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aLaboratory of Theoretical Chemistry, Institute of Chemistry, Loránd Eötvös University,
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Covalent bond dissociation is examined by three geminal based theories. One approach (An-

tisymmetrized Product of Strongly Orthogonal Geminals, APSG) assumes purely singlet

geminals while two others operate with mixtures of singlets and triplets (c.f. Restricted-

Unrestricted Strongly orthogonal Singlet-type Geminals, RUSSG). The RUSSG is the wave-

function in the second method. It is spin contaminated. The spin contamination of RUSSG

is projected out in a spin purification step in the third method.

Description of local (i.e. atomic) spin by geminal based theories is examined. Prototype

systems showing the deficiency of singlet coupling are taken as test cases. We find that the

local spin of equilibrium structures is correctly described by purely singlet geminals. Triplet

geminals are shown to be essential for the description of local spin when dissociating multiple

bonds, or switching between two Lewis structures of the same molecule.
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1. Introduction

Inadequacy of the single determinant approximation of the molecular electronic

wavefunction for describing covalent bond dissociation or transition metal com-

pounds has long been a challenge for quantum chemistry. Qualitative defects of

the Hartee-Fock (HF) method can be cured by a theory initiated in the 1920’s by

the seminal paper of Heitler and London[1]: Valence Bond (VB). Though VB fits a

chemist’s notion of molecules better than HF, it became computationally cumber-

some compared to molecular orbital (MO) theory and got overshadowed around
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the 1960’s. Progress along the VB line has been constant though[2, 3, 4, 5, 6].

Development of valence bond inspired methods has got more active recently, with

applications aided by program packages, see e.g. Ref.[7].

Geminal based wavefunctions represent a type of VB, where a single resonance

structure is assumed. The elementary building block in geminal theories is a two-

electron function, ψ expanded in terms of one-electron spin-orbitals, φu and φv

as

ψ+
i =

∑
u<v

Ci
uv φ

+
u φ

+
v

adopting the Longuet-Higgins notation for creation operators. The single VB struc-

ture of geminal theories is expressed as the antisymmetrized product

Ψ =

N/2∏
i=1

ψ+
i |vac⟩ , (1)

for a molecule containing N electrons. Terminology ’perfect pairing’ (PP) is also

used to refer to a single resonance structure wavefunction, Eq.(1).

There are numerous alternatives behind the general form of Eq.(1), the question

of orthogonality making an essential distinction. In analogy with orthogonality of

one-electron orbitals, one may require the relation

⟨ψi|ψj⟩ = 0 , i ̸= j (2)

for geminals, addressed as ‘weak orthogonality‘. A condition called ‘strong orthog-

onality‘ proved extremely useful in practice, given by∫
dx1ψi(x1,x2)ψj(x1,x2) = 0 , i ̸= j . (3)

Restriction on geminals is obviously more severe by Eq.(3) than by Eq.(2). The

benefit of requirement Eq.(3) lies with the fact that matrix elements of the Hamil-

tonian are considerably easier to calculate with strongly orthogonal geminals than

with weakly orthogonal ones. Group function theory allows a generalization of the

concept of strong orthogonality, investigated originally by Wilson[8] and addressed

by Cassam-Chennai[9, 10] more recently.

Current, active research directions in the field of strongly orthogonal geminals in-

volve convergence acceleration of orbital optimization[11], excited state calculation

based on the generalized equation of motion[12], as well as coupled cluster inspired
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treatments[13, 14, 15]. An overview of geminal based perturbative techniques for

describing electron correlation was given recently[16].

Besides orthogonality, geminal spin is another major attribute of geminal based

wavefunctions. A wavefunction of Eq.(1) composed of pure singlet ψi’s is called

singlet coupled. The Antisymmetrized Product of Strongly Orthogonal Geminals

(APSG)[17] as well as the Restricted Strongly orthogonal Singlet-type Geminals

(RSSG)[18] represent examples of this sort. The Generalized Valence Bond (GVB)

wavefunction[19] also belongs to this category.

It has long been understood that multiple bond dissociation described by solely

singlet geminals is qualitatively incorrect[20]. When dissociating multiple bonds,

neglect of triplet electron pairs results an incorrect spin state of the dissociated

fragments. Assuming orbitals localized on fragments, local spin can be easily eval-

uated in the limit of dissociation. Considering e.g. the infinite stretch of both OH

bonds in the water molecule, a GVB approach results a spin-contaminated state

for atom O, characterized by S(S+1)=3/2, instead of the correct value S(S+1)=2,

i.e. a triplet. Incorrect spin of the fragment is a direct consequence of the simplifi-

cation introduced in spin coupling. To correct for this, spin impure geminals, i.e.

mixtures of singlet and triplet have been adopted[21, 22].

It is not only multiple bond dissociation, where the weakness of singlet cou-

pling shows up. The rectangular to square distortion of H4, a model introduced by

Jankowski and Paldus[23] is another problematic case. Singlet coupling here pro-

duces a cusp on the energy curve at the square arrangement. The flaw can again

be attributed to an insufficient description of spin couplings. Alternatively, one can

regard the problem as an indication for the necessity of two singlet coupled VB

structures.

The aim of the present study is to assess the error of singlet coupling in geminal

wavefunctions in a quantitative manner, by computing atomic spin. While atomic

spin is easy to grasp at infinite separation, it is not straightforward to define this

quantity when atoms interact in a molecule. Among several possibilities, a defi-

nition given by Mayer and coworkers is adopted here[24]. Besides quantifying the

defect of the singlet coupled geminal model in estimating local spin, we wish to

demonstrate that allowing geminals to become (partly) triplet represents a solution

while staying with PP. Singlet-triplet mixed geminals induce spin contamination in

the overall wavefunction of Eq.(1). The effect of a final spin-purification is exam-

ined, along the lines suggested by one of us[25]. The approximate spin-purification

3



June 15, 2014 Molecular Physics source

scheme introduced in Ref.[26] is not investigated presently.

We believe that this study on local spin contributes to the understanding of

the capabilities of geminal based models. Apart from being interesting on its own

right, limitations of the geminal model are important from the point of view of

correlation corrections based upon such a model. Whenever qualitative breakdown

of a reference function occurs, one may expect the influence to appear in the con-

struction build upon. In fact, indications of such an effect has been observed in a

linearized coupled-cluster study based on the APSG wavefunction[27].

In what follows, a brief summary is given of the geminal based approaches ap-

plied. After a short account of the computation of atomic spin, examples are pre-

sented and discussed in the final section. A case study showing the connection

between the geminal spin coupling and fragment spin is given in the Appendix.

2. Variants for strongly orthogonal geminals

2.1. Singlet coupling

Among the models examined, APSG is the simplest, where geminals are assumed

singlet. Introducing indices m,n for spatial orbitals and α, β for spin, a geminal is

written as

ψ+
i =

1

2

∑
mn

Ci
mn

(
φ+
mαφ

+
nβ + φ+

nαφ
+
mβ

)
, (4)

with Ci
mn = Ci

nm and
∑

mn

(
Ci
mn

)2
= 1 reflecting normalization of geminal i.

The APSG wavefunction is expressed according to Eq.(1), with geminals of

Eq.(4). The model is fully variational, meaning that geminal coefficients Cmn as well

as expansion coefficients of orbitals φm are determined by energy minimization[17].

The APSG wavefunction is also extensive, as a consequence of its exponential

form[28, 29].

Due to the requirement of strong orthogonality, an orbital φm can appear in just

one geminal[30]. The variational energy minimization is usually achieved by the

orbital variation that maximizes the energy coupling between the orbital pairs of

the same geminal, leading to spatial orbital localization. Optimal orbitals φm are

typically localized in the region of space where one would expect the corresponding

electron pair to reside.

The GVB wavefunction represents a variant of APSG with two orbitals assigned
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to each valence geminal. An APSGmodel where the number of orbitals contributing

to a geminal is also optimized was termed RSSG[18]. Presently we stick with the

APSG terminology for this wavefunction.

2.2. Beyond singlet coupling

One way to introduce triplet component in a geminal is to consider unrestricted or-

bitals. This leads to the USSG model, ’U’ referring to unrestricted[18]. Unrestricted

perfect pairing is an alternative designation of essentially the same model[22].

Presently we will be considering restricted orbitals and allow triplet components

to enter via the geminal coefficient matrix. In this, restricted-unrestricted (RUSSG)

formulation[21] geminals are written as

ψ+
i = σi

1ψ+
i + τi

3
0ψ

+
i (5)

where 1ψ+
i stands for the normalized singlet component

1ψ+
i =

1

2

∑
mn

1Ci
mn

(
φ+
mαφ

+
nβ + φ+

nαφ
+
mβ

)
,

and 3
0ψ

+
i constitutes the normalized, sz = 0 triplet component

3
0ψ

+
i =

1

2

∑
mn

3Ci
mn

(
φ+
mαφ

+
nβ − φ+

nαφ
+
mβ

)
,

with 3Ci
mn = − 3Ci

nm and
∑

mn

(
3Ci

mn

)2
= 1 . Condition σ2i +τ

2
i = 1 sets geminal

i normalized.

Writing the geminal of Eq.(5) in the compact form

ψ+
i =

∑
mn

Ci
mn φ

+
mαφ

+
nβ , (6)

one finds that the symmetric/antisymmetric part of the coefficient matrix is related

to the singlet/triplet component according to

Ci
mn = σi

1Ci
mn + τi

3Ci
mn .

Geminal coefficients Ci
mn, orbitals φm and number of orbitals belonging to gemi-

nal Eq.(6) are determined in a variational manner. Size-consistency of RUSSG was

proven and demonstrated numerically in Ref.[21]. In the context of GVB, UAP is

a related model (standing for Unrestricted orbitals in Active Pairs), assuming two
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active orbitals per geminal[31]. Orbitals optimized for RUSSG tend to be similar

to APSG orbitals if the triplet component of the geminal is small. As the triplet

component of a geminal gets large, orbital delocalization may be observed, c.f. the

example of H4 in Section 4.

Due to strong orthogonality, spin-impurity of electron pairs in RUSSG is localized

on the geminal. This gives rise to a spin-contamination of the total wavefunction

which can be purified efficiently[25]. Writing the total wavefunction as

ΨRUSSG =
∑
S=0

σS
2S+1Ψ

with Ŝ2 2S+1Ψ = S(S+1) 2S+1Ψ, the goal of spin-purification for an overall sin-

glet state is to remove S > 0 terms. The spin-projected (SP) RUSSG wavefunction

is given by term S = 0 (supposed to be normalized):

ΨSP-RUSSG = 1Ψ .

Spin-purification of ΨRUSSG proceeds in two-steps. First a set of functions are

generated by the repeated action of Ŝ2 on ΨRUSSG. Vectors(
Ŝ2
)n

ΨRUSSG =
∑
S=0

σS (S(S + 1))n 2S+1Ψ , n = 0, . . . (7)

can be thought of forming a Krylov space. In the second step the Hamiltonian

eigenvalue problem is solved in the Krylov space. The lowest root does in fact gen-

erate spin-pure wavefunction, since (i) the spectrum of Ŝ2 is nondegenerate in this

space and (ii) matrices of Ŝ2 and Ĥ written in the Krylov space commute[25]. We

note here that the energy of spin-purified ΨSP-RUSSG wavefunction can be improved

further by variation of geminal coefficients Ci
mn (which are kept frozen in the spin-

purification procedure). This is tested in one case in Section 4, where it is labeled

’SP-RUSSG, opt’.

Efficient realization of spin-purification is facilitated by the geminal picture. Ac-

tion of Ŝ2 on ΨRUSSG generates sz = ±1 spin-polarized triplets, having the form

3
1ψ

+
i =

1√
2

∑
mn

3Ci
mn φ

+
mαφ

+
nα ,

3
−1ψ

+
i =

1√
2

∑
mn

3Ci
mn φ

+
mβφ

+
nβ .

Antisymmetrized product of 1ψi,
3
0ψi,

3
1ψi and 3

−1ψi are used to compose basis
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vectors

B(n+, n0) =
∑

P̂∈SN/2

PN/2∏
l=Pn0+2n++1

1ψ+
l

Pn0+2n+∏
k=Pn0+n++1

3
−1ψ

+
k

Pn0+n+∏
j=Pn0+1

3
1ψ

+
j

Pn0∏
i=P1

3
0ψ

+
i |vac⟩(8)

categorized according to the number of sz = 1 triplets, n+ and the number of sz = 0

triplets, n0. (Due to seeking total Sz = 0, the number of sz = −1 triplets is also

n+.) Calculation of operator matrix elements among vectors B is computationally

inexpensive, based on the results of Ref.[25]. For this reason, vectors B(n+, n0) are

used to represent the Krylov vectors of Eq.(7). The generalization of this procedure

to the open-shell case is given in Ref.[25].

Performance of the SP-RUSSG wavefunction has not been explored in detail,

though initial tests were encouraging. The present study takes a small step in this

direction, giving a characterization mainly from the local spin point of view.

3. Local spin

Local spin is a spin like quantity assigned to atoms and pairs of atoms in a molecule,

giving information about magnetic properties and electronic structure[32, 33, 34].

The straightforward approach for determining such quantity is to partition operator

S2 to atomic and diatomic contributions and calculate local spin as an expectation

value of the appropriate term. In this definition the diatomic part of the local spin

would be proportional to the bond order[35], meaning that electron pairs coupled

singlet in covalent bonds have nonzero contribution to the local spin. This contra-

dicts the physical concept that magnetic properties are determined by open-shell

or ”actually free” electrons[36, 37]. For this reason Mayer introduced an alternative

definition for single determinant wavefunction[35], based on the decomposition of

the expectation value of Ŝ2, instead of the operator itself. The advantage of this

definition is that every term depends on the spin density matrix (Ps = Pα −Pβ),

and becomes zero for singlet coupled electrons. Since the first formulation, the way

of partitioning has evolved and generalization for multi-determinant wavefunction

has been developed[38, 39, 40, 41, 42]. Final version of the theory was settled by

Ramos-Cordoba et al. [24], who also studied basis set dependence and compared

the benefits of decomposing in Hilbert-space or in 3D-space[43].

In the present study atomic and diatomic terms of the local spin are computed
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according to [24]:

⟨Ŝ2⟩A =
3

4

∑
µ∈A

[
2DS− (DS)2

]
µµ

+
1

4
(psA)

2 − 1

4

∑
µ,ν∈A

(PsS)µν (P
sS)νµ

+
1

2

∑
µ,ν∈A

∑
τ,ρ

[Λµνρτ − Λµντρ]SρµSτν (9)

⟨Ŝ2⟩AB =
1

4
psAp

s
B − 1

4

∑
µ∈A

∑
ν∈B

(PsS)µν (P
sS)νµ

+
1

2

∑
µ∈A

∑
ν∈B

∑
τ,ρ

[Λµνρτ − Λµντρ]SρµSτν , (10)

where A,B refer to atoms, S is the overlap matrix, D = Pα +Pβ is the spin-less

density matrix (DM), and psA is the gross spin population:

psA =
∑
µ∈A

(PsS)µµ .

The spin-less cumulant, Λ can be expressed as:

Λµνρτ = Γµνρτ −DµρDντ +
∑
σ

P σ
µτP

σ
νρ,

where Γ(=
∑

σ,σ′ Γσσ′
) is the spin-less two-particle DM and σ, σ′ label spin in-

dices. In the above, µ and ν refer to atomic orbitals, which implies a Mulliken-like

partitioning[44] of ⟨Ŝ2⟩.

Due to the geminal structure the one-particle DM has a block diagonal form

for APSG and RUSSG, P σ
mn being equal to zero if m and n belong to different

geminals. The two-particle Γσσ
mnls is zero too if l and s or m and n belong to the

same geminal. Otherwise:

Γσσ
mnls = Dσ

mlD
σ
ns −Dσ

msD
σ
nl.

The different spin term Γσσ′
(σ ̸= σ′) can be written in the following form:

Γσσ′

mnls = Dσ
mlD

σ′

ns + Λσσ′

mnls

where Λσσ′

mnls is nonzero only if all of its indices belong to the same geminal.

When calculating DM’s with SP-RUSSG the geminal structure was not exploited.

Generation of the necessary quantities was performed based on the expansion of

the wavefunction in terms of vectors B of Eq.(8).
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4. Assessment of local spin by strongly orthogonal geminals

In this section we present the local spin property of APSG, RUSSG and SP-RUSSG

compared to FCI. Local spin is obviously a non-measurable quantity, apart from the

limit of fully dissociated atoms. By computing the spin of an atom within a molecule

and comparing it to the corresponding exact (i.e. FCI) value, we imply that local

spin is a property, which – though non-measurable – serves for characterization of

the wavefunction.

To compute the local spin of Eq.(9) one needs overlap matrices, the one-particle

DM and the cumulant (i.e. two-particle DM). Density matrices with APSG and

RUSSG were generated by the modified version of Q-Chem [45]. Density matrices

with SP-RUSSG were obtained by a direct Full Configuration Interaction (FCI)

code. Due to the large memory and computer time requirement of FCI, only small

test systems were affordable. All reported FCI energies assume cores frozen.

4.1. Water symmetric dissociation

While single bond dissociation is accurately described by established geminal meth-

ods, dissociation of multiple bonds may be problematic. To describe e.g. the sym-

metric dissociation of water four active electrons are needed. Geminal type methods

can be unsatisfactory because of artificial separation of the four electrons into two

pairs. The potential curve in Fig.1, computed with 6-31G** basis, does not show

any qualitative failure for APSG, RUSSG or SP-RUSSG. When looking at error

curves computed with FCI (c.f. panel (b) of Fig.1), one sees that geminal methods

produce an error on the scale of a few tens of millihartree in the 1-3 Å in the

bond length interval. Curves of APSG, RUSSG and SP-RUSSG run together until

about 2 Å , where the spin contamination appears in the RUSSG wavefunction.

From this point the energy of RUSSG and SP-RUSSG gets markedly deeper than

APSG causing larger nonparallelism error.

Local spin curves cast a different light on the case. When forming a molecule

of atoms, the high multiplicity of the free atom typically drops to a low value at

molecular equilibrium. This is apparent on the FCI curves in panel (a) of Figs. 2

and 3. Local spin of hydrogen and oxygen behave in a completely different manner:

⟨S2⟩H with geminal methods estimate the FCI result well, which does not hold

for ⟨S2⟩O. Oxygen local spin is the worst by APSG, giving a large error at the

dissociation limit. This qualitative error is eliminated both by RUSSG and SP-
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RUSSG. Finer details are revealed by the difference curves in panels (b). The

largest errors can be found in the 1.5-3 Å bond distance range. At about 2 Å

one can see a negative peak for oxygen with RUSSG. At this geometry the spin

contamination is not significant yet, the error can be attributed to perfect pairing.

Once spin contamination appears the (signed) error of RUSSG starts to increase

forming a positive peak about 2.5 Å . A similar positive peak is apparent on the

hydrogen curve (Fig. 3). In the dissociation limit local spin by RUSSG tends to

the correct value. Spin purification diminishes the error of RUSSG by shaving off

the positive peaks from the difference curves.

4.2. Nitrogen molecule dissociation

In the complete active space approach nitrogen dissociation has to include six

active electrons. Geminal methods assign the six electrons to three bonds, which

may prevent correct description of the quartet state of free nitrogen atoms. The

total energy curve, computed with 6-31G basis, move together for APSG, RUSSG

and SP-RUSSG (see Fig. 4) until spin contamination appears around 2 Å . Beyond

2 Å RUSSG and SP-RUSSG produce significantly deeper energies increasing the

nonparallelism error.

Similarly to the water example, APSG gives an erroneous local spin near to

dissociation, while RUSSG is qualitatively correct, c.f. Fig. 5. There is again a

small peak on the local spin difference curve around 2 Å , which is diminished by

spin purification. It is interesting to note here that a small (about 10 millihartree)

hump appears in the same distance regime on the total energy curve of RUSSG,

which is much flattened by SP-RUSSG.

4.3. H4 system

The last example is the H4 system, computed with 6-31G** basis. The four hydro-

gens are confined to a circle and the initial drawn rectangle is gradually distorted to

a square. Change of geometry is characterized by the (H-X-H) angle where X refers

to the center of mass. The challenge of this system is the simultaneous breaking

and formation of covalent bonds.

The energy curve of APSG shows a characteristic cusp at the square geome-

try, formed by the crossing of two distinct solutions: one with orbitals localized

on horizontally aligned hydrogen molecules, the other corresponding to vertically
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aligned H2 systems. The two resonance structures are degenerate at exactly 90o. As

apparent in Fig. 6, no cusp appears on the RUSSG and SP-RUSSG curves which

can mainly be attributed to orbital delocalization[25]. The curve labeled ”APSG

deloc” underlines this statement, showing a stationary solution of the APSG equa-

tions, giving delocalized orbitals and higher energy than APSG, but no cusp at 90o.

Triplet component of the geminals appear somewhat below 88o, causing a step on

the SP-RUSSG curve but not on RUSSG, see the inset in panel (b) of Fig. 6.

Discontinuity on the SP-RUSSG curve is not surprising, bearing in mind that the

underlying procedure is essentially projection after variation. Performing (partial)

variation after projection removes the discontinuity, c.f. curve ’SP-RUSSG, opt’.

The dissociation like process is manifested by an increase in the local spin of hy-

drogen as can be seen in Fig. 7. Bonds are restructured but not completely broken

in this example, hence the atomic spin of H is not raised up to the free atomic value

at square geometry. While APSG with localized orbitals can not reflect the increase

of local spin, RUSSG corrects this behavior abruptly once spin-contamination ap-

pears. Appearance of triplet components of geminals is accompanied by orbital

delocalization, occurring just below 88o for RUSSG. Spin-purification has a de-

creasing effect on local spin, setting the error larger than RUSSG near to square

geometry. Coefficient optimization of SP-RUSSG improves at square geometry and

removes the step near to 88o. There occurs however a switch between localized and

delocalized solutions for ’SP-RUSSG, opt’ also. This is responsible for the smaller

step on the local spin curve just above 86o. Interestingly, when taking the solution

of APSG with delocalized orbitals, one gets a local spin curve parallel with FCI

and the best values at smaller angles.

Overlap values with the FCI vector, displayed in Fig. 8, give another look on

the quality of the wavefunction and largely lead to conclusion similar to the above.

Overlap of APSG with localized orbitals decreases approaching the square geom-

etry. Allowing spin-contamination of geminals gives worse results, c.f. RUSSG. It

is spin projection which improves the overlap at larger angles, as apparent on the

SP-RUSSG curve. Coefficient optimization, when in effect, pushes the overlap very

close to 1. The overlap of APSG with delocalized orbitals here also gives a flat

curve impressively close to 1. Notably, APSG with localized orbitals has smaller

overlap with FCI, than the higher energy, delocalized solution.

11



June 15, 2014 Molecular Physics source

5. Conclusion

Local spin has been computed to examine the ability of geminal models to describe

the coupling of high atomic spin to an overall low value.

Multiple bond dissociation represents an example where such a question is of

high relevance. While the singlet coupled geminal model shows qualitative failure in

this respect, singlet-triplet mixture of geminals brings a considerable improvement

in the regime of moderately stretched bonds and set the picture right at infinite

dissociation. Parallelity of the energy with FCI is at the same time worsened by

abandoning singlet-coupling.

Describing the ”resonance” of two Lewis structures is a more challenging exam-

ple, where the nature of orbitals has been found an essential ingredient in agree-

ment with a related study[46]. Singlet coupled geminals are completely incapable

of reflecting the increase of local spin in the switching region. This gets corrected

if allowing triplet components of geminals to build up. The correction however

appears abruptly on local spin curves. Spin-purification followed by variation has

been found superior, but still failing to give a smooth transition from low local spin

to a high value.
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Figure 1. Total energy (panel a) and energy difference with respect to FCI (panel b) for H2O symmetric

dissociation, in 6-31G** basis set.
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Figure 2. Local spin of oxygen (panel a) and local spin difference with respect to FCI (panel b) for H2O

symmetric dissociation, in 6-31G** basis.
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Figure 3. Local spin of hydrogen (panel a) and local spin difference with respect to FCI (panel b) for H2O

symmetric dissociation, in 6-31G** basis.
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Figure 4. Total energy (panel a) and energy difference with respect to FCI (panel b) for N2 dissociation,

in 6-31G basis set.
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Figure 5. Local spin of nitrogen (panel a) and local spin difference with respect to FCI (panel b) for N2

dissociation, in 6-31G basis set.
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Figure 7. Local spin of hydrogen (panel a) and local spin difference with respect to FCI (panel b) for H4

rectangular to square distortion, in 6-31G** basis set. For geometry see Fig. 6.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 85  86  87  88  89  90

O
v

e
rl

a
p

angle (H−X−H) [degree]

APSG loc
APSG deloc

RUSSG
SP−RUSSG

SP−RUSSG,opt

Figure 8. Overlap with the FCI vector for H4 rectangular to square distortion, in 6-31G** basis set. For
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Appendix A. Analysis of local spin on the symmetric stretch of H2O,

dissociation limit

A.1. Orbitals

Assume that orthonormal orbitals o1 and o2 are localized on oxygen, h1 and h2

are localized on each hydrogen. A 45o rotation of o1 and h1 gives the delocalized

orbitals of bonding geminal No.1:

φ1 =
1√
2
(o1 + h1) ,

φ2 =
1√
2
(o1 − h1) .

Delocalized orbitals of bonding geminal No.2, φ3 and φ4, can be constructed anal-

ogously.

A.2. Geminals on OH bonds

Consider first the assignment of geminals to bonds, according to panel (a) of Fig.A1.

The lowest lying singlet geminal on bond No.1 in terms of φ1 and φ2 looks

ψ+
OH1 =

1√
2

(
φ+
1β φ

+
1α − φ+

2β φ
+
2α

)
. (A1)

The same geminal in terms of o1 and h1 takes the form:

ψ+
OH1 =

1√
2

(
h+1β o

+
1α + o+1β h

+
1α

)
. (A2)

There are excited singlet states of bond No.1, but these are not important for

the present discussion. The triplet states of bond No.1, on the other hand, are

important:

3
0ψ

+
OH1 =

1√
2

(
h+1β o

+
1α − o+1β h

+
1α

)
,

3
+1ψ

+
OH1 = h+1α o

+
1α ,

3
−1ψ

+
OH1 = h+1β o

+
1β .

The case of bonding geminal No.2 is analogous.
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A.3. Geminal on atom O and on HH

Consider now the assignment of geminals according to panel (b) of Fig.A1. The

three triplet geminals on atom oxygen can be written as:

3
0ξ

+
O =

1√
2

(
o+2β o

+
1α − o+1β o

+
2α

)
,

3
+1ξ

+
O = o+2α o

+
1α ,

3
−1ξ

+
O = o+2β o

+
1β .

Apart from triplets, there are three singlet states of the geminal on atom oxygen,

having the form:

1ξ+O =
1√
2
c21

(
o+2β o

+
1α + o+1β o

+
2α

)
+ c11 o

+
1β o

+
1α + c22 o

+
2β o

+
2α .

With a geminal on oxygen, it is practical to consider the unpaired electrons on

the two hydrogen atoms to form either a triplet:

3
0ξ

+
HH =

1√
2

(
h+2β h

+
1α − h+1β h

+
2α

)
,

3
+1ξ

+
HH = h+2α h

+
1α ,

3
−1ξ

+
HH = h+2β h

+
1β ,

or a singlet geminal:

1ξ+HH =
1√
2

(
h+2β h

+
1α + h+1β h

+
2α

)
.

The ”ionic” type singlet coupling of the two hydrogen atoms (h+1β h
+
1α + h+2β h

+
2α)

can be neglected in the dissociation limit.

A.4. Coupling of geminal on O with geminal on HH

An overall four-electron singlet can arise by two spin-coupling schemes from the

geminals on O and on HH. One can multiply a triplet with a triplet to get:

|DTD⟩ = 1√
3

(
− 3

0ξ
+
HH

3
0ξ

+
O + 3

−1ξ
+
HH

3
+1ξ

+
O + 3

+1ξ
+
HH

3
−1ξ

+
O

)
|vac⟩ .
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Letter D refers to doublet on hydrogen, letter T to triplet on oxygen, factors ±1/
√
3

are the Clebsch-Gordan coefficients.

It is also possible to combine a singlet with a singlet, yielding

|DSD⟩ = 1ξ+HH
1ξ+O |vac⟩

with obvious nomenclature.

According to Hund’s rule the triplet state is favored on atomic oxygen, for this

reason only |DTD⟩ can appear in the dissociation limit. The |DSD⟩ component

must tend to zero as the two hydrogens are stretched infinitely apart. Appearance

of a |DSD⟩ component in the dissociation limit of any approximate wavefunction

gives rise to local spin contamination.

A.5. Coupling of geminals on OH bonds

Combination of the lowest lying singlet geminals on the OH bonds gives the APSG

function:

|SS⟩ = |APSG⟩ = ψ+
OH2 ψ

+
OH1 |vac⟩

with notation S referring to the (ground state) singlet OH geminals. It is also

possible to form an overall singlet combining two triplet OH geminals, giving rise

to

|TT ⟩ = 1√
3

(
− 3

0ψ
+
OH2

3
0ψ

+
OH1 + 3

−1ψ
+
OH2

3
+1ψ

+
OH1 + 3

+1ψ
+
OH2

3
−1ψ

+
OH1

)
|vac⟩ .

A.6. Local spin analysis of APSG

Let us now analyze the APSG function from the point of view of local spin. Our goal

is to express |APSG⟩ in terms of |DTD⟩ and |DSD⟩. For this end all functions are

written in terms of h+2 , o
+
2 , h

+
1 and o+1 , assuming the ordering h2 > o2 > h1 > o1 .
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Take first the functions built with the geminal on atom oxygen:

|DTD⟩ = 1√
3

(
1

2
h+2β o

+
2β h

+
1α o

+
1α +

1

2
o+2β h

+
1β h

+
2α o

+
1α + h+2β h

+
1β o

+
2α o

+
1α + {spin-flip}

)
,

|DSD⟩ = 1√
2

[
c21√
2

(
− h+2β o

+
2β h

+
1α o

+
1α + o+2β h

+
1β h

+
2α o

+
1α

)
− c11 h

+
2β o

+
1β h

+
1α o

+
1α

+ c22 h
+
2β o

+
2β o

+
2α h

+
1α + {spin-flip}

]
.

Notation ”spin-flip” refers to substituting α for β and vice versa.

Take now the functions derived from bonding geminals:

|TT ⟩ = 1√
3

(
h+2β o

+
2β h

+
1α o

+
1α − 1

2
o+2β h

+
1β h

+
2α o

+
1α +

1

2
h+2β h

+
1β o

+
2α o

+
1α + {spin-flip}

)
,

|SS⟩ = − 1

2

(
o+2β o

+
1β h

+
2α h

+
1α + o+2β h

+
1β h

+
2α o

+
1α + {spin-flip}

)
.

Scalar products of |SS⟩ with |DTD⟩ and |DSD⟩ are −
√
3/2 and −c21/2, respec-

tively. Since c21 = 1 (and c11 = c22 = 0) for the lowest singlet state of atomic

oxygen, the APSG wavefunction in the dissociation limit takes the form

|APSG⟩ = −
√
3

2
|DTD⟩ − 1

2
|DSD⟩ .

This results

⟨APSG|Ŝ2|APSG⟩O =

(√
3

2

)2

1(1 + 1) +

(
1

2

)2

0(0 + 1) =
3

2

instead of the correct value, 2.

Putting in other terms, one can express the FCI wavefunction in the dissociation

limit (i.e. |DTD⟩) with |SS⟩ and |TT ⟩ to get

|FCI⟩ = −
√
3

2
|SS⟩ +

1

2
|TT ⟩ .

This reveals that the product of triplet OH geminals, omitted from APSG, has a

considerable weight in the correct limiting wavefunction.
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Figure A1. Assignment schemes of bonding electron pairs to geminals in H2O.
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