in press:
213.
Ágnes Szabados, András Gombás, and Péter R. Surján
Knowles Partitioning at the Multi-reference Level
J. Phys. Chem. A. (accepted)
manuscript (ChemRxiv)
published:
212.
András Gombás, Péter R. Surján, and Ágnes Szabados
Analysis and Assesment of Knowles' Partitioning in Many-Body Perturbation Theory
J. Chem. Theor. Comp , 20, 12, 5094--5104 (2024)
https://doi.org/10.1021/acs.jctc.4c00166
211.
Péter R. Surján, Ágnes Szabados and András Gombás
Real eigenvalues of non-hermitian operators
Molecular Physics, p. e2285034, (2023)
(special issue in honor of A.G. Császár)
manuscript
https://doi.org/10.1080/00268976.2023.2285034
210.
Péter R. Surján, Kevin Simon, and Á. Szabados
Stability Analysis of the Lippmann-Schwinger equation
Molecular Physics, Vol. 121 (11-12), p. e2091053 (2022)
(special issue in honor of P.G. Szalay)
manuscript
https://doi.org/10.1080/00268976.2022.2091053
209.
Agnes Szabados, Ádám Margócsy, and Peter Surjan
Pivot invariance of Multiconfiguration Perturbation Theory via frame
vectors
J. Chem. Phys. 157, 174118 (2022)
manuscript
DOI: https://doi.org/10.1063/5.0112563
208.
Ágnes Szabados and Péter R. Surján
Many-body Perturbation Theory with Localized Orbitals:
Accounting for Localization Diagrams as Integral Dressing
J.Chem.Theor.Comput. 18(5) 2955–2958 (2022)
DOI: https://doi.org/10.1021/acs.jctc.2c00120
manuscript
207.
Péter R. Surján, Dóra Kőhalmi, Ágnes Szabados
A Note on Perturbation-Adapted Perturbation Theory
J. Chem. Phys. 156, 116102 (2022)
DOI: 10.1063/5.0085350
manuscript
206.
Zs. É. Mihálka, M. Nooijen, Á. Margócsy, Á. Szabados and P. R. Surján
The γ function in quantum theory II.
Mathematical challenges and paradoxical properties,
J. Math. Chem. 60, pages 267–282 (2022)
DOI: 10.1007/s10910-021-01311-w
manuscript
open access paper
205.
P. R. Surján
Erratum to: Introducing the γ function in quantum theory
( Erratum to Int. J. Quantum. Chem. 120 e26221 (2020) , paper 201. )
Int. J Quantum Chem 122(7) e26869 (2021)
DOI: 10.22541/au.163819715.54996265
manuscript
204.
P. R. Surján and Á. Szabados
Comment on "Improved many-body expansions from eigenvector continuation
PHYSICAL REVIEW C 103, 069801 (2021)
manuscript
203.
Zs. É. Mih\'alka, \'A. Szabados and P. R. Surj\'an
Improving half-projected spin-contaminated wave functions
by multi-configuration perturbation theory
J. Chem. Phys. 154 234110 (2021)
manuscript
202.
Zs. É. Mih\'alka, P. R. Surj\'an and \'A. Szabados
Symmetry-adapted perturbation with half-projection for spin unrestricted
geminals
J.Chem.Theor.Comput. (2021), 17,7, 4122-4143
https://doi.org/10.1021/acs.jctc.1c00305
manuscript
201.
P. R. Surjan
Introducing the γ function in quantum theory
Int. J. Quantum. Chem. 2020;120:e26221 DOI: DOI: 10.1002/qua.26221
open access
200.
Zs. E. Mihalka, P. R. Surjan, A. Szabados
Half-Projection of the Strongly Orthogonal Unrestricted Geminal's
Product Wavefunction
J. Chem. Theory Comput 2020, 16, 2, 892–903 DOI: 10.1021/acs.jctc.9b00858
199.
Zs. É. Mihálka, Á. Margócsy, Á. Szabados and P. R. Surjan
On the variational principle for the non-linear Schr\"odinger equation
J. Math Chem. 58, 340--351 2019 DOI 10.1007/s10910-019-01082-5
text.online
198.
P. R. Surján
Elektronlokalizáció és a kémiai kötés
Magyar Kémiai Folyóirat, 125 (3) 130-132 (2019)
text.online
197.
Zsuzsanna E. Mihalka, A. Szabados and R. P. R. Surjan
Application of the Cauchy integral formula as a tool of analytic
continuation for the resummation of divergent perturbation series
Link at the Publisher
manuscript
J. Chem. Phys. 150 031101 (2019) DOI:10.1063/1.5083191
196.
D. Foldvari, Zs. Toth, P. R. Surjan, and A. Szabados
Geminal perturbation theory based on the unrestricted Hartree-Fock
wavefunction
J. Chem. Phys. 150 (3), 034103 (2019) DOI: 10.1063/1.5060731
195.
Péter R. Surján, Zsuzsanna É. Mihálka, \'Agnes Szabados
The inverse boundary value problem --
application in many-body perturbation theory
Theoretical Chemistry Accounts, 137(11) 149 (2018)
DOI: 10.1007/s00214-018-2372-3
194.
Zsuzsanna É. Mih\'alka and P\'eter R. Surj\'an,
Analytic-continuation approach to the resummation of divergent series
in Rayleigh-Schrödinger perturbation theory,
PHYSICAL REVIEW A 96, 062106 (2017)
DOI: https://doi.org/10.1103/PhysRevA.96.062106
manuscript
193.
Zs. Mih\'alka, \'A. Szabados, and P\'eter R. Surj\'an,
Effect of partitioning
on the convergence properties of the Rayleigh-Schr\"odinger
Perturbation Series
J.Chem.Phys. 146(12):124121.
doi: 10.1063/1.4978898. (2017)
192.
Péter R. Nagy, János Koltai, Péter R. Surján, Jeno Kürti and Ágnes Szabados, \\
Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes,
J. Phys. Chem. A 2016, 120 (28), pp 5527–5538
191.
P. R. Surján,
Geminal Approach
Reference Module in Chemistry, Molecular Sciences and Chemical Engineering,
Theoretical and Computational Chemistry, Ed. Jan Reedijk, Hiromi Nakai et al.,
Elsevier, ISBN: 978-0-12-409547-2 (2016)
http://dx.doi.org/10.1016/B978-0-12-409547-2.11468-4
190.
P. Jeszenszki, P.R. Surjan and A. Szabados, \\
Spin Symmetry and Size Consistency of Strongly Orthogonal Geminals,
J. Chem. Theor. Comput., 2015, 11 (7), pp 3096–3103
189.
Surjan, Peter, Jeszenszki, Peter and Szabados, Agnes,
Role of triplet states in geminal-based perturbation theory,
Molecular Physics, Volume 113, Issue 19-20, 2015,
10.1080/00268976.2015.1060366
188.
P. Jeszenszki, V. Rassolov, P.R.Surjan, A. Szabados
Local Spin from strongly orthogonal geminal wavefunctions
Molecular Physics, 113, 249--259, 2015
DOI: 10.1080/00268976.2014.936919
2022-02-26
|