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ABSTRACT
A ring approximation in coupled cluster (CC) theory is worked out at the multi
reference (MR) level. The underlying CC framework is based on generalized nor-
mal ordering and applies the corresponding generalized Wick-theorem. Contrac-
tions among cluster operators is avoided by adopting a normal ordered exponential
Ansatz.

The MR ring CC doubles (MR rCCD) theory is found to represent a companion
to the previously introduced extended random phase approximation (ERPA). Equa-
tions for wavefunction parameters are derived in parallel and compared. Condition
for the ground state consistent with ERPA is obtained. This paves the way towards
comparison with the ERPA based correction to the Antisymmetrized Product of
Strongly Orthogonal Geminal (APSG) reference, ERPA-APSG.

KEYWORDS
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random phase approximation; geminal wavefunction

1. Introduction

Coupled-cluster (CC) theory, based on a closed shell reference determinant is often
relied on when highly accurate quantum chemical results are needed. While the CC
parametrization of the wavefunction is in principle exact in the given basis, cutting off
the cluster operator is necessary for practical application. Truncation of the cluster op-
erator unfortunately undermines the performance of single reference (SR) CC theory
when the so-called static correlation involves determinants beyond the excitation level
included in T . Such situations call for extension of the original theory e.g. by modifying
the amplitude equations[1] or by abandoning the idea of a single, closed shell reference.
The latter route has been extensively investigated by professor Debashis Mukherjee
throughout his career, starting with open-shell CC formulations[2, 3], followed by ideas
based on the eigenvalue independent partitioning[4, 5] or those exploiting the Jeziorski-
Monkhorst[6] parametrization of the wavefunction[7]. An extremely simple version of
multireference (MR) CC theory was put forward by Mukherjee and coworkers[8, 9],
inspired by the idea of generalizing the concept of normal ordering for a multideter-
minantal reference function[10, 11] It is the internally contracted MR CC formulation
of Ref.[8] that provides the starting point of the present work.
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Our focus is now put on the so called ring approximation of the CC doubles equa-
tions (rCCD), introduced in the quantum chemical context probably by Cižek[12]. Sin-
gle reference rCCD theory represents a kind of crossroads of approximation strategies
for the molecular electronic structure problem. When formulated with spin-orbitals,
equations of the random phase approximation (RPA) can be cast in a form matching
the rCCD equations and the rCCD wavefunction can be regarded the ground state
consistent with RPA excited states.[13, 14, 15] Admitting several variants, RPA can
be derived in the framework of polarization propagator theory[16], it can be obtained
in the context of time-dependent (TD) density functional theory (DFT)[17], by com-
bining the adiabatic connection idea with the fluctuation-dissipation theorem within
DFT[18, 17] or based on Green-function theory.[19] Note, that RPA is understood
presently as particle-hole RPA, no consideration of the particle-particle extension is
made here.[20, 21]

The ring approximation of CCD is certainly not free from the problems of trun-
cated CC theory mentioned above. As a simple amendment, exchange counterparts
of the antisymmetrized integrals can be deleted, leading to the direct rCCD (drCCD)
method. The performance of drCCD together with several exchange corrected RPA
variants was evaluated by Klopper et al.[22].

When wishing to make rCCD applicable for inherently MR situations, it appears
plausible to approach from the multideterminantal reference perspective. Given the
various facets of the single reference theory, remarkably diverse routes are provided
for a MR extension. Of these possibilities, the RPA approach was picked in several
instances. Oddershede, e.g. gave a multireference RPA formulation within the prop-
agator context[16]. Pernal worked out an extended RPA (ERPA) for the multirefer-
ence situation[23] based on Rowe’s equation-of-motion theory[24] for obtaining excited
states. Pernal also developped a theory for obtaining a correction to the ground state
reference energy based on the solution of the ERPA equations[25, 26].

The present study adds to the picture by exploring the CC aspect in the MR sit-
uation. Our goal on one hand is to examine the MR extension of the formal relation
between rCCD, RPA and its consistent ground state. A further motivation is provided
by our long term interest in applying the antisymmetrised product of strongly orthog-
onal geminal (APSG) function[27, 28] as a mulideterminantal reference for electron
correlation treatment. While a recent study, based on linearized CC, called attention to
an inherent failure of the APSG function in the multiple bond breaking situation[29],
the success of ERPA-APSG hints that a ring approximation of CC might overcome
this problem.

The MR CC method considered here is based on generalized normal ordering (GNO)
and applies the corresponding generalized Wick’s theorem (GWT)[9, 10, 11, 30, 31].
Double excitations entering the cluster operator have a general flavour. Contractions
among terms of the cluster operator are avoided by assuming a normal ordered ex-
ponential Ansatz, suggested by Lindgren[32]. We take an antisymmetrised product of
strongly orthogonal geminal (APSG) function[27] as reference and tailor the theory to
be as parallel as possible with the existing ERPA-APSG method of Pernal. This is the
reason for picking the original rather than the improved version[9] of the underlying
CC theory.

In what follows the MR rCCD theory is outlined first, giving explicit formulae within
the approximations introduced. A companion RPA theory is presented next and found
to agree with Pernal’s ERPA equations. The Riccati form of the ERPA equations are
contrasted then with the MR rCCD equations. Finally, a set of approximate consis-
tency conditions are derived for ERPA.
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Let us note here, that the ring approximation of SR CCD is not invariant to the way
the cluster operator is parametrized, see e.g. the Appendix of Ref.[33]. Equivalence of
RPA and rCCD equations as well as strict matching with the consistent ground state
of RPA implies a spin-orbital based, closed shell formulation. We work with spin-free
operators presently and give the respective relations at the SR level in Appendix.

2. Preliminaries

We consider an APSG function[27], denoted by |0⟩, and assume that orthonormal
orbitals indexed by p, q, . . . are natural orbitals of |0⟩. An APSG function is built
of two-electron fragments (geminals), each fragment being expanded over a mutually
exclusive set of natural orbitals (termed geminal subspaces). The second quantized
expression of APSG reads

|0⟩ =

N/2∏
I=1

∑
p∈I

cp a
+
pβ
a+pα

|vac⟩ , (1)

where N stands for the number of electrons and I refers to the geminal subspace. From
Eq.(1) it is apparent, that APSG is expanded in the seniority zero subspace[34] of the
Hilbert space. In the case where each geminal subspace is two dimensional, APSG
agrees with the generalized valence bond function.

In terms of coefficients cp, diagonals of the spin-dependent density matrix are given
as

np = ⟨0|a+pσ
apσ

|0⟩ = c2p . (2)

The corresponding hole density matrix element is denoted by overline:

np = 1− np .

Besides 1-body density matrices, 2-body reduced density matrix elements will be in-
volved in the following development. For completeness, we give here the expression of
the 2-body cumulant of APSG, defined as

λrσsσ′
pσqσ′ = ⟨0|a+rσa

+
sσ′aqσ′apσ

|0⟩ − δprδqsnpnq + δσσ′δpsδqrnpnq .

Summing for both spin indices of the above spin-dependent cumulant one obtains

Λrs
pq =

∑
σσ′

λrσsσ′
pσqσ′ = 2δIrIsnrns (δpsδqr − 2δprδqs) + 2δIpIrcpcrδpqδrs . (3)

In the above, Ir denotes that geminal subspace which accommodates natural orbital
r.

A GNO, denoted by {.} will be used below, satisfying the condition

⟨0|{.}|0⟩ = 0 . (4)

A second quantized string of operators in GNO involves particle and hole density
matrices as well as cumulants of the reference function, as described by Kutzelnigg and
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Mukherjee[11] and proved by Kong, Nooijen and Mukherjee[31]. The normal ordered
form of the electronic Hamiltonian accordingly reads

H = E0 +
∑
pq

fp
q {Eq

p}︸ ︷︷ ︸
{H1}

+
1

2

∑
pqrs

vpqrs {Ers
pq}︸ ︷︷ ︸

{H2}

(5)

with the APSG reference energy being

E0 = ⟨0|H|0⟩ ,

the spin-summed single excitation operator defined as

Er
p =

∑
σ

a+rσapσ , (6)

and the doubly exciting, spin-summed operator taking the form

Ers
pq = Er

pE
s
q .

The two-electron integral in ⟨12|12⟩ convention is expressed as vpqrs = ⟨rs|pq⟩ and the
Fockian entering Eq.(5) reads

fp
q = hpq +

∑
r

vprqrnr

where

vprqr = 2vprqr − vprrq .

3. Ring CCD based on APSG

With the aim of correcting APSG by CC, a cluster operator involving solely double
excitations is written as

T2 =
1

2

∑
p<r
q<s

tpqrs {Ers
pq} . (7)

In the above and throughout index restriction p < r is used as a shorthand for np ≥
nr , p ̸= r . (Note, that assuming orbitals ordered in decreasing occupation number,
r < p is still possible if np = nr . The case of np = nr is allowed only for non integer
occupation numbers. Both np = nr = 0 and np = nr = 1 are excluded.) Amplitudes
tpqrs exhibit the single symmetry relation tpqrs = tqpsr . Amplitudes tpqrs and tqprs are unrelated
when r ̸= s and p ̸= q .

A normal ordered exponential Ansatz is taken for the corrected wavefunction

Ψ = {eT2}|0⟩ , (8)
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satisfying the intermediate normalization condition

⟨0|Ψ⟩ = 0

by virtue of definition (4) of GNO. Energy E corresponding to Ψ is conveniently
written as

E = E0 + ∆E . (9)

Substituting Eqs.(5), (7), (8) and (9) in the Schrödinger equation

H Ψ = E Ψ (10)

and projecting from the left by ⟨0| results in the energy correction

∆E = ⟨0|{H2}{T2}|0⟩ . (11)

To obtain the amplitude equations, Eq.(10) is projected from the left by the doubly
excited functions

⟨0|{Eyx
vu}† = ⟨0|{Euv

xy} , u < x, v < y . (12)

This results

⟨0|{Euv
xy}{H2}|0⟩ + ⟨0|{Euv

xy} ({H1}+ {H2}) {T2}|0⟩

+
1

2
⟨0|{Euv

xy}{H2}{T 2
2 }|0⟩′ = 0 , (13)

where the prime on the last term on the lhs of Eq.(13) indicates omission of contraction
patterns producing ∆E, i.e. where {H2} is contracted completely with one of the T2’s.

Up to this point the derivation followed SR CCD theory[35, 36] closely. Index restric-
tions, e.g. in Eq.(7) taking the place of occupied/virtual categorization and {expT2}
standing in Eq.(8) instead of exp{T2} are the only notable deviations. A marked dif-
ference with SR theory appears when expectation values in Eqs.(11) and (13) are
evaluated based on the GNO and the associated GWT. With ordinary normal order-
ing, pair contractions (i.e. rank-1 contractions) appear solely in expectation values
with the reference. In the general situation contractions up to rank-k appear when
calculating the expectation value of a string composed of 2k operators. The geminal
structure of the reference represents an advantage at this point. Due to the fact, that
3-body or higher cumulants (up to N) are explicitly zero with a geminal reference, at
most rank-2 contractions appear in our case.1 Even by this, the number of patterns
obtained by the GWT is huge, as reflected in the second row of Table 1. The SR
case is shown for comparison in the first row. The couple of hundred terms of the
SR case are usually dealt with by diagram techniques. Diagrammatics in the context
of GNO and GWT was initiated by Kutzelnigg and Mukherjee[11], it is however less
used. When relying on the GWT, contraction patterns are most often generated and
processed by computer.[38, 39] We adopt the latter practice, utilizing a code written
in our laboratory in PYTHON language.

1It is interesting to observe that (N+1)-body and higher cumulants become nonzero even if the corresponding

density matrix is zero[37]. The contribution of these cumulants is neglected presently.

5



Table 1. Number of contraction patterns, obtained by the GWT, contributing to the terms of the CCD
equations, Eq.(13). Cumulants of order (N + 1) or higher are omitted, N denoting the number of electrons.

⟨{E}{H2}⟩ ⟨{E}{H1}{T2}⟩ ⟨{E}{H2}{T2}⟩ ⟨{E}{H2}{T 2
2 }⟩

all patterns, SR case 4 16 80 576

MR case

all patternsa 41 464 6166 1206756
ring patternsb 24 32 144 208
Riccati-type ring patterns 24 32 128 160
distinct Riccati-type ring termsc 12 16 40 12

a Germinal structure of the reference is assumed.
b Products of 2-body cumulants are omitted.
c Simplifications exploit integral, amplitude and cumulant symmetries and exchange of equivalent indices.

We presently do not aim at generating and implementing all terms at the MR CCD
level. We rather wish to devise the simplest approximation to arrive at a MR rCCD
theory paralleling the existing APSG based ERPA. First of all, terms at most linear
in cumulants are kept only, since powers of cumulants do not appear in ERPA-APSG
theory. Dropping terms including products of cumulants could be rationalized on the
basis that their first power is already negligible. Unfortunately this argument is not
always supported numerically.[40] This step is consequently better understood as a
first approximation that may need rectification later.

As a second approximation, non-ring contraction patterns are neglected. Identifi-
cation of ring patterns is performed based on the algebraic expression. In short, we
consider a contraction pattern of ring type, if index pairs subject to the constraint
introduced in Eq.(7) (e.g. p < r) can be introduced as hyper indices and the term
can be recast as product of matrices, indexed by these hyper indices. There are some
subtleties to this definition that are best conveyed by sketching the algorithm devised
for the analysis. Let us consider a contraction pattern multiplied with the appro-
priate tensor elements (i.e. f , v and t) according to Eq.(13). Summation is implied,
indices not involved in summation are regarded outer. Among summation indices,
constrained (originating from T ) and unconstrained (originating from H ) indices are
distinguished. Prior to ring analysis, hyper indices (i.e. indices related by inequal-
ity) are established. We then go through the following steps, starting with the first
contraction pattern

(1) reduce the number of summation indices by evaluating Kronecker-deltas implied
by rank-1 contractions; favour constrained indices over unconstrained ones;

(2) if there are unconstrained summation indices still left, establish the tensor ele-
ments (i.e. f , v or λ) they connect; tensor elements multiplied then summed for
common, unconstrained indices are considered hyper tensors;

(3) initialize logical variable ring as ‘true’;
(4) take each hyper index formed of outer indices and determine whether the con-

tributing orbital indices occur on the same tensor (i.e. f , v, λ or t) or hyper
tensor; if they occur on t, they even have to be arranged vertically; if any of this
fails set ring ‘false’

(5) if ring is ‘true’, goto 7
(6) if the expression is linear in T and three of the outer indices occur on t and one

hyper index can be formed on t vertically, the diagonal part of the hyper tensor
is kept; otherwise the term is dropped; goto 9

(7) take each remaining hyper index and determine whether the contributing orbital
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indices occur on the same tensor (i.e. f , v, λ or t) or hyper tensor; if they occur
on t, they even have to be arranged vertically; if any of this fails set ring ‘false’;

(8) if ring is ‘true’, the term is kept, otherwise dropped;
(9) proceed to next contraction pattern and goto 1

When performed at the SR level, the above algorithm properly generates the ring
CCD equations.

Let us consider some examples to illustrate the steps of ring filtering. Take e.g. the
following two terms contributing to ⟨0|{Euv

xy}{H1}{T2}|0⟩ , u < x, v < y:

−nunvnx
∑
qr

q<x,u<r

αvr
yq t

uq
rx (14)

nunvnx
∑
q<s

αvs
yq t

uq
xs (15)

with the hyper tensor element

αvr
yq =

∑
t

fv
t Λtr

yq .

The term in Eq.(14) is dropped at point 4, since outer indices u and x, forming a hyper
index, occur crosswise on amplitude t. The term of Eq.(15) is kept at point 4, since
both index pairs ux and vy conform to the requirements. The expression of Eq.(15) is
approved at point 7 also, where hyper index qs is examined. It eventually contributes
a term in the second row of the expression of ACC, given in Appendix B.

An example for the diagonal term under point 6, is given by the following expression,
contributing to ⟨0|{Euv

xy}{H2}{T2}|0⟩ ,u < x, v < y:

nunvnxny

∑
r

u<r

βr
x t

uv
ry (16)

with the hyper tensor element

βr
x =

∑
pqs

vpqxs Λ
sr
pq .

When making the ring approximation, r ̸= x terms of the sum in Eq.(16) are dropped.
The r = x term contributes a term in the last row of the expression of ACC, given in
Appendix B.

As a final example consider the following term contributing to
⟨0|{Euv

xy}{H2}{T 2
2 }|0⟩ ,u < x, v < y:

−nunx

∑
p<r
q<s
t<w

npnqnsnw vpqsw Λvr
yt t

pq
rs t

tu
wx .

This is dropped at point 7 of the ring filtering as hyper index pr is broken up, p and
r occurring separately on tensors v and Λ . The same hold for tw .

Eliminating non-ring terms reduces the number of contraction patterns consider-
ably, as reflected in the third row of Table 1. One further trimming is still to be
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performed though. It turns out that not all terms admitted by the ring approximation
conform with the algebraic Riccati equation derived from RPA equations. An example
is provided by the following expression, again contributing to ⟨0|{Euv

xy}{H2}{T2}|0⟩ :

nvny

∑
p<r
q<s

Λur
xp tpqrs nqns v

sv
qy .

A characteristic feature of the term above is that tensor elements Λ and v are connected
via t . When introducing hyper indices, the corresponding term involves two matrix
factors multiplying t, yielding an expression like Λtw (with wqs,vy = nqnsv

sv
qy ). This

and similar terms are dropped presently as they can not be accommodated in the
Riccati equation we wish to obtain. The remaining number of contraction patterns
and the number of distinct terms upon performing simplifications are indicated in the
last two rows of Table 1.

Adopting matrix notation, the final form of the Riccati-type ring amplitude equation
is obtained as

BCC + 2AT
CC t + 2 tACC + 4 tM BCC M t = 0 (17)

with tpr,qs = tpqrs and subscript CC labeling matrix factors originating from the rCCD
equations. Diagonal matrix M is built of occupation numbers as

Mpr,qs = δpqδrsnpnr . (18)

Elements of matrices ACC and BCC are given in Appendix B.
Amplitudes obtained from Eq.(17) are substituted in Eq.(11) to yield the MR rCCD

energy correction, reading as

∆ErCCD = Tr (M BCC M t) , (19)

neglecting terms including products of cumulants.

4. Extended RPA based on APSG

In the framework of equation of motion theory[24] an excitation operator of the com-
panion RPA to the ring CCD of the previous Section is written as

O†
ω =

∑
p<r

(
Xω

pr {Er
p} − Y ω

pr {Ep
r}
)
. (20)

Regarding that

{Er
p} = Er

p − δprnp

and that p = r is excluded, the excitation operator of Eq.(20) agrees with that of
extended RPA, c.f. Eq.(21) of Ref.[25]. Equations of ERPA determining excited state
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coefficients Xω
pr, Y

ω
pr and excitation energies ω are concisely written as(

A B
−B −A

)(
X
Y

)
=

(
S 0
0 S

)(
X
Y

)
ωERPA (21)

with

Aqs,pr = ⟨0|
[
Eq

s ,
[
H,Er

p

]]
|0⟩/2

Bqs,pr = −⟨0| [Eq
s , [H,Ep

r ]] |0⟩/2
Sqs,pr = ⟨0|

[
Eq

s , E
r
p

]
|0⟩/2

and ω being the column index in matrices X and Y . Diagonal matrix ωERPA involves
only the physically relevant, positive roots. (Factor 1/2 in the above definition of
matrices A, B and S is introduced to agree with the expressions of Ref.[26]. The
reversed sign of B originates in the reversed sign of Y ω

pr in Eq.(20), compared with
Ref.[25]. )

The overlap matrix on the rhs of Eq.(21) is diagonal, reading as

Sqs,pr = δqpδsr(np − nr) .

It is easy to see based on Eq.(2) that S can be decomposed as

S = KL

with Kqs,pr = δqpδsr(cp + cr) and Lqs,pr = δqpδsr(cp − cr) . Supposing that cp + cr
and cp − cr are nonzero for all p, r, Eq.(21) can be rewritten as(

A−+ B−−

−B++ −A+−

)(
KX
LY

)
=

(
KX
LY

)
ωERPA (22)

with

A−+ = L−1AK−1

A+− = K−1AK−1

B−− = L−1BL−1

B++ = K−1BK−1 .

The Riccati-type equation associated with the ERPA equations can now be obtained by
(i) multiplying the first equation in Eq.(22) by (KX)−1 from the right; (ii) multiplying
the second equation in Eq.(22) by (KX)−1 from the right and left and subtracting
the latter from the former. This yields

B++ + A+−CR + CRA
−+ + CRB

−−CR = 0 (23)

with

CR = LY X−1K−1 , (24)
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subscript R referring to the Riccati equation. When KX is invertible, Eq.(23) is
equivalent[41] with the ERPA equation of Eq.(21). Introduction of matrix factors K
and L here is not completely coherent with Pernal[23], but it does not affect the essen-
tial equivalence with Eq.(21). Expression of matrix factors A+− , A−+ and B++/−−

is given in Appendix C to assist the comparison of the rCCD rooted Riccati equa-
tion Eq.(17) with Eq.(23), originating from ERPA. Note, that these equations are not
exactly the same already at the SR level, there appears a factor of two between the
solutions, c.f. Eq.(A10) of Appendix A. At the MR level the deviation is increased.
While the SR limiting case of matrix factors in Eqs.(17) and (23) matches, the cu-
mulant involving terms do not lend themselves to setting an explicit relation. An
important difference concerns symmetry conservation of an initial guess during the it-
erative solution of Eqs.(17) and (23). Due to the appearance of ACC and its transpose
in the linear terms and due to BCC being symmetric, symmetry of an initial t is not
destroyed by the ring CCD equation.2 In the case of Eq.(23), symmetry of CR is not

ensured as B is not symmetric and A−+ ̸= (A+−)
T
. A further difference between

Eqs.(17) and (23) may be worth to note here. Matrices K or L becoming singular
is a problem with Eq.(23), a caveat on cp ± cr getting close to zero has been in fact
mentioned.[26] The Riccati equation in Eq.(17) could run into a similar problem if
particle and hole occupation numbers appearing under the inverse in the expression
of ACC and BCC became zero. This is however excluded by the restriction imposed
on indices in Eq.(7) and Eq.(12).

It is possible to deduce an energy expression from the first equation of Eq.(22) by
multiplying again from the right by (KX)−1 and performing a trace. This, so-called
plasmon formula reads

∆Eplasmon =
1

2
Tr(ωERPA −A−+) =

1

2
Tr(B−−CR) . (25)

This expression could be compared to the MR rCCD energy correction Eq.(19) were
the relation between CR and t known. At the SR level ∆Eplasmon agrees with ∆ErCCD,
c.f. Eq.(A19). This is the reason behind introducing the factor 1/2 in Eq.(25). To assist
comparison between the SR and MR case, quantities introduced during the derivation
and their relation are summarized in Tables 2 and 3and , respectively. At difference
with the SR situation, there appears no obvious formal correspondence between the
solutions of the Riccati equations Eq.(17)) and Eq.(23). For this reason a numerical
comparison is called for contrasting the above ∆Eplasmon with ∆ErCCD at the MR
level.

5. Ground state consistent with ERPA

Though Eq.(25) could be considered an ERPA energy correction formula, the analo-
gous expression at the SR level (c.f Eqs.(A17) and (A18)) does not match the energy
correction of the consistent ground state (c.f. Eq.(A16)) and the latter is preferred to
the former in such a case.[42, 43] Motivated by this, we parametrize a ground state in

2This is at difference with the spin-orbital based formulation.[33]
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the ERPA framework as

|Φ⟩ =

exp(
1

2

∑
p<r
q<s

τpqrs {Ers
pq})

 |0⟩

and seek an expression for amplitudes τ from the consistency condition

Oω|Φ⟩ = 0 .

Substituting Oω from Eq.(20) we obtain∑
u<x

(Xω
ux{Eu

x} − Y ω
ux{Ex

u}) |0⟩

+
1

2

∑
u<x

p<r,q<s

τpqrs (Xω
ux{Eu

x} − Y ω
ux{Ex

u}) {Ers
pq}|0⟩ = 0 .

Applying GWT, the second term on the lhs can be written as a sum of normal ordered
products. Terms of the resulting expression can be identified as genuine 3-body, 2-
body etc. excitations out of APSG. In analogy with the SR treatment, at most single
excitations are retained as a first approximation. A further simplification is introduced
by neglecting terms involving cumulants of APSG. Among others, this latter step wipes
all terms involving the unexcited APSG function, leading to

0 =
∑
u<x

(Xω
ux{Eu

x} − Y ω
ux{Ex

u}) |0⟩

+
1

2

∑
u<x

p<r,q<s

τpqrsX
ω
ux

(
2δupδxrnpnr{Es

q}+2δuqδxsnqns{Er
p}−δupδxsnpns{Er

q}−δuqδxrnqnr{Es
p}
)
|0⟩

− 1

2

∑
u<x

p<r,q<s

τpqrs Y
ω
ux

(
2δurδxpnpnr{Es

q}+2δusδxqnqns{Er
p}−δusδxpnpns{Er

q}−δurδxqnqnr{Es
p}
)
|0⟩

Index restrictions disclose the first two terms in the parenthesis multiplying Y ω
ux . Fur-

thermore, we have to distinguish cases in the third and fourth term of the parenthesis
multiplying Xω

ux , namely q < r, q = r, r < q and p < s, p = s, s < p respectively3.

3For simplicity, an ordering in decreasing order of np is assumed in this section and p < s is to be understood
strictly, at difference with the more flexible requirement under Eq.(7).
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Upon simplifications, we are lead to

0 =
∑
p<s
q

npns τ
pq
qs X

ω
ps {Eq

q}|0⟩ (26)

+
∑
p<r

(
Xω

pr −
∑
q<s

nqns τ
qr
ps X

ω
qs

)
{Ep

r}|0⟩

+
∑
p<r

(
−Y ω

pr +
∑
q<s

nqns (2τ
qp
sr − τ qprs )X

ω
qs +

∑
q<s

nsnq τ
sp
rq Y

ω
qs

)
{Er

p}|0⟩ .

Note, that in the interest of transparency some index restrictions implied by am-
plitudes, are not indicated. These are q < p , r < s in the second row above, and
p < q , s < r in the last term of the third row. One can proceed now by setting the
terms of Eq.(26) zero individually. (This is consistent with requiring all projections
with ⟨0|{Eu

x} vanish, and neglecting the cumulant arising from e.g. ⟨0|{Eu
x}{Er

p}|0⟩
here also.)

From the first row of Eq.(26) it then follows that spectator amplitudes are zero:

τpqqs = 0 , ∀p < s , ∀q .

From the second row, amplitudes with the following particular ordering of indices are
zeroed

τ qrps = 0 , ∀q < p < r < s . (27)

Using symmetry of the amplitude matrix τ , it follows from Eq.(27) that

τ sprq = 0 , ∀p < q < s < r

can be substituted in the third term of the third row of Eq.(26). A third consistency
condition on the amplitudes is obtained consequently as∑

q<s

nqns (2τ
qp
sr − τ qprs )X

ω
qs = Y ω

pr .

Introducing

(Cc)
pq
rs = 2τpqrs − τpqsr , ∀p, q < r, s (28)

matrix Cc stemming from the consistency condition can be written as

Cc = Y X−1M−1 , (29)

admitting p < r pairs for which npnr is nonzero and assuming the existence of X−1 .
Note, that Eq.(29) determines only those elements of Cc, where the indices conform
with the restriction in Eq.(28). All other elements of Cc as well as the related ampli-
tudes τ are zero.

It is interesting to observe, that the above, simplest condition for the consistent
ground state at the MR level can not set all single excitations zero. The first term
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of the round bracket in the second row of Eq.(26) can not be eliminated within the
approximations introduced. To get a refined picture, cumulants should be admitted in
the consistency considerations.

For the time being we remain at the simplest level and observe the analogy of
Eqs.(28) and (29) with their SR counterpart Eqs.(A15) and (Eq.(A8)). The expressions
agree but for the diagonal matrix factor M−1 and the index restriction in Eq.(28)
taking the place of occupied/virtual categorization. It is also interesting to notice,
that CR of Eq.(24), stemming fom the Riccati equation is not completely the same as
Cc originating from the consistency condition. They differ not only by matrix factors
built of occupation numbers but also in the number of zero entries. The latter follows
from index restriction of Eq.(28) affecting Cc but not CR .

Deducing amplitudes τ from Cc as

τpqrs =
1

3

(
2 (Cc)

pq
rs + (Cc)

pq
sr

)
an energy of the consistent ground state with ERPA can be obtained by substituting
τ in the MR CCD energy formula of Eq.(19). Numerical comparison of this MR CCD
energy expression with the plasmon formula of Eq.(25) would be desirable. For this
end, implementation by computer based code generation is currently in progress in
our laboratory.

6. Conclusion

The formulae worked out above set the previously designed ERPA into a CC context
at the MR level. Rather loose approximations are introduced in the CC derivation to
achieve close correspondence with SR expressions and allow for transparent comparison
with ERPA. Neglect of cumulants altogether when obtaining a consistent ground state
for ERPA appears to be the least justified approximation. Omission of powers of
cumulants when deriving the ring equations is also to be tested numerically.

Explicit expressions are obtained at the MR level for the rCCD energy, the plasmon
formula as well as the energy of the ground state consistent with ERPA. Tables 2
and 3 summarize in a concise manner the quantities introduced at the SR and MR
level, respectively. Matching of the RPA and rCCD rooted Riccati equations allows to
draw a formal relation between the energy expressions collected in Table 2. At the MR
level there appears no simple relation between matrix factors of the rCCD and ERPA
rooted Riccati equations. For this reason a numerical comparison of the correlation
energies will be necessary, with the ERPA-APSG energy formula[26] included as a
fourth option.

The CC and ERPA formulae derived are general in the sense that explicit use of the
reference being an APSG function was not made. It has to be kept in mind however,
that omission of 3-body and higher cumulants (up to the number of electrons) follows
from the geminal structure while it has to be regarded as an approximation for a
non geminal reference. Taking APSG as reference is expected to have a beneficial
effect on computational cost also, as all terms of the APSG cumulant is factorizable
for Kronecker deltas, c.f. Eq.(3). The formal scaling of SR rCCD theory is therefore
expected to persist, the MR extension affecting only the prefactor.

Let us comment finally on the superficial simplicity of the MR CC framework
adopted here. As it was already alluded to, it has to be recognized that an enormous
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Table 2. Quantities introduced in a spin-free formulation of RPA and rCCD, based on the HF determinant. Matrix
factors of the Riccati equation are given in Eqs.(A5) and (A6). See Eq.(A8) for the relation between C and X,Y ,

Eq.(A10) gives the relation between C and t and finally Eq.(A15) shows the relation between C and τ . For the
relation of the energy expressions, see Eqs.(A17), (A18) and (A19). In particular ∆Eplasmon = ∆ErCCD .

RPA for excited states normal RPA for the ground state ring CCD

amplitudes of excited states X,Y Cii) n.a.i)

amplitudes of the ground state n.a. τ t
matrix factors of the Riccati equation A,B n.a. A,B
solution of the Riccati equation C n.a. C
correlation energy of the ground state ∆Eplasmon ∆ERPA ∆ErCCD

i) n.a.: not applicable
ii) A quantity derived from the amplitudes of excited states.

Table 3. Quantities introduced in a spin-free formulation of RPA and rCCD, based on a multideterminantal reference.

Matrix factors of the Riccati equations are given Appendices B and C. See Eq.(24) for the relation between CR and
X,Y , Eq.(29) gives the relation between Cc and X,Y and finally Eq.(28) shows the relation between Cc and τ .

RPA for excited states normal RPA for the ground state ring CCD

amplitudes of excited states X,Y Cc
ii) n.a.i)

amplitudes of the ground state n.a. τ t

matrix factors of the Riccati equation A−+/+−,B++/−− n.a. ACC,BCC

solution of the Riccati equation CR n.a. 2t
correlation energy of the ground state ∆Eplasmon ∆ERPA ∆ErCCD

i) n.a.: not applicable
ii) A quantity derived from the amplitudes of excited states.

number of terms are generated by the GWT. In addition, there appears a redundancy
among excited functions in the general case that has to be dealt with.[9] Redundancy
is avoided here by resorting to double excitations in the cluster amplitudes. Extensiv-
ity is always an issue to consider, especially for a CC theory. While the expressions
reported above appear connected at first glance, spin cumulants represent a non trivial
problem[44, 45] and for this reason the analysis is put off to further study.
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Appendix A. Relation between E-operator based RPA and rCCD

In single reference theory, formulated with spin-orbitals, rCCD amplitude equations
are equivalent to the RPA equations provided that X is invertible.[13, 15] The relation
between rCCD and RPA amplitudes reads

t = Y X−1 . (A1)

In addition, the rCCD wavefunction fulfills the killer condition of RPA up to 2-body
excitations.[13] Accordingly, the rCCD wavefunction can be regarded as the ground
state consistent with RPA excited states. The rCCD correlation energy is related to
single excitation energies in the following simple manner[13, 15]

∆E =
1

4
Tr(ωRPA − ωTDA) , (A2)

where ω is the diagonal matrix of positive excitation energies, the superscript refers
to the random phase and Tamm-Dancoff approximation (TDA) respectively and the
Hartree-Fock reference is implied in the GNO. Relation Eq.(A1) can be exploited to set
up an iterative cycle in RPA, redefining matrices A and B with the consistent ground
state and extracting a new set of X and Y . This procedure yields self-consistent RPA
whereas we speak of normal RPA when t is extracted from X and Y but neither A,B
nor X,Y are updated.[43]
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In this section we examine the relation between normal RPA and rCCD when both
are formulated with the unitary generators of Eq.(6). We start from RPA and construct
an excitation operator for solely singlet states

O†
ω =

′∑
ia

(
Xω

iaE
a
i − Y ω

iaE
i
a

)
. (A3)

Indices i, j, . . . are assumed to be occupied and a, b, . . . are used for virtual orbitals
in this section. For brevity primes on summation symbols indicate this restriction.
Equations determining X and Y read[42]

(
A B

−B −A

)(
X
Y

)
=

(
X
Y

)
ωRPA (A4)

with

Ajb,ia = δijδab (εa − εi) + vbija (A5)

Bjb,ia = vbaji . (A6)

Provided that X−1 exists, the Riccati-equation associated with the eigenvalue prob-
lem Eq.(A4) reads

B + AC + CA + CBC = 0 (A7)

with

C = Y X−1 . (A8)

Let us compare at this point Eq.(A7) to the Riccati-equation derived from the
CCD equations formulated with unitary generators[36]. This involves making the ring
approximation, leading to

B + 2At + 2 tA + 4 tB t = 0 . (A9)

The correspondence between rCCD equations Eq.(A9) and the RPA-associated
Riccati-equation Eq.(A7) is close but not one to one, the solutions differ by a fac-
tor of 2

C = 2t . (A10)

Let us examine now the relation of C to the amplitude matrix τ of the consistent
ground state, c.f. normal RPA. For this end a parametrization of the double excitation
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operator is assumed as4

T2 =
1

2

′∑
ijab

τabij Eab
ij . (A11)

Let us suppose now, that

|Φ⟩ = eT2 |HF⟩ (A12)

fulfills the killer condition

Oω|Φ⟩ = 0 . (A13)

Collecting terms including triple and higher excitations under O(3), Eq.(A13) leads
to

′∑
ia

Y ω∗
ia −

′∑
jb

Cij
abX

ω∗
jb

Ea
i |HF⟩ + O(3) = 0 (A14)

with

Cij
ab = 2τ ijab − τ ijba . (A15)

Neglecting O(3) terms, Eq.(A14) results Eq.(A8) for C accommodating Cij
ab . Equa-

tions (A15) and (A8) represent the E-operator based counterpart of Eq.(A1). (Note,
that amplitudes τ of the consistent ground state differ from rCCD amplitudes t.
They can be related via Eqs.(A10) and (A15).) According to Eqs.(A15) and (A8),
the Riccati-equation in Eq.(A7) is not written directly for the amplitudes of the con-
sistent ground state. Having Eq.(A7) solved, amplitudes in Eq.(A12) can be inferred

from Eq.(A15). (Amplitudes τ ijab and τ ijba are unrelated if a ̸= b and i ̸= j and the same
holds for the elements of C .)

Utilizing

τ ijab =
1

3

(
2Cij

ab + Cij
ba

)
,

correlation energy of the consistent ground state (i.e. normal RPA) is expressed as

∆ERPA = Tr(Bτ ) = Tr(vC) , (A16)

with vjb,ia = vbaji .
We study finally the trace of excitation energy differences, the so-called plasmon

4The parametrization of Eq.(A11) is equivalent with the parametrization of Shibuya and McKoy[42] of the

consistent ground state. Equations for τ however differ as they admit triplet excitations in O†
ω besides singlets

and utilize the S = 0 as well as the S = 1 block of the RPA equations. Here we consider the S = 0 block only.
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formula[46, 47] expressible from the first equation of Eq.(A4). This leads to

∆Eplasmon =
1

2
Tr(ωRPA − ωTDA) =

1

2
Tr(BC)

= ∆ERPA − 1

2

′∑
ijab

vbaij Cij
ab (A17)

= ∆ERPA − 1

2

′∑
ijab

vbaij τ
ij
ab , (A18)

a relation somewhat more complicated than Eq.(A2).
Approaching from the CC perspective, amplitudes t obtained from Eq.(A9) generate

the rCCD correlation energy

∆ErCCD = Tr(Bt) =
1

2
Tr(ωRPA − ωTDA) , (A19)

reminiscent of Eq.(A2). Correlation energies ∆ErCCD and ∆ERPA can be related based
on Eqs.(A17), (A18) and (A19).

Appendix B. Matrix factors of the MR rCCD Riccati equation, Eq.(17)

(BCC)qs,pr = vsrqp

+
1

2
(nsnr)

−1
∑
tu

vtuqp Λ
sr
tu +

1

2
(nqnp)

−1
∑
tu

vsrtu Λ
tu
qp

+
1

2
(npnr)

−1
∑
tu

vsuqt Λ
tr
up +

1

2
(nqns)

−1
∑
tu

vrupt Λ
ts
uq

− 1

2
(npns)

−1
∑
tu

(
vruqt Λ

ts
up + vurqt Λ

st
up

)
− 1

2
(nqnr)

−1
∑
tu

(
vsupt Λ

tr
uq + vuspt Λ

rt
uq

)

(ACC)qs,pr = δqp δsr
(
nr f

r
r − np f

p
p

)
+ nqnsv

sp
qr +

1

2
δqp δsr

∑
tu

fu
t

(
n−1
p Λtp

up − n−1
r Λtr

ur

)
+

1

2

∑
u

[
n−1
p fu

r Λps
uq − n−1

r fp
u Λ

us
rq + (npnr)

−1 (nsf
s
u Λ

pu
rq − nqf

u
q Λps

ru

)]
+

1

2

∑
tu

[
nqn

−1
r

(
vptqu Λ

us
tr + vtpqu Λ

su
tr

)
+ nsn

−1
p

(
vstru Λ

up
tq + vtsru Λ

up
qt

)
− vutqr Λ

sp
ut nqn

−1
p − vsput Λ

ut
qr nsn

−1
r + vptru Λ

us
tq + nqns (npnr)

−1 vstqu Λ
up
tr

]
−

− δqpδsr
1

2

∑
tuv

[
vvurt Λrt

vu + vrutv Λtv
ru + vputv Λtv

pu + vuvpt Λ
pt
uv

]
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Appendix C. Matrix factors of the ERPA rooted Riccati equation,
Eq.(23)

Aqs,pr = δqpf
r
s (np − ns) + δsrf

q
p (nr − nq) + vqrsp (nsnr + nqnp − nqnr − nsnp)

+ 1
4

∑
ux

(2vrusx Λ
qx
pu + 2 vxqup Λru

sx + 2 vursx Λ
xq
pu + 2 vqxup Λur

sx

−vxups Λrq
xu − vqrxu Λxu

sp − vuxps Λqr
xu − vrqxu Λux

sp

)
− 1

4

∑
uvx

[
δqp (v

rx
uv Λ

uv
sx + vxruv Λ

vu
sx) + δsr

(
vuvxp Λ

xq
uv + vvuxp Λ

qx
uv

)]
(A−+)qs,pr = (cq − cs)

−1Aqs,pr (cp + cr)
−1

(A+−)qs,pr = (cq + cs)
−1Aqs,pr (cp − cr)

−1

Bqs,pr = −Aqs,rp(
B++/−−

)
qs,pr

= (cq ± cs)
−1Bqs,pr (cp ± cr)

−1
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