⊗ λ1 ⊗ λ1 +

1

8
λ1 ⊗ λ1 ⊗ λ1 ⊗ λ1 . (16b)

While being geminal connected, cumulants of Eqs.(16a) and (16b) are manifestly discon-

nected. Their role of canceling the disconnected part of γK is lost due to the vanishing
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MR-rCCD

intrageminal elements of the corresponding RDM-s. The situation is even more peculiar

for a two-electron system, since cumulants of Eqs.(16a) and (16b) do not vanish, unlike the

RDM-s of rank 3 and higher. (The ring approximation presently limits highest cumulant

at Λ4, it therefore can only occur for two-electron systems that cumulant rank, K exceeds

the total number of electrons, N .) Though a disconnected cumulant contradicts the usual

physical interpretation, ΛK up to K = 4 are essential for the fulfillment of MR-GWT used

to evaluate ∆E, cumulants up to rank four are therefore retained. An illustration on the

role of cumulant rank in the energy correction, provided in Section III A 1. supports the

claim that these cumulants are indispensable.

Cumulant decomposition of RDM-s and application of the MR-GWT is in principle

straightforward for spinorbitals it is, however, highly nontrivial to express the results in

terms of spin-summed cumulants, ΛK defined as

Λp1...pK
p′
1
...p′

K

=
∑

σ1,...,σK

λp1σ1...pKσKp′
1
σ1...p′KσK

. (17)

Difficulty in introducing ΛK is associated with the appearance of products of cumulants

indexed by spinorbitals and summed for spin. Expressing the products in terms of individ-

ual, spin-summed cumulants requires the inverse of relation Eq.(17), i.e. elements of λK

expressed in terms of ΛK . This can be obtained with the aid of additional spin symmetry

relations exhibited by λK the task is, however, getting gradually more complicated with

increasing cumulant rank.34,91 Derivation of the working formulae reported here has been

carried out in terms of spinorbitals, with spin summation performed at the final stage, e.g.

by applying Eqs.(B3) and (B4).

Elements of the APSG cumulants ΛK up to rank K = 3 are given in Appendix B. A

glance at the expressions in Appendix B reveals that APSG cumulants are highly factorized.

Each nonzero term of Λ2 is proportional to a product of Kronecker deltas, yielding nonzero

elements with at most 2 nonidentical orbital indices. This property carries through to Λ3

and Λ4 , their nonzero elements involving at most 3 and 4 nonidentical orbital indices,

respectively. The reason behind vanishing cumulant elements can be quite general. E.g.

cumulants of odd rank are zero for wavefunctions exhibiting particle-hole symmetry.37 Pauli

principle has the consequence that three spatial indices repeated in sub or superscript results
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MR-rCCD

a zero cumulant element

Λppp...
... = Λ...

ppp... = 0 .

Cumulants ΛK consequently vanish with APSG for rank 2dmax < K , where dmax is the size

of the biggest geminal subspace.76 Considering GVB where dmax = 2, cumulants ΛK vanish

for 4 < K.92 This provides further justification for the neglect of terms involving cumulants

ΛK , 4 < K ≤ N when evaluating Eq.(13), for the case of GVB reference. An upper limit

N22K−1 for the nonzero elements of GVB cumulants can also be deduced from the above

for K ≤ 4 , giving not more than e.g. 8N nonzero elements for Λ4 .

D. Pruning the excitation manifold

In lack of particle-hole categorization of orbitals no restriction on indices entering Eq.(8)

has been assumed so far. This picture needs refinement for the following reason. Consider

the first approximation of the amplitudes, t
ij(1)
ab obtained at the first Jacobi iteration step

when solving Eq.(14)

t
ij(1)
ab = −1

2

(
Bab
ij

)∗
(δcaδ

i
kA

ci
ka + δcbδ

j
kA

cj
kb)

−1 , (18)

and inspect the case where reference Φ becomes HF and orbital b becomes occupied, i.e.

n̄b → 0 . The contribution of amplitudes involving excitation to orbital b are expected to

be small when n̄b is close to 0 and the contribution should vanish in the limit. This is

ensured by factor n̄b in Eq.(10) provided that the amplitude is finite. Unfortunately Eq.(18)

does not conform to this expectation, since terms of the numerator may tend to infinity.

Examine e.g. the third term in the fourth line of Eq.(A1). Performing complex conjugation

and substituting the expression of Λ2 from Eq.(B1) one obtains

− 1

2nin̄b

∑

p,q

vpjaqΛ
iq
pb = −δib

∑

p∈B

np
n̄b
vpjap + 2δIB

nb
n̄b
vijab − δIB

cicb
nin̄b

vbjai

= −δib


v

bj
ab +

∑

p 6=b
p∈B

np
n̄b
vpjap


 + (1 − δib)δ

I
B

(
2
nb
n̄b
vijab −

cicb
nin̄b

vbjai

)
. (19)
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MR-rCCD

Analyzing Eq.(19) it is apparent that the nature of outer index pair ib occurring on Λ is

decisive on the magnitude of the term. When i and b belong to different geminals, the term

is zero due to Λpb
iq being zero. When indices i and b match, the first term on the right hand

side of Eq.(19) is, in effect, finite in spite of n̄b figuring in the denominator. To see this, one

has to take into account that p resorts to a single term for a GVB reference and np = n̄b

as a consequence of np + nb = 1. The quotient np/n̄b therefore simplifies to 1, avoiding

divergence as n̄b → 0 . In the APSG case np/n̄b ≤ 1 holds for all p ∈ B, p 6= b, again

ensuring that divergence is avoided. When i and b belong to the same geminal and i 6= b,

the second term on the right hand side of Eq.(19) is to be examined and found divergent for

n̄b → 0 . Excitations entering Eq.(8) are pruned in order to avoid such divergence. Pursuing

the analysis, analogous terms of
(
Bab
ij

)∗
can be identified that behave similarly and call for

pruning for index pairs ja, ia and jb.

Regarding the index quartet i, j, a, b, there are two more index pairings left, ab and ij.

They can both cause trouble, harmful terms being the first and the second of Eq.(A1) in

line three, reading as

1

2n̄an̄b

∑

p,q

vijpqΛ
pq
ab = δab



na
n̄a
vijaa +

ca

n̄2
a

∑

p 6=a
p∈A

vijppc
p


 − (1 − δab)δAB

na
n̄b

nb
n̄a
v̄ijab , (20)

and

1

2ninj

∑

p,q

vpqabΛ
ij
pq = δij



n̄i

ni
viiab +

ci

(ni)2

∑

p 6=i
p∈I

vppabcp


 − (1 − δij)δIJ v̄

ij
ab (21)

respectively. Similarly to the case of Eq.(19), indices of Λ occurring on the same geminal

are problematic, since the cumulant is zero otherwise. At difference with Eq.(19), it is index

matching that causes divergence of the expressions. The first term on the right hand side of

Eq.(20) diverges for δab in the limit n̄a → 0 . The first term on the right hand side of Eq.(21)

similarly tends to infinity for δij in the limit ni → 0 . The i 6= j term of Eq.(21) is apparently

insensitive to the value of the occupation numbers. As mentioned before, na/n̄b ≤ 1 as well

as nb/n̄a ≤ 1 for a 6= b, consequently the second term on the right hand side of Eq.(20)

is also well behaving for n̄a → 0 or n̄b → 0 . Divergence is again avoided by introducing
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MR-rCCD

pruning in Eq.(8) for i = j and a = b.

In order to complete the picture, it remains to be seen, that the denominator of Eq.(18)

is finite when the numerator diverges. This can be checked by finding the dependence of

the diagonal terms of tensor A on occupation numbers and geminal coefficients. Explicit

evaluation has been performed for the contributions of tensor F , i.e. the first two terms on

the right hand side of Eq.(A3). These involve

1

2
δikniF

i
k(n̄

i→−ni)= (2ni − 1)


f

i
i −

∑

p∈I
p 6=i

v̄ipipnp


 + 2

∑

p∈I
p 6=i

f ppnp + 2nin̄iv
ii
ii

+
∑

p∈I
p 6=i

(
viippcic

p + vppii c
icp − 2v̄ipipninp

)
−

∑

p,q∈I
p,q 6=i

(
2v̄pqpqnpnq − vppqq cpc

q
)

(22)

and

1

2
δacn̄aF

c
a(na→−n̄a)= −(2na − 1)


f

a
a + na

∑

p∈A
p 6=a

v̄apap
np
n̄a


 + 2na

∑

p∈A
p 6=a

f pp
np
n̄a

− 2nan̄av
aa
aa

−
∑

p∈A
p 6=a

(
vaappcac

p+vppaac
acp−2v̄apapnanp

)
−na

∑

p,q∈A
p,q 6=a

(
2v̄pqpq

npnq
n̄a

−vppqq
cpc

q

n̄a

)
(23)

with the notation of Appendix A. Apparently Eq.(22) shows no ill-effect as ni → 0 . Though

n̄a appears in the denominator in Eq.(23), the expression involves np/n̄a and
√
np/n̄a for

a 6= p , both being smaller than one for n̄a → 0 . Examination of the contribution of the

third term on the right hand side of Eq.(A3) to Eq.(18) similarly reveals no divergence with

ni , nj , n̄a or n̄b tending to zero .

In view of the above, restriction on indices i, j and a, b entering Eq.(8) are set as

i) nin̄a > 1/4 for i 6= a and I = A ;

ii) nin̄b > 1/4 for i 6= b and I = B ;

iii) njn̄a > 1/4 for j 6= a and J = A ;

iv) njn̄b > 1/4 for j 6= b and J = B ;

v) ni > 1/2 for i = j ;
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MR-rCCD

vi) n̄a > 1/2 for a = b .

Pruning is an obvious disadvantage since a change in the set of amplitudes allowed in

Eq.(8) may lead to discontinuity on the potential energy surface (PES). The above thresholds

have been set to avoid such problems for covalent bond dissociation described by GVB.

Focusing on a dissociating geminal, the process is characterized by one occupation number

evolving from 1 − η to 1/2 + η and the other changing from η to 1/2 − η , the two adding

up to one, and η being some small positive number. No combination of the particle and

hole occupation numbers of these two orbitals can cross the thresholds in i) - iv) during

dissociation. A new situation (e.g. APSG reference instead of GVB) may call for revision

of the restrictions affecting Eq.(8), the principal aim being avoidance of discontinuities.

Ultimately it would be beneficial to eliminate the need of pruning. It, however, appears

unavoidable at the present stage of the theory.

It may be interesting to observe that restrictions i) - vi) allow for spectator excitations.

(The case i = j = a = b is excluded by points v) and vi).) It is also admissible that e.g.

ni < na provided that I 6= A . This case deserves a note since the excitation operator of the

companion ERPA correction64,69,70 involves such deexcitation-type transitions, parametrized

by amplitude matrix Y . A numerical example on the role of spectator and deexcitation

type transitions is given in Section III A 1.

E. Redundancy handling

Internally contracted excitations bring along over-completeness of the set of excited func-

tions, : Eab
ij : |Φ〉 . Redundancy is usually handled by elimination of certain amplitudes or

linear combinations thereof. An unfortunate consequence of amplitude elimination is the

possible appearance of discontinuities on the PES, as alluded to in Section II D. Interference

with orbital invariance and size consistency has been reported for some of the redundancy

treatments investigated in Ref.39, with size extensivity restored in a follow up work.40 To

avoid such pitfalls, Nooijen and coworkers advocate the use of many-body residual equations.

The present work applies a hitherto unexplored scheme for handling redundancy when

CC amplitude equations are obtained as ordinary projections. We rely on the concept

of frames, that facilitates keeping all the amplitudes corresponding to the redundant set of

excited functions. Frames are generalizations of basis sets, relaxing the requirement of linear
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MR-rCCD

independence on the constituting vectors. Frames were originally introduced in connection

with signal analysis and have been finding ever increasing applications in physics, engineering

and computer science.71,72 In this Section we give a recipe-style presentation of the procedure

followed when solving Eq.(12). For rationalization we refer to Appendix C.

Let us introduce shorthand

|ψµ〉 = : Eab
ij : |Φ〉 (24)

for bookkeeping. Whenever overlap matrix S, composed of the elements

Sµν = 〈ψµ|ψν〉

possesses a zero eigenvalue, amplitude equations Eq.(12) contain less information than the

number of parameters. Among such circumstances the amplitude vector t, collecting ele-

ments tµ , is ill defined. With the aim of defining amplitudes in a unique manner, write the

spectral decomposition of S as

S = V ΣV † , (25)

where matrix Σ contains Σµ along its diagonal, among which µ = 1, . . . ,M are nonzero and

Σµ = 0 for µ = M + 1, . . . ,N . For further convenience we denote as Σ′ = diag(Σµ) the

M×M matrix collecting nonzero Σµ and σ′ =
√
Σ′ .

As detailed in Appendix C, amplitude update boils down to determining te corresponding

to the auxiliary Löwdin-basis of Eq.(C1). The equation determining te reads

αte = −β , (26)

where matrix α and vector β are given by Eqs.(C19) and (C21), respectively. Once te

is determined, the amplitude vector corresponding to the set of over-complete functions

{ψµ}Nµ=1 is generated as

t = V



 σ′−1

0



 te . (27)

The overlap matrix exhibiting a blockdiagonal structure, the procedure can be performed
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MR-rCCD

separately for each block of S of dimension larger than one.

In order to be more specific, we briefly work out the update for the ring CC equation of

Eq.(12), using the example of a two dimensional block of S, formed of exchange spectator

excitations : E2a
i2 : |Φ〉 = |ψ1〉 and : E3a

i3 : |Φ〉 = |ψ2〉 . We assume that i is a core orbital

(ni = 1 ), a is a virtual orbital (na = 0 ) and orbitals 2, 3 belong to a two-dimensional

geminal (n2 + n3 = 1 ). Form Eq.(12) of the amplitude equations allows to directly identify

constituents of the linear system of equations obtained with ψ , denoted αψ and βψ , reading

as

αψ



 2Aii22 + 2Aaa22 0

0 2Aii33 + 2Aaa33



 ,

and

βψ


 (Bi2

2a)
∗ + 2(AT t)i22a + 2(tA)i22a + 4(tMBMt)i22a − (2Aii22 + 2Aaa22)ti22a

(Bi3
3a)

∗ + 2(AT t)i33a + 2(tA)i33a + 4(tMBMt)i33a − (2Aii33 + 2Aaa33)ti33a)


 .

Constituents of Eq.(26) can be obtained based on Eq.(C1) by the transformations

α = (σ′−1 0)V †αψV


 σ′−1

0


 ,

and

β = (σ′−1 0)V †βψ .

Working out the 2 × 2 block of the overlap matrix of this example one arrives to

S = 2n2n3


 1 −1

−1 1


 ,

giving rise to

σ′ = 2
√
n2n3
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MR-rCCD

and

V =
1√
2


 1 1

−1 1


 .

Matrix α and vector β are consequently built with a single component, reading as

α =
1

4n2n3

(Aii22 + Aaa22 + Aii33 + Aaa33)

and

β =
1

2
√

2n2n3

(βψ1 − βψ2 ).

The single amplitude on the Löwdin-basis is updated as

te =
√

2n2n3
βψ2 − βψ1

Aii22 + Aaa22 + Aii33 + Aaa33
,

yielding the update for the 2-component amplitude vector


 ti22a

ti33a


 =

βψ2 − βψ1
2(Aii22 + Aaa22 + Aii33 + Aaa33)


 1

−1


 . (28)

The above 2 × 2 example is special in the sense that the linear term of Eq.(12) involves

no coupling between the two selected excitations. Whenever such a coupling is present, the

corresponding term is to be retained in αψ which consequently becomes non-diagonal.

Dimension of the redundant blocks obviously depends on the pruning affecting Eq.(8).

With the pruning strategy described in Section II D. the redundant blocks do not get larger

than 8×8 in the examples studied in Section III. Blocks are identified based on the expression

of Sµν given in terms of cumulants according to MR-GWT. Terms of Sµν linear in Λ2, Λ3 or

Λ4 can yield a nonzero Sµν matrix element when some orbital indices constituting µ and ν

match while indices not matching between µ and ν belong to the same geminal (allowing for

a nonzero Λ element). In addition, the MR-GWT expression of Sµν involves terms quadratic

in Λ2 which necessitates watching for a bunch of four orbital indices constituting µ and ν

belonging to one geminal and the other four again belonging to one geminal.

Determining zero eigenvalues of the overlap requires a threshold, that is set at 10−4 by
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MR-rCCD

Kong et al.45 and by Hanauer and Köhn.39 A second threshold of 10−2 is applied by Kong

et al. while system dependent thresholds on the order of 10−2−10−1 are reported for CT.43

In the calculations reported in Section III a threshold of 10−10 is used uniformly. In spite of

the zero overlap threshold being comparatively small, no ill-effect has been detected on the

potential surfaces explored in Section III. A numerical example on the role of redundancy

affected amplitudes is given in Section III A 1.

The redundancy treatment described above applies even in the ultimate case where no

overlap eigenvalue falls above the zero threshold either for a block of S or for an individual

excitation. These excitations are eventually eliminated as the Moore-Penrose inverse of the

matrix composed of 〈ψ̃ν |HN |ψµ〉 is zero (c.f. Appendix C). For computational economy it

is still practical to discard such excitations in advance when they can be easily identified.

For this reason core (np = 1) orbitals are excluded as a, b and virtual (np = 0) orbitals are

not allowed as i, j in Eq.(8).

F. Size extensivity

Size extensivity follows directly from the connected construction of the theory, assuming

a separation of the system for subsystems exhibiting zero inter-system cumulants. E.g.

breaking up a system for two closed shell fragments. Excitations affected by redundancy

are necessarily connected by cumulants (c.f. the MR-GWT expansion of overlap matrix

elements), redundancy treatment is therefore not expected to interfere with separability in

lack of inter-system cumulants.

Separation of the system for subsystems that remain spin coupled is a more difficult

question, due to inter-system spin cumulants connecting the fragments.36,37 This question

has been addressed e.g. by Mukherjee93 in connection with a JM based, unitary group

adapted MRCC. The analysis being non-trivial, we wish not address this topic here. At the

same time it appears worth to remark, that taking APSG as reference, it is single covalent

bond dissociation that deserves inspection from this point of view. Since multiple covalent

bonds are not separated correctly by APSG,94 such situations are better analysed assuming

e.g. an unrestricted geminal reference.95,96
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MR-rCCD

III. NUMERICAL ILLUSTRATIONS

Numerical calculations assuming a GVB reference function are reported below. Starting

orbitals of the GVB optimization process are generated by the Foster–Boys localization

procedure.97 Valence geminals corresponding to bonding and lone electron pairs are assigned

two orbitals. Core orbitals belonging to inner shells are kept at the HF level, the two electrons

being assigned a single spatial orbital. The orbitals underlying the calculations are those

diagonalizing the GVB 1-RDM, exhibiting fractional occupation number when belonging

to a two dimensional geminal. Orbitals in the subspace of degenerate occupation numbers

(i.e. cores characterized by ni = 1 and virtual orbitals with na = 0) do no need further

specification since the theory in unitary invariant in these two subspaces.

Numerical results obtained with GVB-rCCD are shown in parallel with the GVB-ERPA

method of Pernal,98 based on the same reference. This comparison is prompted by the

fact that the two theories are related64 and they are of comparable computational cost.

Thresholds associated with pruning and redundancy treatment in rCCD are according to

Sections II D. and II E., respectively. In the case of GVB-ERPA a categorization of orbitals

as core, active and virtual is performed based on the occupation number thresholds 0.995 and

0.005 separating the core/active and the active/virtual set, respectively. Single excitation

allowed are of the type core→virt, core→act, act→virt as well as act→act. The latter type

requires further attention. Excitation p → q is in effect if nq/np ≤ 0.99 holds when p and

q belong to different geminals, while nq ≤ np is required when p and q belong to the same

geminal. In addition, ERPA amplitude vectors corresponding to complex excitation energy

are discarded, with a threshold 10−15 set on the imaginary part. These technical details are

essentially in line with the procedure reported in Refs.70,98,99

Computational cost of iterating the rCCD amplitude equation, Eq.(14) roughly scales as

O((Nc +Na)
3(Na +Nv)

3), where Nc is the number of core orbitals (with ni = 1), Na is the

number of orbitals of fractional occupation number and Nv is the number of virtual orbitals

(with na = 0). The cost of solving the ERPA equations necessary for ERPA-APSG similarly

scales with the third power of the number of single excitations allowed to enter the excitation

operator Ansatz (a number that can be approximated from above by (Nc +Na)(Na +Nv)).

Working equations of GVB-rCCD are Eqs.(10) and (14) with the tensor elements A and

B given in Appendix A. In some of the examples neglect of terms of F and B based on
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MR-rCCD

cumulant rank is investigated. Cumulants retained are indicated in the acronym of these

results, i.e. GVB-rCCD(Λ1,Λ2) refer to the exclusion of Λ3 and Λ4 involving terms from

Eq.(10) and from the underlying amplitude equation, Eq.(14).

Whenever the basis set permits, Full CI (FCI) results are reported as benchmark. For

larger basis sets CCSD(T) benchmark is used when strong correlation is negligible, while

in the genuine multireference situation of N2 dissociation the semi-stochastic heat-bath CI

(shCI) algorithm of Sharma et al.100,101 serves as benchmark. An in-house implementation of

Olsen’s algorithm102 was used for obtaining FCI results, CCSD(T) energies were calculated

with the Gaussian 09 software.103

A. Covalent bond breaking and formation

Breaking and forming covalent bonds represent test cases of the genuine multireference

situation. Among the examples shown, dissociation of a single covalent bond is captured

properly by GVB, providing ideal circumstances for the assessment of MR based correlation

correction schemes. Examples where different regions of the PES can be characterized by

different Lewis structures are less favorable from the point of view of GVB. Deficiencies

are therefore anticipated that might not be attributed exclusively to the correlation cor-

rection scheme in these situations. Such difficult cases are nevertheless of interest and are

investigated.

As examples of the latter, difficult types dissociating multiple covalent bonds and elon-

gation of two or more single covalent bonds attached to a common atom are provided.

Spin recoupling, taking place during these processes is not described properly by perfect

pairing.94 While the flaw is usually not apparent on the GVB PES, it may become an issue

when devising correlation corrections built upon GVB.99,104 The performance of GVB-rCCD

is examined in two examples of this sort, symmetric dissociation of the H2O molecule and

the dissociation of the N2 molecule.

Square to rectangle transformation of the H4 system represents another difficult example.

The problem here is apparent on the GVB PES, since two solutions, corresponding to two

Lewis structures cross at the square geometry. This produces an incorrect cusp at square

geometry on the minimal energy PES. Insertion of Be into H2 leading to a BeH2 molecule

is another example for a change in the characteristic Lewis structure taking place along

22

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
05

07
5



MR-rCCD

the process. Since the work of Purvis et al.105 this has been a standard test system of CC

methods.30

1. H2O molecule

Results on the elongation of a single OH bond of the H2O molecule displayed in Fig.

1. demonstrate that both rCCD and ERPA corrected PES are significantly improved as

compared with the GVB PES. The error of rCCD and ERPA are in the same order of

magnitude, the former being somewhat smaller and both varying a couple of mEh in the

geometry range studied. There appears a small hump on the order of 0.1 mEh with the

maximum around 3 Å on the GVB-rCCD total energy curve, that is not discernible in

Fig. 1. It may be worth to remind that such a behaviour is not uncommon in the case of

RPA-related methods.106

 0
 0.005

 0.01
 0.015

 0.02

 0.5  1  1.5  2  2.5  3  3.5  4

∆E
 / 

E h

R / Å

−76.2

−76.1

−76

−75.9

E 
/ E

h

FCI
GVB

GVB−ERPA
GVB−rCCD

FIG. 1. Single bond dissociation of the H2O molecule in 6-31G* basis set, at αOHO = 104.5◦ bond

angle and R′
OH = 1.000 Å bond length for the non-dissociating bond. All valence GVB based

rCCD and ERPA corrected results are displayed, FCI serves as benchmark. Total energy and

energy difference computed as ∆E = E − EFCI are displayed.
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MR-rCCD

Results on the symmetric OH bond stretch of the H2O molecule are shown in Figures 2.

and 3. This example is similar to the single OH bond stretch in that rCCD yields a greater

portion of electron correlation than the ERPA correction. A hump is again present on the

GVB-rCCD total energy curve on the order of a mEh peaking at around 3 Å. At difference

with the GVB based linearized CCD correction,104 the GVB-rCCD curve shows no ill-effect

in the spin recoupling region. The result obtained by neglecting Λ3 including terms when

calculating GVB-rCCD is also shown in Fig. 3. The latter approximation results in slightly

smaller error than GVB-rCCD in the [1.5,3.5] Å bond length region and a hump on the total

energy curve, reduced to the order of 0.1 mEh. The range of variation of the error is similar

for the three methods displayed in Fig. 3.

−76.2
−76.15
−76.1

−76.05
−76

−75.95
−75.9

−75.85
−75.8

−75.75

 1  1.5  2  2.5  3  3.5  4

E 
/ E

h

ROH / Å

GVB
GVB−rCCD
GVB−ERPA

FCI

FIG. 2. Symmetric dissociation of the H2O molecule in 6-31G* basis set, at αOHO = 104.5◦ bond

angle. All valence GVB based rCCD and ERPA corrected results are displayed, FCI serves as

benchmark.

A systematic study on the effect of cumulants involved in the expression of tensors F and

B is provided on the example of the H2O molecule in Fig. 4. The HF-like approximation

where all cumulants of rank 2 and higher are neglected, GVB-rCCD(Λ1) apparently inherits

the divergent behaviour of RHF-based rCCD.107 Since cumulants decay fast with increasing

rank around equilibrium, it is comprehensible that inclusion of cumulants up to Λ2 yield

good results at around 1 Å in Fig. 4. This scheme, denoted GVB-rCCD(Λ1,Λ2) gives a

finite but rather disappointing solution in the dissociating regime, where higher rank cumu-
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 0
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GVB−rCCD(Λ1,Λ2,Λ4)

GVB−rCCD

FIG. 3. Energy difference taken with FCI for the methods and process shown in Fig. 2. Label

GVB-rCCD(Λ1,Λ2,Λ4) refers to omission of Λ3 in the working equations.

lants are not in general negligible compared to their lower rank counterpart. Accordingly,

GVB-rCCD(Λ1,Λ2) produces a hump in the spin recoupling region and tends to an energy

value lying off from FCI by some −50 mEh in the dissociation limit. The scheme GVB-

rCCD(Λ1,Λ2,Λ3) produces a more expressed hump and tends essentially to the same limit

as GVB-rCCD(Λ1,Λ2), since Λ3 becomes negligible in the dissociated limit.37 Allowing Λ4

to enter, but discarding Λ3 gives the scheme GVB-rCCD(Λ1,Λ2,Λ4) that is already accept-

able in Fig. 4. As apparent in Fig. 3, GVB-rCCD(Λ1,Λ2,Λ4) stays somewhat more close to

FCI than GVB-rCCD with full inclusion of cumulants (denoted GVB-rCCD(Λ1,Λ2,Λ3,Λ4)

in Fig. 4.). One can generally conclude that retaining Λ4 in the energy formula is essen-

tial to obtain correct PES for covalent bond dissociation. At the same time, the success of

GVB-rCCD(Λ1,Λ2,Λ4) originates in a rather fortuitous than systematic error compensation

taking place in this example. Scheme GVB-rCCD(Λ1,Λ2,Λ4) outperforming GVB-rCCD

does not occur in general.

Symmetric dissociation of the H2O molecule serves for one further test: examination of

the numerical effect of various pruning strategies as well as the role of amplitudes affected

by redundancy. Results are presented at two geometries in Table I., at around equilibrium

and in the dissociated regime. Number of amplitudes retained in a given scheme, collected

in Table I., has to be contested with 10107 giving the number of original amplitudes when
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−75.9

−75.85
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FCI
GVB−rCCD(Λ1)

GVB−rCCD(Λ1,Λ2)
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GVB−rCCD(Λ1,Λ2,Λ4)

GVB−rCCD(Λ1,Λ2,Λ3,Λ4)

FIG. 4. Total energy by various cumulant rank based cutoff schemes in GVB-rCCD for the process

shown in Fig. 2. Cumulants retained in the working equations Eqs.(10) and (14) are indicated in

parenthesis.

following the pruning described in Section II D. (Individual excitations or blocks of excita-

tions with all overlap eigenvalues below the numerical threshold are already excluded in the

original scheme, c.f. the last paragraph of Section II D.) Total number of amplitudes as well

as the structure of the redundant blocks remain unchanged when stepping from ROH = 1.0

Å to ROH = 4.0 Å.

Amplitude types omitted in the schemes examined in Table I. involve exchange specta-

tors, i.e. Eai
ij type transitions, abbreviated ’exc.spec’; direct spectators, i.e. Eib

ij type tran-

sitions, abbreviated as ’dir.spec’; and deexcitation type transitions, i.e. Eab
ij where ni < na

with I 6= A or nj < nb with J 6= B , abbreviated as ’deexc’. In addition, elimination of

amplitudes affected by redundancy (i.e. at least one overlap eigenvalue below the numerical

zero in the corresponding block of S) is also examined, abbreviated as ’red’ in Table I.

(Note, that these amplitude types do not define disjoint sets of amplitudes. Some transi-

tions, e.g. Eai
ii may be considered both exchange and direct spectators. Moreover spectators

are heavily affected by redundancy.)

As Table I. indicates, roughly 20% of the amplitudes appear in redundant blocks of matrix

S in this example. Any attempt to converge the projection equations without redundancy

treatment was unsuccessful. Eliminating redundancy affected amplitudes altogether intro-
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MR-rCCD

amplitude type omitted
nT

(E − ErCCD) / Eh

ROH = 1.0 Å ROH = 4.0 Å
red 8079 9.562 · 10−4 8.284 · 10−4

deexc 7779 1.365 · 10−4 1.507 · 10−4

exc.spec 9067 7.764 · 10−5 6.154 · 10−5

dir.spec 9067 1.976 · 10−4 5.560 · 10−4

exc.spec, dir.spec 8127 3.216 · 10−4 2.429 · 10−4

exc.spec, dir.spec, deexc 6415 4.055 · 10−4 3.624 · 10−4

TABLE I. Number of retained amplitudes and difference in total energy compared to GVB-rCCD

when neglecting excitation types from Eq.(8). Example is provided by the symmetric dissociation

of the H2O molecule. See legend of Fig. 2. for basis and geometry. Abbreviation ’red’ refers

to redundancy affected amplitudes, ’deexc’ denotes deexcitation type transitions, ’exc.spec’ and

’dir.spec’ stand for exchange and direct spectators, respectively. See text for more.

duces a change in energy essentially on the mEh level. Other schemes examined in Table

I. are accompanied by about an order of magnitude smaller energy change. Interestingly

the role of exchange spectators appears somewhat smaller than direct spectators. Specta-

tors altogether amount to roughly 20% of the amplitudes. Deexcitation type transitions

are somewhat more numerous, around 23% of the total amplitudes. The energetic role of

deexcitations, however, appears smaller than the effect of all spectators. Variation of the

energy change with geometry is the most pronounced for direct spectators, but even for this

excitation type it falls in the same order of magnitude for ROH = 1.0 Å and 4.0 Å.

2. Bond dissociation of N2

Dissociation of the N2 molecule, presented in Fig. 5. is a second example for the multiple

bond breaking process. Results are similar to the case of the H2O molecule. The error of

GVB, on the order of hundreds of mEh is reduced to the ten mEh range by ERPA and by

rCCD. The performance of rCCD is somewhat better than ERPA at the price of a hump

discernible at around 2.4 Å. Parallelity of CCSD(T) is considerably better than either of the

GVB based schemes in the equilibrium region, but it becomes unreliable beyond 1.8 Å.
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FIG. 5. Dissociation of the N2 molecule in 6-31G* basis set. All valence GVB based rCCD and

ERPA corrected results are displayed along with HF based CCSD(T). Benchmark is provided by

shCI.

3. H4 system

The characteristic GVB PES with a cusp at αHXH = 90◦ is displayed in Fig. 6. for

the transformation of the H4 system from rectangle to square geometry. The cusp shape

is roughly conserved by ERPA as well as by rCCD, making a striking difference with the

zero derivative at the square arrangement of the correct, FCI curve. While the incorrect

curve shape is not alleviated much by the correction methods, the error of GVB is reduced

considerably by rCCD as shown by Fig. 6. Similarly to the previous examples, rCCD and

ERPA are comparable, the latter lagging behind rCCD by a couple of mEh-s.

4. BeH2 system

Atom Be is placed at the origin, coordinates of the hydrogen atoms in Å are (0,±1.344, 0),

(0,±1.1005, 0.529), (0,±0.8575, 1.058), (0,±0.7355, 1.323), (0,±0.6745, 1.455), (0,±0.614, 1.588)
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FIG. 6. Rectangle to square transformation of H4 in 6-31G** basis. A dummy atom at the center

of mass is denoted by X, distance XH is fixed at RXH = 0.75 Å. Benchmark is provided by FCI.

(0,±0.492, 1.852), (0,±0.3705, 2.117), (0,±0.3705, 3.175) respectively at points A, B, C, D,

E, F, G, H, I. In geometry points A-E the two valence geminals can be assigned to the two

Be-H bonds. Starting at point F, geminals of the the lowest energy GVB solution can rather

be identified as one residing on atom Be and another describing the H-H bond. Switching

between two Lewis structures is not obvious from the results shown in Fig. 7. since the

switching point is not explored with fine resolution for this system. Dunning’s DZ set108 is

taken for the hydrogen atoms. For beryllium the basis of Purvis et al.105 is used with the p

function decontracted, leaving the most compact primitive (exponent 5.693880) alone and

contracting the remaining two into a second p function (exponents 1.555630, 0.171855 and

coefficients 0.144045, 0.949692 respectively). A pair of single excitations with imaginary

excitation energy, are omitted from the ERPA correction shown in Fig. 7 at geometry points

E and I. The rCCD calculation is also tinkered at point E: excitations Err
pq and Ess

pq had

to be omitted from T in order to achieve convergence. (At this point orbitals p, r and q, s

constitute one and the other BeH geminal, respectively.)

Compared to the FCI benchmark, GVB-ERPA describes a larger portion of the correla-

tion than GVB-rCCD in this example. Fig. 7. also reflects that parallelity of GVB-rCCD

is slightly better: difference from FCI lies in the range 3-29 mEh for GVB-ERPA, and 13-30

mEh for GVB-rCCD.
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MR-rCCD
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FIG. 7. Total energy of the BeH2 system starting from a linear molecule (point A) and ending in a

distant Be atom and a H2 molecule (point I). All valence GVB based rCCD and ERPA corrected

results are displayed, FCI serves as benchmark. Basis set is of DZ quality, geometry agrees with

Ref.105 The beryllium atom lies at the origin of the coordinate system. Coordinate z of the H

atoms is plotted on axis x, labeled dBe-H2
. See text for more details.

The BeH2 system, as computed by Purvis and Bartlett105 has become a widely used test

of performance in the presence of strong correlation. It offers the possibility of comparison

with some MR based CC methods mentioned in the Introduction. Energy differences taken

with FCI, collected in Table II. reflects that the performance of GVB-rCCD lags behind

MR based CCSD schemes by roughly two orders of magnitude. This holds true regarding

either of the benchmark methods displayed in Table II. Among these CASCCSD(sw) is a

single-reference based, pivot-dependent formulation due to Lyakh and coworkers11, adapted

for the MR situation following the basic idea of Ivanov and Adamowiz.7,8 Abbreviation ”sw”

in the acronym refers to a swap of the pivot between dBe-H2
= 2.0 bohr and dBe-H2

= 2.5 bohr.

Methods Mk-MRCCSD and ic-MRCCSD fall in the category of genuine MR-CC techniques

formulated in the Hilbert-space. The JM parametrization is harnessed by Mk-MRCCSD

developped by Mukherjee and coworkers19 while ic-MRCCSD refers to the internally con-

nected approach of Evangelista and Gauss.38 Concerning the theoretical framework, it is

the latter of the above three methods that bears the most kinship with GVB-rCCD. The

uniformly huge error of GVB-rCCD as compared to either of the benchmarks is an obvious

consequence of the ring approximation, that wipes out an ample number of terms of the
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MR-rCCD

dBe-H2
/ bohr ∆EGVB-rCCD / mEh ∆ECASCCSD(sw) / mEh ∆EMk-MRCCSD / mEh ∆Eic-MRCCSD / mEh

2.000 13.013 0.024 0.609 0.239
2.500 13.811 0.044 0.320 0.385
2.750 29.772 0.072 -0.613 1.043
3.000 26.611 0.402 -1.140 0.534
3.250 23.241 0.275 0.058 0.303
3.500 24.675 0.206 0.257 0.222
3.750 24.559 0.158 0.227 0.169

TABLE II. Energy difference computed as ∆E = E − EFCI for the BeH2 molecule. The

CASCCSD(sw) results are quoted from Ref.111 The Mk-MRCCSD and ic-MRCCSD results are

quoted from Ref.112 Reference function underlying CASCCSD(sw), Mk-MRCCSD and ic-MRCCSD

is CAS(2,2). Basis set is of DZ quality, geometry agrees with Ref.112 The beryllium atom lies at

the origin of the coordinate system. Coordinate z of the H atoms is labeled dBe-H2
. See text for

more details.

CCSD equations and together with these a large portion of dynamical correlation. See e.g.

Refs.109,110 to grab the extent of error of the ring approximation in the single reference based

context. The assessment of Table II. highlights that abandoning the ring approximation is

essential for the present theory to become competitive with state of the art MR-CC methods.

Work along this line is currently in progress in our laboratory.

B. Torsional motion of small molecules

The GVB model accounts for the interaction of chemical bonds only at the SCF level.

The interest in torsional barriers described by geminal based methods70,114 derives from this

fact, since covalent bonds are essentially conserved but their interaction changes during such

processes. The three examples picked here are the bending motion of H2O in Fig. 8., the

torsional motion of H2O2 in Fig. 9., and the umbrella inversion of NH3 in Fig. 10.

Figures 8.-10. uniformly show a considerable improvement over GVB both by rCCD and

ERPA. The rCCD correction is closer to the CCSD(T) than ERPA for H2O bending and

H2O2 torsion. The quality of rCCD and ERPA are similar when compared with CCSD(T)

on the example of NH3 inversion, the error curves in the bottom panel of Fig. Eq.(10). fall

in the kcal mol−1 range. According to the top panel of Fig. Eq.(10)., rCCD barriers are

slightly better in this example.
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FIG. 8. Bending PES of the H2O molecule in Dunning-type cc-pVTZ basis set.113 Bond lengths are

fixed at ROH = 0.96 Å. All valence GVB based rCCD and ERPA corrected results are displayed,

CCSD(T) serves as benchmark. Energy difference is measured from the minimum of the respective

curve in the top panel, while it is computed as ∆E = E − ECCSD(T) in the bottom panel.

C. Deprotonation energies

Deprotonation energy of the H2O and CH3OH molecules is calculated as the adiabatic

energy difference between the neutral molecule and the anion. Geometry for both structures

is optimized at the B3LYP/6-31G* level. Comparing the results collected in Table III with

the CCSD(T) benchmark we see that the error of the dissociation energy is on the order of

10 kcal mol−1 by GVB. This is reduced to a couple of kcal mol−1 both by GVB-ERPA and

GVB-rCCD. Accuracy of the two correction schemes does not appear remarkably different

in these test cases.

IV. CONCLUSION

The ring approximation worked out and assessed with pilot numerical applications rep-

resents a new member in the family of icMR-CC methods. Assuming a GVB reference, it
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FIG. 9. Torsional PES of the H2O2 molecule in Dunning-type cc-pVDZ basis set.113 Bond lengths

are fixed at ROH = 0.97 Å and ROO = 1.45 Å the value of the bond angle is αOHO = 99.5◦. The

dihedral angle is labeled αtors on axis x . All valence GVB based rCCD and ERPA corrected results

are displayed, CCSD(T) serves as benchmark. Energy difference is measured from the minimum of

the respective curve in the top panel, while it is computed as ∆E = E − ECCSD(T) in the bottom

panel.

offers an O(N6) way of incorporating a part of dynamical correlation into the wavefunc-

tion. The MR-rCCD correction brings a significant improvement over GVB, as illustrated

on computed potential energy curves and energy differences. At the same time, MR-rCCD

can not amend the deficiencies of GVB originating in perfect pairing. The GVB model being

relevant for ground states, applications resort to the ground state of the systems studied.

Performance of MR-rCCD is often comparable to the companion GVB-ERPA method.

Small humps, on the order of mEh have been observed on bond breaking PES obtained

with MR-rCCD, similar to single reference based RPA. A common feature of the rCCD and

ERPA corrections is the necessity of pruning excitations admitted in the Ansatz, that is

eventually controlled by numerical thresholds. When following a PES it has to be ensured

that excitations are uniformly admitted in the geometry range considered. An advanta-

geous feature of MR-rCCD over GVB-ERPA is that N -representable RDM-s are possible to
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FIG. 10. Umbrella inversion of the NH3 molecule in cc-pVTZ basis set.113 Bond lengths are fixed

at RNH = 1.01 Å, X denotes a dummy atom in the center of mass. All valence GVB based rCCD

and ERPA corrected results are displayed, CCSD(T) serves as benchmark. Energy difference is

measured from the minimum of the respective curve in the top panel, while it is computed as

∆E = E − ECCSD(T) in the bottom panel.

construct based on the MR-rCCD corrected wavefunction.

Overlap treatment represents the source of a further numerical threshold in the proce-

dure examined. This has, however, not been observed to cause any numerical issue in the

pilot applications. Handling of overlap based on frames, as performed here, is a generally

applicable technique, irrespective of the truncation of the CC equations or the MR-CC flavor

adopted. An important aspect of the overlap treatment based on frames is that no excita-

tions are dropped, in spite of over-completeness. Since excitation are not eliminated, overlap

treatment is not expected to undermine desirable properties, e.g. unitary invariance.

Intruder effect has been detected with the present MR-rCCD in one instance, and de-

serves further exploration. Extensivity analysis in the case of spin-cumulants connecting the

separated subsystems is likewise deferred to a follow-up work.

Contemplating on possible extensions of the theory it has to be kept in mind that cumu-
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MR-rCCD

Eneutral / Eh Eanion / Eh ∆E / kcal mol−1

GVB -76.1060 -75.4627 403.62
H2O GVB-rCCD -76.2719 -75.6453 393.18

GVB-ERPA -76.2580 -75.6245 397.51
CCSD(T) -76.2739 -75.6438 395.42

GVB -115.1717 -114.5318 401.58
CH3OH GVB-rCCD -115.4435 -114.8234 389.12

GVB-ERPA -115.4269 -114.7986 394.25
CCSD(T) -115.4556 -114.8336 390.29

TABLE III. Deprotonation energies of the H2O and CH3OH molecules in aug-cc-pVDZ basis set.

All valence GVB based rCCD and ERPA corrected results are displayed, CCSD(T) serves as

benchmark.

lants appearing as a consequence of MR-GWT represent the main obstacle. The advantage

of a reference function exhibiting pair structure can not be overemphasized in this respect,

since the majority of cumulant elements are wiped out just for this reason. Extension to-

wards keeping the pair function character of the reference but abandoning the perfect pairing

approximation is a possible way forward, since unrestriction at the geminal level (i.e. singlet-

triplet mixed geminals) does not destroy the fragment structure of the cumulant, nor does

half-projection.115

Rank four is the highest rank of cumulants retained in the present scheme, essentially

due to the ring approximation. Investigation in the line of systematic selection among

relatively simple terms beyond the ring approximation is in progress and will be presented

in a forthcoming report. Incorporation of single excitations is relatively straightforward and

will be included together with beyond ring terms. We finally mention that cumulants of

rank between 5 and N being zero with GVB (N standing for the number of electrons) may

point to a GVB based full CCSD theory deserving exploration.
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MR-rCCD

The FCI results were computed with a code implemented by Zoltán Rolik (Budapest

University of Technology and Economics).

The data that support the findings of this study are available from the corresponding

author upon reasonable request.

Appendix A: Tensors of the spin-free rCCD equations

Elements of tensor B arising from Eq.(11) fulfill

ninjn̄
an̄bBab

ij = ninjn̄
an̄b v̄abij +

+
1

2

∑

p

(
n̄a fapΛpb

ij − ni f
p
i Λab

pj + n̄b f bpΛ
ap
ij − nj f

p
j Λab

ip

)

+
1
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∑

p,q

(
n̄an̄b vabpqΛ

pq
ij + ninj v

pq
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pq + njn̄
b v̄bqjpΛ

ap
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a v̄aqip Λbp
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njn̄

a
(
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+
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+
1

12

∑

p,q,r,s
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ijqs . (A1)

Comparing with the expression in Appendix B of the previous study64 lines 5-8 of Eq.(A1)

are new. These terms appear since we presently allow for products of cumulants and cu-

mulants beyond rank Λ2 . Terms in line 2 of Eq.(A1) were overlooked in the previous work.

Concise amplitude equation, Eq.(14) assumes tensor B being a two-index quantity, with

orbital indices aligned in column (e.g. ia and jb in Eq.(A1)) forming a hiper index. The

same holds for tensors A and t . Elements of BT read as (BT )abij = Bba
ji Symmetry relations
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MR-rCCD

applying to tensor B involve BT = B . In accordance with

ninjn̄an̄b (B†)abij =
1

2

〈
: Eji

ba : HN

〉

we require (B†)abij = (Bba
ji )

∗ . Due to the occupation numbers appearing in Eq.(A1), B is not

self adjoint, since (Bba
ji )

∗ 6= Bji
ba . A relation, however, exists between these two quantities,

given by (Bba
ji )

∗ = Bji
ba(nb → −n̄b, na → −n̄a, n̄j → −nj , n̄i → −ni) , with nb → −n̄b etc.

in parenthesis referring to substituting nb by −n̄b . (Note that particle/hole occupation

numbers appearing as a consequence of MR-GWT are tied to the upper/lower position of

the corresponding index in Eq.(A1). Index convention i, j and a, b is used just as a guide.)

In case of real quantities f , v and Λ the simple relation (B†)abij = Bab
ij holds, due to the

structure of Eq.(A1).

In analogy with the above, elements of tensor F † are introduced as

nin̄a(F
†)ai =

1

2

〈
: Ei

a : HN

〉
,

(F †)ai being given by

nin̄a(F
†)ai = nin̄af

i
a +

1

2

∑

p,q

f qpΛpi
qa

− 1

2

∑

p,q,r

(
niviqprΛ

pr
aq − n̄av

pr
aqΛ

iq
pr

)
+

1

4

∑

p,q,r,s

vqsprΛ
pri
qsa . (A2)

Similarly to case of tensor B , F a
i = (F i

a)
∗(n̄i → −ni, na → −n̄a) = (F †)ia(n̄i → −ni, na →

−n̄a) holds for tensor F . As an example for the effect of occupation number substitutions,

take the second term on the right hand side of Eq.(A2). It contributes 1
2

∑
p,q(n

an̄i)
−1f qpΛpa

qi

to (F †)ia while it becomes 1
2

∑
p,q(n̄

ani)
−1f qpΛpa

qi in F a
i .

Tensor A of the Riccati equation Eq.(14) is composed of the elements

Acjkb = δkjn̄
cF c

b (nb → −n̄b) − δcbnkF
j
k (n̄j → −nj) + n̄cnkB

cj
kb(n̄

j → −nj , nb → −n̄b) ,(A3)

with notation nb → −n̄b and n̄j → −nj explained above. Tensor A is not symmetric,

(AT )icak = Acika 6= Aicak . Comparison with tensor A of Ref.64 reveals that the Λ3 involving last

term of Eq.(A2) is new. Apart from that, new terms of A are generated by new terms of B

given in Eq.(A1). Comparison with tensor A in Appendix 2. of Ref.64 further reveals that
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MR-rCCD

δcb is missing from the first term and δkj is deleted from the second term on the right hand

side of Eq.(A3). This ensures invariance of the theory to a rotation among core orbitals

(ni = 1) or among virtual orbitals (n̄a = 1). These are the orbital rotations leaving the

1-RDM of the reference APSG function intact in general.

Appendix B: Cumulants of the APSG wavefunction

Cumulants up to rank λ4 were generated in spin-orbital form by the equations Eq.(15a),

Eq.(15b), Eq.(16a) and Eq.(16b). After spin-summation, elements up to rank 3 are given

by

Λp
q = 2δpqn

p,

Λpr
qs = 2δPQc

pcqδ
prδqs − δPR

(
Λp
qΛ

r
s −

1

2
Λp
sΛ

r
q

)
, (B1)

Λprt
qsu = −δPRδRT δTP

(
Λp
qΛ

r
sΛ

t
u −

1

2
Λp
qΛ

r
uΛ

t
s +

1

4
Λp
uΛ

r
qΛ

t
s −

1

2
Λp
uΛ

r
sΛ

t
q +

1

4
Λp
sΛ

r
uΛ

t
q −

1

2
Λp
sΛ

r
qΛ

t
u

)
−

−δPR
(

Λp
qΛ

rt
su −

1

2
Λp
sΛ

rt
qu −

1

2
Λp
uΛ

rt
sq

)
− δRT

(
Λr
sΛ

tp
uq −

1

2
Λr
uΛ

tp
sq −

1

2
Λr
qΛ

tp
us

)
−

−δTP
(

Λt
uΛ

pr
qs −

1

2
Λt
qΛ

pr
us −

1

2
Λt
sΛ

pr
qu

)
. (B2)

The expression for Λ4 is too lengthy to type out. It can still be manipulated rather easily

with symbolic algebra programs. Spin-summations involved in Λ4 can be performed with

the help of relations91
∑

σ1,σ2,σ3,σ4

λpσ1rσ2qσ1sσ3
λtσ3 vσ4
uσ2wσ4

=
1

2
Λpr
qsΛ

t v
uw, (B3)

and
∑

σ1,σ2,σ3,σ4

λpσ1rσ2qσ3sσ4λ
tσ3 vσ4
uσ1wσ2 =

1

6

(
2Λpr

qsΛ
t v
uw + Λpr

qsΛ
t v
wu + Λpr

sqΛ
t v
uw + 2Λpr

sqΛ
t v
wu

)
. (B4)

The structure of cumulants in the case of geminal dissociation merits a short comment.

Taking the example of a GVB geminal with orbitals p and q assigned to it, geminal coeffi-

cients and occupation numbers in the dissociation limit take the form

cp = −cq =
1√
2

(B5)
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and

np = nq =
1

2
. (B6)

Nonzero elements of Λ1 and Λ2 are

Λp
p = Λq

q = 1 (B7)

and

Λpp
pp = Λqq

qq = Λpq
qp =

1

2
, (B8)

Λpq
pq = Λpp

qq = Λqq
pp = −1 . (B9)

Substitution of Eqs.(B7) and (B8) into Eq.(B2) reveals that all elements of Λ3 are zero, in

accordance with the general statement on the vanishing of odd rank cumulants in the limit

of reaching perfect particle-hole symmetry.37,76

Note, that the requirement of Λ1 being diagonal does not fix geminal orbitals in the

dissociation limit, due to the degeneracy in occupation numbers, c.f. Eq.(B6). It is the

diagonal form of the coefficient matrix, Eq.(B5), that fixes the orbitals in a unique manner

in the dissociated limit in the present formulation. The respective orbitals, p and q are

delocalized over the dissociated fragments in this situation.

Appendix C: Details of redundancy handling

In order to justify the procedure described in Section II E. introduce an auxiliary or-

thonormal basis obtained following Löwdin’s canonical orthogonalization scheme116

|eµ〉 =
∑

ν

|ψν〉Vνµσ−1
µ , µ = 1, . . . ,M , (C1)

where Vνµ are elements of V containing the eigenvectors of S as columns, σµ =
√

Σµ

and Σµ are eigenvalues of S , c.f. Eq.(25). Matrix F (not to be mixed with tensor F

of Appendix A) composed of elements Fνµ = 〈eν |ψµ〉 provides the matrix of the so-called
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synthesis operator,72 its singular value decomposition (SVD) form of reading as

F = UσV † , (C2)

where

σ =
(
σ′ 0

)
,

σ′ = diag(σµ) is M × M , σ is M × N and U is an M × M unit matrix. Matrix F

obviously fulfills F †F = S . The product in reverse order, FF † = Σ′ obeying

APU ≤ FF † ≤ BPU ,

shows that functions ψµ constitute a frame. In the above A = min
µ

Σ′
µ and B = max

µ
Σ′
µ

provide the tightest bounds and PU = UU † is the M×M unit matrix.

Projector PU can be expressed with F in the form

F F̃ † = PU , (C3)

where

F̃ = FS−1 = U
(
σ′−1 0

)
V † (C4)

is the synthesis matrix of the so-called canonical dual frame. In Eq.(C4) S−1 is understood

as a Moore–Penrose inverse. The dual frame vectors, ψ̃µ are associated with columns of F̃ .

Based on Eq.(C3), ψ̃µ are used as bra vectors and ψµ are considered as ket vectors when

writing the matrix vector form of the amplitude equations.

A justification of working with the over-complete set of frame vectors and their dual may

be given by introducing a linearly independent set via extension of matrix σ to dimension

N ×N , according to

σ =


 σ′ 0

0 1


 .

The SVD form of the extended synthesis matrix is constructed in analogy with Eq.(C2) as

F = UσV † , (C5)

with U denoting the unit N ×N matrix. Columns of F represent N linearly independent
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vectors, which follows from the overlap matrix S = F
†
F lacking zero eigenvalues. Inverse

of S facilitates the construction of the dual set in the extended space as

F̃ = F S
−1

= Uσ−1V † .

Columns of F and F̃ are biorthonormal, characterized by F̃
†

F = V V † . In comparison,

frame vectors and their dual are not biorthonormal, their product yielding

F̃ †F = S−1S = V


 PU 0

0 0


V † . (C6)

The matrix of Eq.(C6), denoted as

R = V


 PU 0

0 0


V †

is obviously idempotent. It is a key quantity, connecting synthesis matrices via



 F

0



 = FR , (C7)



 F̃

0



 = F̃R , (C8)

with the bottom zero block on the lhs of the above equations being of dimension (N −M)×
N .

We now proceed to the expansion of the wavefunction. With the help of frame vectors

one can write the U -component of ΨCCD as

PU |ΨCCD〉 =
∑

µ

|ψµ〉tµ + O(t2) , (C9)

while the extended frame vectors allow to parametrize the same component as

PU |ΨCCD〉 =
∑

µ

|ψµ〉tµ + O(t
2
) , (C10)

with PU standing for the projector of the space spanned by {ψµ}Nµ=1 and ψµ in Eq.(C9) are
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associated with the columns of matrix F padded with a zero (N −M) × N block at the

bottom. Associating ψν with the columns of F , the relation

|ψµ〉 = PU
∑

ν

|ψν〉Rνµ (C11)

holds based on Eq.(C7). Substituting Eq.(C11) into Eq.(C9) results

PU |ΨCCD〉 = PU
∑

µ

∑

ν

|ψν〉Rνµtµ + O(t2) (C12a)

= PU
∑

µ

|ψµ〉(Rt)µ + O(t2) . (C12b)

Comparing Eq.(C12b) and Eq.(C10) one can deduce

Rt = t , (C13)

omitting terms quadratic in the amplitude.

Elaborating further on amplitudes, let us relate t and t to a third amplitude vector,

corresponding to {eµ}Mµ=1 denoted by te . We regard te a column vector of length M. Based

on Eq.(C1) the relation between t and te reads

t = V



 σ′−1

0



 te . (C14)

At the same time

|eµ〉 =
∑

ν

|ψν〉Vνµσ−1
µ , µ = 1, . . . ,N , (C15)

facilitates to relate t and te as

t = V


 σ′−1 0

0 1





 te

0


 . (C16)

Comparison of Eq.(C14) and Eq.(C16) reveals that not only Eq.(C13) holds, but that t

of Eq.(C14) and t are the same. Note, however, that Eq.(C1) is not the only way to

express {eµ}Mµ=1 with {ψµ}Nµ=1 due to over-completeness of the latter set. Consequently
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Eq.(C14) is just one of the possibilities of generating t from te . Expression of {eµ}Nµ=1 with

{ψµ}Nµ=1 according to Eq.(C15) is on the other hand unique. The equivalence of vectors t

and t of Eq.(C14) and Eq.(C16) can be interpreted as follows. Introduction of the linearly

independent extended functions singles out one particular vector t, that is related to te

according to Eq.(C14). This is the origin of removing the ill defined nature of t while

conserving an amplitude vector of length N . Other vectors t , fulfilling Eq.(C9) and not

matching t, can be related to it via Eq.(C13).

It is also instructive, to project Eq.(C12b) with functions ψ̃ν , as well as project Eq.(C9)

with the dual frame vectors ψ̃ν . In both cases one obtains

(Rt)ν + O(t2) = 〈ψ̃ν |ΨCCD〉 = 〈ψ̃ν |ΨCCD〉 ,

based on Eqs.(C13) and (C6). This indicates that it is not necessary to explicitly construct

F̃ and F , since the same result is obtained when working with the set F̃ ,F .

With this in hand, we consider the amplitude equations written in the form

∑
µ

〈ψ̃ν |HN |ψµ〉tµ = −〈ψ̃ν |HN |Φ〉− 1
2

∑
µλ

〈ψ̃ν |HN : EµEλ : |Φ〉C tµtλ−O(t3). (C17)

Coupled cluster iteration usually proceeds via arranging coupling terms
∑
µ6=ν

〈ψ̃ν |HN |ψµ〉tµ on

the rhs of Eq.(C17) and getting an update for tµ via division by 〈ψ̃µ|HN |ψµ〉 . Instead of this

route let us consider updating tµ via keeping coupling terms on the lhs and inversion of the

coefficient matrix given by the elements 〈ψ̃ν |HN |ψµ〉 . In the case where the set of {ψµ}Nµ=1

is over-complete, the coefficient matrix is invertible only in the Moore-Penrose sense. To

make this transparent let us rewrite 〈ψ̃ν |HN |ψµ〉 based on Eqs.(C2) and (C4) to get

〈ψ̃ν |HN |ψµ〉 =

M∑

γλ

Vνγσ
′−1
γ αγλσ

′
λV

∗
µλ (C18)

with

αγλ = 〈eγ|HN |eλ〉 , γ, λ = 1, . . . ,M (C19)

Since the set {eµ}Nµ=1 is linearly independent, matrix α given by the elements in Eq.(C19)
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is invertible. The coefficient matrix of Eq.(C17)

V


 σ′−1

0


α

(
σ′ 0

)
V †

can be inverted in Moore-Penrose sense with the use of α−1 as

V


 σ′−1

0


α−1

(
σ′ 0

)
V † . (C20)

Introducing

βλ(t) = 〈eλ|HN |Φ〉+ 1

2

∑

µρ

〈eλ|HN : EµEρ : |Φ〉Ctµtρ+O(t3) , λ = 1, . . . ,M (C21)

the rhs of Eq.(C17) can be expressed as −
M∑
λ

Vνλσ
′−1
λ βλ(t) , giving rise to

t = V


 σ′−1

0


α−1β(t) (C22)

upon multiplying Eq.(C17) with Eq.(C20). Comparing Eq.(C22) and Eq.(C14) one can

deduce

te = α−1β(t) . (C23)

Amplitude update based on the Moore-Penrose inverse of the coefficient matrix given by

〈ψ̃ν |HN |ψµ〉 is hence equivalent to updating in the Löwdin-basis according to Eq.(C23) and

transforming te with the help of Eq.(C14). The treatment is general in the sense that it is

applicable to any excitation level or approximate form of the CC equations. Merely matrices

α and β(t) need to be adapted to the particular CC scheme.
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73D. W. Small and M. Head-Gordon, The Journal of Chemical Physics 130, 084103 (2009).

74P. R. Surján, Topics in current chemistry 203, 63 (1999).
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