
Theoretical interpretation of Grimme’s spin-component-scaled
second order Møller-Plesset theory

Ágnes Szabados
Laboratory of Theoretical Chemistry, Institute of Chemistry, Loránd Eötvös University, P.O. Box 32,
H-1518 Budapest, Hungary

�Received 17 October 2006; accepted 9 November 2006; published online 6 December 2006�

It is shown that spin-component-scaled second order Møller-Plesset theory proposed by Grimme
�J. Chem. Phys. 118, 9095 �2003�� can be interpreted as a two-parameter scaling of the zero order
Hamiltonian, a generalization of the approach reported by Feenberg �Phys. Rev. 103, 1116
�1956��. © 2006 American Institute of Physics. �DOI: 10.1063/1.2404660�

I. INTRODUCTION

Second order perturbation theory �PT� in the Møller-
Plesset �MP� partitioning1 is among the most popular ap-
proaches to approximate total energies of atoms and also of
molecules at around equilibrium geometry. Its cost per per-
formance ratio has become relatively advantageous since
computationally efficient formulations have been worked out
in terms of localized orbitals2–4 or in atomic orbitals using
Laplace transformation5–8 or by utilizing various approxi-
mate local treatments9–11 complemented by auxiliary basis
set fitting12 and applying a dual basis set approach.13,14

Though errors of the MP2 method are relatively small it has
been a challenge since its introduction to improve it within
the framework of second order PT. The partitioning proposed
by Epstein and Nesbet15,16 may had offered a way to calcu-
late second order PT energies better than MP2; numerical
experience, however, indicates that EN2 energies are often
inferior to MP2,17,18 sometimes overshooting the full con-
figuration interaction �FCI� result.

A more successful approach, in terms of numerical re-
sults, to get a better performing second order PT formula was
reported by Feenberg and Goldhammer19 and Feenberg,20

who applied one parameter to scale the zero order Hamil-
tonian and modify the perturbation operator accordingly. The
scaling parameter was determined by requiring that the en-
ergy, written up to order of 3 is minimal. Feenberg scaling
provides second order total energies remarkably better than
MP2;21 moreover convergence radius of the PT expansion
was shown to get enlarged by Feenberg’s approach.22 An-
other criterion for the scaling parameter, different from Feen-
berg’s proposition, was given by Goodson,23–25 who used the
scaling to improve convergence in a more direct manner. He
suggested to calculate quadratic Padé approximants to judge
the position of the singularity �branching� of function E�z�,
lying closest to the origin on the complex plain, and use the
scaling parameter to shift the singularity away from the ori-
gin. Numerical tests of this procedure indicate that improv-
ing the convergence has a considerable benefit at the second

order PT energy. Unfortunately, neither Feenberg’s nor
Goodson’s method to set the scaling parameter preserves or-
der by order size consistency of the PT series.26 The simplest
workaround for this problem is to fix one value for the pa-
rameter in a system-independent manner.

Apart from Feenberg scaling, level shifts are also exten-
sively applied in PT corrections mainly for avoiding quaside-
generate situations.27–29 Introducing separate shift parameters
for each level and setting them in Feenberg’s spirit leads to
the so-called CEPA-0 or DMBPT-� or LCCD energy at sec-
ond order if starting from the MP partitioning of the
Hamiltonian.30 As compared to the one-parameter Feenberg
theory, the number of shift parameters needed to reach the
CEPA-0 energy is given by the number of doubly excited
determinants. A nondiagonal representation of the zero order
Hamiltonian in the determinantal basis was also reported to
lead to the CEPA-0 energy at second order PT.31,32 An ex-
plicit expression for such a zero order Hamiltonian in the
Fock space has been given recently by Fink.33

An alternative modification of the MP2 energy formula
suggested by Grimme34 operates with two scaling param-
eters, one multiplying the so-called parallel spin component
of the expression and the other multiplying the antiparallel
component. This scaling is fully empirical in nature and has
been proved to give second order results superior to MP2. In
the present work it is shown that Grimme’s scaling qualita-
tively corresponds to a two-parameter extension of Feen-
berg’s scaling. In Feenberg’s spirit, a variational criterion can
be used to set the values of the scaling parameters: the total
energy, written up to order of 3 in perturbation theory, is set
stationary. The characteristic feature of Grimme’s scaling
factors that antiparallel spin-component is overweighted and
parallel spin-component is damped with respect to MP2 is
recovered also from the Feenberg procedure. In this respect
Grimme’s scaling can be viewed as a two-parameter approxi-
mation to the many-parameter procedure leading to CEPA-0.
Conversely, Grimme’s argument for the value of the scaling
parameters provides a qualitative interpretation of the im-
provement obtained when stepping from MP2 to CEPA-0.
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II. THEORY

A. Feenberg’s scaling

Starting from a

H = H�0� + W

partitioning of the total Hamiltonian, Feenberg redefined the
splitting,20

and set the value of the scaling parameter � from the condi-
tion that the energy up to the order of 3 in the primed parti-
tioning is minimal. Spectral form of the primed zero order
Hamiltonian is given by

H�0�� = �
K

EK

1 − �
�K��K� ,

where EK and �K� are eigenvalues and eigenfunctions of H�0�.
For the present purpose it is useful to rewrite H�0�� as

H�0�� = E0
�

1 − �
+ E0�0��0�

+ �
K�0

	EK
1

1 − �
− E0

�

1 − �

�K��K� . �1�

Omitting the constant term from Eq. �1�, one gets

H�0�� = E0�0��0� + �
K�0

EK� �K��K� , �2�

with

EK� = EK
1

1 − �
− E0

�

1 − �
. �3�

From the point of view of PT, forms �1� and �2� of the zero
order Hamiltonian are essentially equivalent, since a constant
shift of the zero order spectrum affects only the zero and first
order energies �their sum being invariant� and the corrections
are identical from second order on. It is form �2� that is
extended to two parameters in Sec. II C by considering scal-
ing factors that depend on the nature of the excited levels
�K�.

The redefined zero order Hamiltonian and perturbation
generate the new second order energy correction,

E�2�� = �1 − ��E�2�,

which by Feenberg’s minimal condition takes the form

EFE
�2� =

�E�2��2

E�2� − E�3� . �4�

Apparently, EFE
�2� is equivalent to a �2, 1� Padé approximant of

the original PT series. The Feenberg-optimized scaling pa-
rameter behind Eq. �4� is given by

1 − � =
E�2�

E�2� − E�3� .

It is easy to see that the condition d�E�2�+E�3�� /d�=0 is
equivalent to the requirement that the third order energy in
the modified perturbation series is zero, i.e., E�3��=0.

By simple substitution it can be shown that Eq. �4�
scales correctly with the number of identical isolated sub-
systems, i.e., for the noninteracting dimer A . . .A

EFE
�2��A . . . A� = 2EFE

�2��A�

holds. On the other hand, for nonidentical noninteracting
units, e.g., A . . .B

EFE
�2��A . . . B� � EFE

�2��A� + EFE
�2��B� ,

which gives rise to a size inconsistency of Eq. �4� in the
general case.

B. Grimme’s spin-component scaling

A zero order Hamiltonian written as

H�0� = E0�0��0� + �
K�0

EK�K��K� , �5�

and the perturbation defined as W=H−H�0� leads to the well-
known second order PT energy expression

E�2� = − �
K�0

��0�H�K��2

�K
,

with

�K = EK − E0. �6�

Specifying Eq. �5� for the Møller-Plesset partitioning in ca-
nonical molecular orbitals �0� denotes the Hartree-Fock wave
function �HF�, �K� refers to excited determinants, and E0 and
EK are sums of orbital energies occupied in the given deter-
minant. Provided that the Hartree-Fock problem is solved,
only doubly excited determinants contribute to the second
order energy. Among double excitations one can distinguish
parallel-spin excitations TK, which are of the type

�TK� = b�
+a�

+i�
− j�

−�HF� ,

and antiparallel-spin excitations SK, that can be of the form

�SK� = b�
+a�̄

+i�̄
− j�

−�HF�

or

�SK� = b�
+a�̄

+i�
− j�̄

−�HF� .

We apply the notation that i , j , . . . refer to occupied indices,
a ,b , . . . to virtual indices, and � and �̄ denote orthogonal
spin functions. In closed shell theory, excitation energy de-
nominators corresponding to the above functions are all the
same, independent of the spin labels

�K = �a + �b − �i − � j ,

where �i stand for molecular orbital energies. Using the
above notation the MP2 formula breaks down for a parallel-
spin and a anti-parallel-spin terms,
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EMP
�2� = − �

TK

��HF�H�TK��2

�K
− �

SK

��HF�H�SK��2

�K

= − �
ijab

	 �ij�ab��ij�ab�
�a + �b − �i − � j

+
�ij�ab�2

�a + �b − �i − � j

 , �7�

with two-electron integrals written in �12�12� convention and
�ij �ab�= �ij �ab�− �ij �ba�. To alter the weight of parallel- and
antiparallel-spin pair energies Grimme introduces two scal-
ing factors pS and pT as

ESCS−MP
�2� = − pT�

TK

��HF�H�TK��2

�K
− pS�

SK

��HF�H�SK��2

�K
.

�8�

Based on numerical experience, the value pS=6/5 was
proposed to cure the usual underestimation of the MP2 en-
ergy for two electron systems, where only the antiparallel
pair energy is nonzero. Least-squares fitting to a set of reac-
tion energies computed by the QCISD�T� method in valence
quadruple-� quality basis set provided pT=1/3 for the other
parameter.34

Since its introduction, Grimme’s scaling has been suc-
cessively used for various systems.35–37

C. Spin-component scaling as a Feenberg scaling

The second order SCS-MP expression �Eq. �8�� can be
looked upon as if there were two, spin-dependent excitation
energy denominators for a given orbital quartet �a ,b , i , j in
the form

�K
T = �K/pT �9�

and

�K
S = �K/pS. �10�

These denominators involve a zero order Hamiltonian simi-
lar to Eq. �5�,

HSCS−MP
�0� = E0�0��0� + �

TK

EK
T �TK��TK� + �

SK

EK
S �SK��SK�

+ �
K

singly,triply,etc.,excited

EK�K��K� . �11�

Spin-component dependent zero order energies of doubly ex-
cited determinants are obtained by combining Eqs. �9� and
�10� with Eq. �6� to get

EK
T =

�K

pT
+ E0 = EK

1

pT
+ E0

pT − 1

pT

and

EK
S =

�K

pS
+ E0 = EK

1

pS
+ E0

pS − 1

pS
.

Substituting pS or pT for 1−� it is readily seen that the above
zero order energies have the same form as Feenberg-scaled
excited energies shown in Eq. �3�.

Following Feenberg, we require that the total energy,
written up to order of 3 in perturbation theory, is stationary
with respect to pS and pT. The main purpose of the present
paper is to compare this choice with Grimme’s empirical
values. It has been shown that the above variational condi-
tion results a vanishing third order correction not only in the
case of a one-parameter scaling but also if using levels shifts
to repartition the Hamiltonian.30 If working with level shift
parameters, this condition leads to the CEPA-0 or LCCD
energy at second order which outperforms the MP2 energy in
most cases.30,38

As no scaling is applied to the ground state in Eq. �11�,
zero and first order energies are unaffected. Conditions for
the two parameters are written as

��ESCS−MP
�2� + ESCS−MP

�3� �
�pS

= 0,

and similarly for pT. The scaled second order energy is given
in Eq. �8� and the scaled third order has the form

ESCS−MP
�3� = pT

2 �
TKTL

�HF�H�TK���TK�H�TL� − �TKTL
���K/pT� + E�0� + E�1����TL�H�HF�

�K�L

+ pS
2 �

SKSL

�HF�H�SK���SK�H�SL� − �SKSL
���K/pS� + E�0� + E�1����SL�H�HF�

�K�L

+ 2pTpS �
TKSL

�HF�H�TK��TK�H�SL��SL�H�HF�
�K�L

. �12�

Altogether, the sum of second and third order spin-scaled correction can be written as

ESCS−MP
�2� + ESCS−MP

�3� = pT
2ATT − 2pTBT + pS

2ASS − 2pSBS + 2pTpSAST, �13�

introducing the notation

BT = �
TK

�HF�H�TK��TK�H�HF�
�K

,

a similar definition for BS,
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ATT = �
TKTL

�HF�H�TK���TK�H�TL� − �TKTL
�E�0� + E�1����TL�H�HF�

�K�L
,

an analogous expression for ASS and finally,

AST = �
TKSL

�HF�H�TK��TK�H�SL��SL�H�HF�
�K�L

.

Equating the derivative of Eq. �13� with respect to pT and pS

zero results

	ATT AST

AST ASS

	pT

pS

 = 	BT

BS

 ,

giving the scaling parameters as

	pT

pS

 =

1

D
	 ASS − AST

− AST ATT

	BT

BS

 , �14�

with D=ATTASS−AST
2 .

Substituting expression �14� for pT and pS into the for-
mula for ESCS-MP

�3� one gets

ESCS−MP
�3� =

1

D2 �ASSBT
2D + ATTBS

2D − 2ASTBTBSD�

−
1

D
�ASSBT

2 + ATTBS
2 − 2ASTBTBS� = 0,

giving zero for the third order correction, similarly to previ-
ous experiences.20,30 Quantities A and B are spin components
of the second and third order MP corrections, respectively,
and can be easily evaluated39 to give

BT = �
ij

�
ab

�ij�ab��ij��ab�
�ij

ab ,

BS = �
ij

�
ab

�ij�ab�2

�ij
ab ,

ASS = 2�
ijk

�
abc

�ij�ba��jc��ak��bc�ik�
�ij

ab�ik
bc

− 2�
ijk

�
abc

�ij�ab��jc�ka��bc�ki�
�ij

ab�ik
bc

+ �
ijkl

�
ab

�ij�ab��ij�kl��ab�kl�
�ij

ab�kl
ab

+ �
ij

�
abcd

�ij�ab��cd�ab��cd�ij�
�ij

ab�ij
cd + �

ij
�
ab

�ij�ab�2

�ij
ab ,

ATT = 2�
ijk

�
abc

�ij��ab��ci��ak��cb��jk�
�ij

ab� jk
bc

+ �
ijkl

�
ab

�ij��ab��ij�kl��ab�kl�
�ij

ab�kl
ab

+ �
ij

�
abcd

�ij��ab��cd�ab��cd�ij�
�ij

ab�ij
cd

+ �
ij

�
ab

�ij�ab��ij��ab�
�ij

ab ,

AST = 2�
ijk

�
abc

�ij��ab��ci�ka��cb�kj�
�ij

ab� jk
bc .

Shorthand �ij
ab=�a+�b−�i−� j is used in the denominators,

and again the i , j , . . . occupied and a ,b , . . . virtual convention
are applied.

Stepping from second to third order MP there are no new
excitation levels, hence no new repartitioning parameters can
enter the energy formula. Further freedom at third order is
therefore not present, the energy is given by Eq. �12� in the
extended Feenberg-scaled framework. This is different from
Grimme’s third order approach where a further single scaling
parameter is used to multiply the MP3 contribution,40

EGrimme
�3� = p3EMP

�3� . �15�

This cannot be reasoned by the zero order Hamiltonian of
Eq. �11�. Still it is interesting to observe that while Feen-
berg’s approach leads to explicitly zero third order contribu-
tion, Grimme’s parameter at third order is also rather small,
p3=0.25 as obtained by least-squares fitting on more than 30
reaction energies.

III. RESULTS AND DISCUSSION

The aim of the few illustrative examples presented in
this section is to compare spin-component-scaling with
Grimme’s parameters �SCS-GR� and Feenberg-optimized pa-
rameters �SCS-FE� in terms of correlation energies and pa-
rameter values.

Table I collects second order energy errors, the differ-
ence taken with either the FCI or the CCSD�T� value as
reference. For two-electron systems, H2 molecule and Be
atom in the table, SCS-FE falls back to the one-parameter
Feenberg scaling �FE� due to the missing parallel-spin pair
energy term. Energy errors in Table I typically decrease as
the number of scaling parameters increase in the order
MP2�FE2�SCS-FE2�LCCD. Spin-component scaling
with Grimme’s parameters �SCS-GR� fits worse than ex-
pected into this order. The SCS-GR2 values are though better
than MP2, they are rather similar to FE2, instead of being of
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the same quality as SCS-FE2. This behavior can be attributed
to the fact that Grimme’s parameters were determined with a
polarized quadruple-� quality basis set, while bases indicated
in Table I are just polarized triple � or poorer. The case of the
H2 molecule in polarized pentuple-� basis supports this rea-
soning: here SCS-GR2 outperforms SCS-FE2 and even
LCCD.

For molecules HF, N2, CO, and F2 Feenberg scaling
gives worse second order energy than MP2, in accordance
with earlier observations on HF and F2.22 The fact that these
molecules represent difficult cases is also demonstrated by

SCS-FE2 numbers: these are just slightly different from
MP2, being either better or worse. Introduction of more than
two parameters by LCCD helps to reduce the error of MP2
significantly.

The O3 molecule is an exception to all the above state-
ments. In this example both one- and two-parameter Feen-
berg scalings are much poorer than MP2. Values by LCCD,
though somewhat better than Feenberg-scaled numbers, are
also inferior to MP2. An insight to this problem is provided
by inspecting the third order MP corrections, which are large
positive numbers, pointing at the probably poor convergence
of the MP series. The error of MP3 compared to CCSD�T� is
also much larger than that of MP2: 56.91 mH for the pVTZ
basis and 60.04 mH error in the cc-pVTZ basis. The fact that
FE2, SCS-FE2, and LCCD, which are inherently third order
numbers, compare favorably with MP3 but not with MP2

TABLE II. Feenberg-optimized scaling parameters in the one- and two-
parameter pictures. Systems, geometries, and basis sets are the same as in
Table I. For comparison, Grimme’s empirical parameter values are pS=1.2
and pT=1/3.

System/basis
FE2
1−�

SCS-FE2

pS pT

H2 molecule
STO-3G 1.583 85 1.583 85 ¯

cc-pVTZ 1.213 85 1.213 85 ¯

cc-pV5Z 1.170 03 1.170 03 ¯

Be atom
pVTZ 1.379 41 1.383 32 0.956 28

HF molecule
pVTZ 0.995 87 1.058 27 0.826 78

cc-pVTZ 0.999 97 1.042 71 0.886 51

H2O molecule
6-31G 1.012 04 1.116 56 0.735 91
6-311G 1.000 16 1.082 22 0.760 62

cc-pVTZ 1.014 65 1.062 17 0.882 99

NH3 molecule
pVTZ 1.055 12 1.109 26 0.885 25

cc-pVTZ 1.046 92 1.089 57 0.911 73

CH4 molecule
pVTZ 1.114 35 1.154 88 0.948 93

cc-pVTZ 1.094 29 1.124 57 0.970 02

N2 molecule
pVTZ 0.978 75 1.059 52 0.774 01

cc-pVTZ 0.982 73 1.050 18 0.808 21

CO molecule
pVTZ 0.988 77 1.060 73 0.801 62

cc-pVTZ 0.991 31 1.051 41 0.832 79

F2 molecule
pVTZ 0.994 19 1.058 27 0.826 78

cc-pVTZ 0.996 85 1.049 91 0.856 21

O3 molecule
pVTZ 0.941 45 1.023 69 0.744 95

cc-pVTZ 0.947 89 1.018 12 0.778 09

TABLE I. Second order energy errors �E−Ereference� in mH. Reference value
is either FCI�a� or CCSD�T��b�. Geometries are R=0.742 Å for the H2 mol-
ecule, R=1.411 Å for the F2 molecule, R=1.094 Å for the N2 molecule,
R=1.128 Å for the CO molecule, R=0.923 Å for the HF molecule, R
=0.957 Å and ��HOH�=104.5° for the water molecule, R=1.259 Å and
��OOO�=118.4° for the O3 molecule, RNH=1.013 Å and RHH=1.643 Å for
the NH3 molecule, and RCH=1.090 Å for the CH4 molecule. Standard Pople
basis sets, Dunning’s valence triple-zeta �Ref. 41� with polarization func-
tions �pVTZ� and correlation consistent polarized valence triple-zeta �cc-
pVnZ� �Ref. 42� basis sets are applied. Polarization functions’ exponents to
VTZ are taken from HONDO 7 �Ref. 43� �H: 1.0, Be: 0.32, C: 0.72, N: 0.98,
O: 1.28, and F: 1.62�.

System/basis MP2 FE2 SCS-GR2 SCS-FE2 LCCD

H2 molecule
STO-3G�a� 7.43 −0.27 4.79 −0.27 −0.27
cc-pVTZ�a� 7.69 0.89 1.33 0.89 −0.59
cc-pV5Z�a� 6.98 1.26 0.25 1.26 −0.62

Be atom
pVTZ�b� 20.02 4.55 12.10 4.50 −4.48

HF molecule
pVTZ�b� 6.39 7.38 11.29 6.27 3.35

cc-pVTZ�b� 8.59 8.60 13.93 7.62 4.04

H2O molecule
6-31G�a� 8.08 6.52 8.46 4.54 2.05

6-311G�b� 8.91 8.88 7.43 7.11 3.97
cc-pVTZ�b� 13.62 14.02 20.71 12.87 3.83

NH3 molecule
pVTZ�b� 19.35 7.48 16.54 6.23 2.10

cc-pVTZ�b� 20.42 8.53 17.68 7.56 2.63

CH4 molecule
pVTZ�b� 26.57 5.38 17.76 4.58 0.72

cc-pVTZ�b� 27.27 6.63 17.56 6.08 1.23

N2 molecule
pVTZ�b� 15.52 23.17 21.45 19.77 8.39

cc-pVTZ�b� 17.46 24.48 23.99 21.59 9.00

CO molecule
pVTZ�b� 19.23 23.05 23.87 20.30 10.13

cc-pVTZ�b� 20.54 23.89 26.09 21.57 10.34

F2 molecule
pVTZ�b� 18.79 21.49 25.50 18.33 4.72

cc-pVTZ�b� 21.86 23.61 30.26 20.83 5.78

O3 molecule
pVTZ�b� 12.19 54.29 31.66 47.67 20.45

cc-pVTZ�b� 14.76 57.68 37.44 51.74 21.68
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shows that higher order effects of the MP series are respon-
sible for the poor performance of the scaled second order
corrections.

Feenberg-optimized parameters shown in Table II agree
with Grimme’s parameters �pS=1.2 and pT=1/3� as to the
deviation of the parameters from 1: pS�1 and pT	1 in all
cases. Feenberg-optimized parameters show a considerable
variation with basis and system size. Both parameters tend to
1 with increasing basis, hence pS gets smaller and pT gets
larger. Feenberg-optimized pS varies around Grimme’s pS pa-
rameter. The average value of the few examples presented is
1.12, in nice agreement with Grimme’s pS=1.2. There is
more discrepancy in parameter pT, which is 0.84 on average,
instead of pT=1/3 by Grimme. The agreement however, can
be accepted as �i� Grimme’s parameters were optimized on a
much larger set of examples than presented here and �ii�
Grimme fitted the parameters on energy differences while
Feenberg optimization is based on total energies.

Inspecting the optimal 1−� parameter of Feenberg’s
original scaling it is notable that this parameter is either
larger or smaller than 1, and shows a more complicated de-
pendence on basis set than pS and pT. It would be worthwhile
to investigate whether the two parameters of spin-
components scaling are more transferable from one system
to the other than the 1−� parameter of Feenberg. This would
support that the repartitioning involved in Grimme’s scaling
is more than a mere mathematical operation and has also a
physical basis as argued by Grimme.34 However, in the
present work we do not wish to enter into a thorough numeri-
cal study that would enable to draw a reliable statistical con-
clusion.

Reaction energies presented in Table III show less sen-
sitivity on the nature of scaling than correlation energies.
One- and two-parameter scalings give values within a rough
10 kcal/mol. Second order reaction energies scaled by Feen-
berg’s parameters are particularly similar, they fall within a
few kcal/mol. Taking CCSD�T� as the reference value, the
accuracies show a diverse picture. The first three of the re-
actions in Table III were part of Grimme’s benchmark set.

For these SCS-GR2 is the closest to CCSD�T� among FE2,
SCS-GR2, SCS-FE2, and LCCD. Only the first reaction is an
exception, where LCCD is slightly closer to CCSD�T�, but it
is hard to judge which is better eventually. The hydrogena-
tion of N2 to NH3 is a notable case, where neither of the
scaled second order energies improve upon the MP2 reaction
energy.

For the last two reactions in Table III the picture is dif-
ferent. Interestingly LCCD is the worst among non-MP sec-
ond order for these systems, but still better than MP2. In
these two cases, which were not present in Grimme’s bench-
mark set, SCS-FE2 is better for the Be tetramerization reac-
tion and it is of the same quality as SCS-GR2 with just a
0.1 kcal/mol difference between the two.

IV. CONCLUSION

In this work we have presented an extension of the one-
parameter scaling of the zero order Hamiltonian proposed by
Feenberg to two parameters in a way that Grimme’s spin-
component-scaled Møller-Plesset second order formula is re-
covered. We have used Feenberg’s minimal condition on the
third order energy to set the value of the scaling parameters.
Comparison of Grimme’s empirical parameter values with
Feenberg optimized values shows good numerical agreement
for the pS parameter while for the other parameter pT	1
holds by both methods. It should be noted that an empirical
choice for the scaling parameters has the advantage over
Feenberg’s approach that it preserves size consistency of the
second order PT expression.

We have found considerable variation of the Feenberg-
optimal scaling parameters with basis size which may point
to a possible refinement of the empirically parametrized for-
mula by introducing basis set dependent parameters.

TABLE III. Reaction energies in kcal/mol units by second order PT methods. Geometries of all species were
optimized by B3LYP with pVTZ basis set.

Reaction/basis MP2 FE2 SCS-GR2 SCS-FE2 LCCD CCSD�T�

H2+F2→2HF
pVTZ −138.86 −134.92 −133.50 −134.32 −128.83 −130.30

cc-pVTZ −138.95 −135.77 −133.53 −135.26 −129.38 −131.18

N2+3H2→2NH3

pVTZ −28.79 −35.32 −25.78 −34.76 −30.92 −28.97
cc-pVTZ −36.38 −42.90 −31.94 −42.30 −37.79 −36.56

O3+CH4→2H2O+CO
pVTZ −155.63 −170.74 −157.21 −169.53 −161.34 −158.41

cc-pVTZ −149.21 −166.09 −151.06 −164.91 −155.91 −152.81

4Be→Be4

pVTZ −95.99 −71.32 −81.79 −72.65 −58.55 −73.58

2P2→P4

pVTZ −42.35 −37.89 −37.36 −37.44 −32.73 −36.71
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