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Abstract

Perturbative correction to a wavefunction built from singlet-triplet mixed two-

electron functions (geminals) is derived in the context of symmetry adapted schemes

applying partial spin-projection. Imposing the constraint of strong orthogonality of

geminals results in a reference function that captures static correlation in a compu-

tationally feasible way. In lack of spin purification, the product of spin-unrestricted

geminals is spin contaminated in general, potentially undermining performance of a

subsequent dynamic correlation treatment.

In this work, spin symmetry of the reference is partially restored by half-projection

in a variation-after-projection scheme. Applying perturbation theory (PT) to recover

the missing part of electron correlation is hampered by the fact that an obvious choice

for a zero-order Hamiltonian is not provided. The situation is amended by adopting the

formalism of symmetry adapted PT. The resulting framework is tested on singlet-triplet

gaps of biradicaloids, and is found to perform well in situations where its unprojected

counterpart fails due to spin contamination.
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1 Introduction

Approximate methods aiming for accurate description of electronic structure of molecular

systems having multireference character rely on a delicate balance of static and dynamic

correlation. Efficient schemes for capturing the static part of electron correlation represent

a crucial factor. The widely adopted complete active space (CAS)1 method has recently

reached new horizons in system size tractable, thanks to parallel computation,2 renormal-

ization group based techniques3 and stochastic algorithms.4 Formal exponential scaling of

the computational cost of CAS however necessarily brings possible applications to an earlier

halt than approaches having polynomial step count by construction.

Spin symmetry breaking as an economical means of incorporating static correlation was

pioneered by Č́ıžek and Paldus,5 and followed by Yamaguchi,6 Jordan and Silbey,7 Pulay

and co-authors.8,9 The field has seen a recent resurgence thanks to Scuseria and co-workers,

considering spatial, number and complex conjugation symmetry breaking in addition to

spin symmetry at the level of a single determinant.10,11 Spin symmetry breaking has been

also investigated in connection with the general matrix product state construction.12 The

conceptual dilemma brought forth by symmetry breaking in general was termed the “sym-

metry dilemma” by Löwdin,13 contemplating whether symmetry breaking and the associated

variational flexibility is preferable over proper symmetry and comparatively less variational

flexibility in case of an approximate wavefunction. The downside of symmetry violation

was in fact observed in dynamic correlation treatments built upon a severely spin contami-

nated reference. Unrestricted Hartree–Fock (UHF) based Møller–Plesset (MP) methodology

(UMP) is a famous example.14–17

Spin purification advocated by Löwdin18,19 represents an obvious workaround that can

be performed either in a projection-after-variation (PAV) or in a variation-after-projection

(VAP) scenario. An unfavourable feature of the former is the emergence of non-differentiable,

or even discontinuous potential curves. Size inconsistency is another unwanted consequence

of spin projection. This has been reported to be of substantial magnitude within VAP
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schemes starting from a different orbitals for different spin (DODS) determinant20–22 or

a geminal based wavefunction Ansatz.23,24 When applying full spin-projection, the former

treatment results in the extended Hartree–Fock (EHF) wavefunction, studied intensely in

the second half of the 1900’s.25

Performing full spin-projection along the lines suggested by Löwdin18 is particularly te-

dious due to the exponential number of terms generated by the projection operator. Recent

progress by Scuseria and co-workers,11,20,26 and also by Pons Viver27 made efficient imple-

mentation of projected schemes possible. Partial spin projection is an appealing alternative

to full projection, offering the promise of less conceptual complexity as well as reduced size-

inconsistency as compared with full projection. Work along this line includes that of Amos

and Hall,28,29 Schlegel,30,31 Baker,32,33 Yamaguchi34,35 and many others.36–39 Half-projection

(HP) advocated by Smeyers36 is a particularly simple partial projection scheme, that was

later investigated in detail.40–51 Half-projection retains just two of the exponential number

of terms generated by Löwdin’s spin-projection and eliminates36,52 all spin contaminants of

spin quantum numbers opposite to that of the target state, S. Since the largest contaminant

is often the next, opposite parity S term compared with the target S, purification achieved

by half-projection is considerable.46,47,53,54

Spin symmetry breaking introduced at the DODS level results in the UHF wavefunction,

exhibiting an inherent pairing structure28 characteristic to the strongly orthogonal geminal

construction.55,56 Allowing for full variational flexibility within this Ansatz leads to the Gen-

eralized Valence Bond Perfect Pairing (GVB-PP)57 wavefunction when adopting the spin-

singlet symmetry restriction. Symmetry breaking within the strongly orthogonal geminal

concept leads to the wavefunction models termed Unrestriction in Active Pairs (UAP),58 Un-

restricted Perfect Pairing (UPP),59 Unrestricted Singlet-type Strongly orthogonal Geminals

(USSG),60 Restricted-Unrestricted Singlet-type Strongly orthogonal Geminals (RUSSG).61

A common feature of such geminal based approaches is that they are mostly able to catch

a significant amount of static correlation. Dynamic correlation is severely underestimated,
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due to the lack of intergeminal correlation. The effect of the strong orthogonality constraint

was found minor in this respect.62

Recovering dynamic correlation, based on a reference exhibiting a geminal structure has

been an active field of research. Studies starting from a singlet restricted reference are more

abundant, including perturbative (PT)62–66 and coupled-cluster (CC) methodologies67–71 as

well as reduced density matrix based approximations.72,73 Dynamical correlation treatments

starting from a spin contaminated geminal reference have been also explored.62 We mention

in particular MP methodology based upon the UHF wavefunction14–17 as well as our recent

studies starting from the spin-unrestricted strongly orthogonal geminal Ansatz.74

This latter work called the attention to the fact that spin contamination of the reference

can severely undermine the performance of PT not only in a single reference framework but

also at the multireference level. Since full spin projection of the spin-unrestricted geminal

model was found considerably affected by size-inconsistency,23 a midway solution has been re-

cently explored in the form of half-projection.24 The resulting Ansatz, termed half-projected

strictly localized geminals (HP-SLG) was found to have desirable properties: reduced spin

contamination as well as suppressed size inconsistency. However, HP-SLG is still missing

most of the dynamic effects. In the present work we aim at developing a perturbative cor-

rection to the partially spin purified geminal-based reference, HP-SLG.

Perturbative treatment of a symmetry adapted reference has been subject to extensive

research in connection with intermolecular interactions. With the product wavefunction of

separated systems taken as starting point, RSPT yields poor results.75 Restoring antisym-

metry between weakly interacting fragments was found essential for obtaining reliable PT

corrections. Symmetry adapted PT (SAPT) was developed to handle this problem, pio-

neered by Hirschfelder,76–78 Van der Avoird,79,80 Murrell and Shaw81 as well as Claverie,82

and later Jeziorski, and co-workers,83–86 to name a few. A comparative study on several dif-

ferent formalisms of SAPT was presented by Jeziorski et al.86 The PT frameworks applied in

the present study are essentially adaptations of SAPT with HP playing the role of symmetry
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projection. We apply the so-called weak symmetry forcing SAPT variant, with occasional

tests shown for strong symmetry forcing or an approximate version thereof.

The paper is organized as follows. Half-projected geminal product Ansatz and the sym-

metry projected PT formulae relevant in our case are presented shortly in Sec. 2.1 and 2.2.

This settles the context of the work. Main achievement of this study, presented in Sec. 2.3,

constitutes the details of adopting SAPT for the half-projection operator and the SLG refer-

ence. Designing a well performing theoretical setup is in fact far from being straightforward

in these circumstances, and consumed most effort spent in this work. Details of numerical

computations and illustrative applications, focusing on singlet-triplet splittings are given in

Sec. 3 and Sec. 4, respectively.

2 Theory

2.1 Half-projected Geminal product Ansatz

In what follows, we are only concerned with states which are eigenstates of operator Ŝz with

eigenvalue MS = 0. The building blocks of the model are two-electron functions (geminals)

expressed as

ψ+
µ =

(µ)∑
ij

Cij i
+
β j

+
α , (1)

where Greek indices label geminals, while Latin indices i, j, k, . . . refer to spatial orbitals.

Strong orthogonality of geminals55,56 is ensured by different geminals being expanded over

pairwise disjoint sets of spatial orbitals (cf. summation notation in Eq.(1)), meaning that

each orbital is assigned to at most one geminal. Orbitals corresponding to the same two-

electron block generate a so-called geminal subspace. The strictly localized geminals (SLG)

Ansatz87–89 is defined as

|SLG〉 =

N/2∏
µ

ψ+
µ |vac〉 , (2)

where N denotes the even number of electrons in the system.
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Geminal coefficient matrix C formed of elements Cij of Eq.(1) has no apparent symmetry

for SLG. Its block diagonal nature is a consequence of strong orthogonality, its block corre-

sponding to geminal µ is denoted by Cµ. Block Cµ can be decomposed into a symmetric and

a skew-symmetric matrix, sCµ and aCµ, respectively. Without loss of generality, we assume

that sCµ is diagonal for all geminals. Symmetric part of Cµ generates the singlet component

of geminal ψµ, while aCµ corresponds to the triplet part. Orbitals diagonalizing the singlet

part of C will be called “singlet natural” orbitals.

Geminals are assumed to be normalized:

(µ)∑
ij

|Cij|2 = 1 , (3)

from which 〈SLG|SLG〉 = 1 follows. A two-dimensional, normalized spin-mixed geminal

can be described by two configuration interaction (CI) parameters in its singlet natural

form, according to

Cµ =

cos(δµ) cos(ηµ) sin(δµ)/
√

2

− sin(δµ)/
√

2 − cos(δµ) sin(ηµ)

 . (4)

Parameter δµ tunes the relative weight of the singlet and triplet components, while parameter

ηµ is responsible for correlation in the singlet part.

Several wavefunctions represent a special case of the SLG family, UHF90 and GVB–PP57

are the most widely known among these. Antisymmetrized Product of Strongly Orthogonal

Geminals (APSG),56,91–93 UAP58 and RUSSG61 also belong to this category. A comparative

account on these models is given e.g. in Ref.23

The SLG wavefunction of Eq.(2) is in general spin-contaminated, which is remedied partly

by applying half-projection36 defined as

P̂S =
1

2

(
1 + f P̂sf

)
, (5)

where f = (−1)S with S standing for the desired overall spin quantum number. Operator
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P̂sf is the spin-flip operator, its effect on an MS = 0 determinant is evaluated as

P̂sf i
+
β . . . j

+
β k

+
α . . . l

+
α |vac〉 = k+

β . . . l
+
β i

+
α . . . j

+
α |vac〉

= (−1)N/2i+α . . . j
+
α k

+
β . . . l

+
β |vac〉 ,

(6)

where N/2 = nα = nβ.

The half-projected SLG function takes the form

|HP-SLG〉 = P̂S|SLG〉 . (7)

Note, that since P̂S does not eliminate all contaminants, weight of all remaining components

is increased in HP-SLG as compared with SLG (not only that of the target component).

The HP-SLG function, derived according to Eq.(7) from the normalized SLG function is not

normalized in general. Its squared norm can be expressed as

〈HP-SLG |HP-SLG〉 =
1 + fM

2
, (8)

with

M =

N/2∏
µ

Mµ

Mµ =

(µ)∑
i

(
CTC∗

)
ii

=

(µ)∑
ij

CijC
∗
ji ,

(9)

The HP-SLG model is obtained by setting the HP-SLG energy

EHP =
〈HP-SLG | Ĥ |HP-SLG〉
〈HP-SLG |HP-SLG〉

. (10)

stationary with respect to geminal coefficients, i.e., within a VAP scheme. In principle, HP-

SLG can be also set stationary with respect to unitary transformation of orbitals, but it is

not carried out in this work.
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The condition of geminal coefficients being optimal can be recast as separate pseudo

eigenvalue equations for each geminal

Ĥeff
µ ψµ = Eµ ψµ , µ = 1, . . . , N/2 (11)

with the effective geminal Hamiltonian, Ĥeff
µ reading as

Ĥeff
µ = N Ĥµ + f MĤµ P̂µ,sf − f Lµ P̂µ,sf , (12)

where

N Ĥµ =

(µ)∑
kl

(NF a
klk

+
α l
−
α + NF b

klk
+
β l
−
β

)
+

1

2

(µ)∑
klmn

[kl|mn]
∑
σ,σ′

k+
σ l

+
σ′n
−
σ′m

−
σ (13a)

MĤµ =
M
Mµ


(µ)∑
kl

(MF a
klk

+
α l
−
α + MF b

klk
+
β l
−
β

)
+

1

2

(µ)∑
klmn

[kl|mn]
∑
σ,σ′

k+
σ l

+
σ′n
−
σ′m

−
σ

 (13b)

Lµ =
M
Mµ

(
MΛµ +

Θ

1 + fM

)
(13c)

Expressions for the Fockians NF a, NF b, MF a and MF b as well as quantities MΛµ and Θ

are given in Ref.24 Two-electron integrals [ij|kl] are written above in [12|12] convention.

Operator P̂µ,sf is the ‘local’ spin-flip corresponding to geminal µ, flipping the spin of orbitals

belonging to subspace µ. Eq.(11) for µ = 1, . . . , N/2 is solved in an iterative (self-consistent)

manner. Upon reaching a converged solution, all MS = 0 two-electron eigenstates of operator

Ĥeff
µ are obtained, labeled as ψµ,j, (j = 0, 1, . . .), with corresponding eigenvalues Eµ,j, where

ψµ,0 denotes the geminal entering the HP-SLG Ansatz (cf. Eqs.(7) and (2)). Appearance of

P̂µ,sf makes a marked difference in the effective Hamiltonians of Eq.(12) and that of Eq.(11)

in Ref.,24 as the latter does not contain P̂µ,sf explicitly. Instead, the effect of the local

spin-flip is absorbed in the second-quantized form of Ĥeff
µ , with the assumption that MS = 0

two-electron functions constructed with orbitals of subspace µ represent its domain. While

action of the two Hamiltonians is the same on this subspace, their effect is different in other
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subspaces of the Hilbert space. In the present work besides geminal states ψµ,j, MS 6= 0

two-electron functions as well as one-, three- and four-electron fragments appear in subspace

µ in course of the PT treatment. This is the reason for indicating the local spin-flip explicitly

in Eq.(12).

2.2 Half-projected Geminal-based PT

Perturbation theory based on geminal product wavefunctions falls into the multireference

category. Geminal construction offers a plausible way of defining a zero-order Hamiltonian

for the PT treatment in the form

Ĥ(0) =

N/2∑
µ=1

Ĥµ + Ĥ
(0)
V . (14)

In the above, Ĥµ is an effective Hamiltonian acting on subspace µ and including other

orbitals in an implicit manner. Effective Hamiltonians in Eq.(14) are similar in spirit to

that of Eq.(12), but their actual form is different, as discussed later. V = N/2 + 1 labels the

virtual subspace in Eq.(14), collecting orbitals not assigned to any two-electron fragment.

As a consequence of Eq.(11) the zero order equation is fulfilled for the geminal product

Ĥ(0)|SLG〉 =

N/2∑
µ=1

Eµ

 |SLG〉 = E(0)|SLG〉 (15)

i.e., |Ψ(0)〉 = |SLG〉. Excited functions |Ψ(0)
K 〉 (K 6= 0), orthogonal to |SLG〉, used for ex-

panding the first order PT correction |Ψ(1)〉 as

|Ψ(1)〉 =
∑
K 6=0

c
(1)
K |Ψ

(0)
K 〉 (16)
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are conveniently obtained in the product form akin to |SLG〉, with the general form

|Ψ(0)
K 〉 =

∏
µ

ϕ+
µ,K |vac〉 , (17)

where fragments ϕµ,K constituting |Ψ(0)
K 〉, constructed within separate geminal subspaces,

can be furnished with 1, . . . , 4 electrons. Following the notation of Ref.,74 excited states are

categorized according to the number of geminals differing from those constituting |SLG〉.

Within categories, excitation cases are defined based on the number of alpha and beta

electrons occupying the excited fragments. States |Ψ(0)
K 〉 are not necessarily eigenstates of

Ĥ(0), implying a nondiagonal G used for determining coefficients c
(1)
K from the first order

equation ∑
K 6=0

GLK c
(1)
K = −HL0 , ∀L 6= 0 , (18)

where GLK = 〈Ψ(0)
L |Ĥ(0)|Ψ(0)

K 〉 − E(0)δLK and HL0 = 〈Ψ(0)
L |Ĥ|SLG〉. The advantage of the

choice of Eq.(14) is that G exhibits a block-diagonal character, facilitating an efficient solu-

tion64,74,94 of the system of linear equations of Eq.(18). Different cases of excitations within

excited state categories form the individual blocks of G.

The above approach was advocated by Kapuy in the 60s95,96 and has been exploited in

PT schemes designed in our laboratory based on spin-restricted,56 as well as unrestricted74

geminal product zero-order. A Block Correlated PT2 scheme with GVB–PP as reference

(GVB-BCPT2) involving a diagonal zero-order operator and treating virtual orbitals indi-

vidually was also explored.94 These studies can be considered as forerunners of the present

work which aims at correcting the half-projected counterpart of |SLG〉. Since the symmetry

projected geminal function does not arise as eigenvector of a sum of effective geminal Hamil-

tonians a decision is to be made at this point. One may stick to the half-projected function

as |Ψ(0)〉 and tailor a zero-order Hamiltonian to obtain an appropriate zero-order equation.

This route was taken e.g. by Tsuchimochi and Ten-no97 when correcting the EHF function

by PT.
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Another grab on the problem is provided by sticking with the zero-order equation of

Eq.(15) and incorporating symmetry projection in the PT treatment. Starting from the EHF

function, this option has been also explored, cf. the work by Tsuchimochi and Van Voorhis.98

Knowles and Handy also applied this method for correcting the PAV-type projected UHF

reference by PT.99 The framework of SAPT, studied extensively in connection with weak

intermolecular interactions follows this latter route. It was pointed out,100 that there is no

unique projected PT scheme. In fact, the above mentioned works on correcting symmetry

breaking HF reference functions can be regarded as adaptations of particular SAPT variants.

The same holds for the approach followed in this work in designing a PT correction. A concise

presentation of the relevant formulae is given below for completeness.

Suppose we have a symmetry operator Â, fulfilling [Ĥ, Â] = 0. If P̂ projects onto a

subspace spanned by the the eigenvectors of Â corresponding to some of its eigenvalues, it

follows that [Ĥ, P̂ ] = 0. Our aim now is to derive PT corrections to an initial wavefunction

for which P̂ |Ψ(0)〉 6= |Ψ(0)〉.

Start from the Schrödinger equation written for the exact solution |Ψ〉, multiplied by P̂

ĤP̂ |Ψ〉 = EP̂ |Ψ〉 . (19)

Upon introducing the partitioning Ĥ = Ĥ(0) + Ŵ fulfilling

Ĥ(0)|Ψ(0)〉 = E(0)|Ψ(0)〉 (20)

one may arrive at the projected nth order equation in the general form

〈φ|Ĥ(0)P̂Ψ(n)〉+ 〈φ|Ŵ P̂Ψ(n−1)〉 =
n∑
k=0

E (k)〈φ|P̂Ψ(n−k)〉 (21)

where Ψ(n) is the n-th term of the Taylor series of Ψ, 〈φ| is a state up to our choice and E (n)

matches the n-th term of the Taylor series of E when [Ĥ(0), P̂ ] = 0. While
∑

n E (n) agrees
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with the exact energy upon convergence of the series, individual terms differ from the partial

sums of the Taylor series of E when Ĥ(0) does not commute with P̂ .

As the corrections P̂ |Ψ(n)〉 are in general linearly dependent (overcomplete),101 E (n) is

not well-defined. Multiple definitions (and values) may be given depending on the choice

for 〈φ| in Eq.(21), two plausible ideas being 〈φ| = 〈Ψ(0)| and 〈φ| = 〈Ψ(0)|P̂ . The latter

requires computation of terms 〈Ψ(0)|P̂ Ĥ(0)P̂Ψ(n)〉 and 〈Ψ(0)|P̂ Ŵ P̂Ψ(n−1)〉, which usually

makes evaluation more complicated. Hence we stick to the former choice.

Setting |φ〉 = |Ψ(0)〉, one arrives at99

E (0) =E(0)

E (0) + E (1) = 〈Ψ(0)|ĤP̂ |Ψ(0)〉 / 〈Ψ(0)|P̂ |Ψ(0)〉 = EHP

and

E (2) = 〈Ψ(0)|(Ĥ − EHP)P̂ |Ψ(1)〉 / 〈Ψ(0)|P̂ |Ψ(0)〉 (22)

with Ψ(1) obtained from Eqs.(16)-(18). Eq.(22) matches the SAPT energy expression ob-

tained by so-called weak symmetry forcing.84,86

In our case the general formula of Eq.(22) is to be applied with the projection operator

performing HP according to Eq.(5). With |SLG〉 substituted for |Ψ(0)〉, Eq.(22) takes the

form

E (2) =
〈SLG|Ĥ|Ψ(1)〉+ f 〈SLG|P̂sfĤ|Ψ(1)〉 − f EHP〈SLG|P̂sfΨ

(1)〉
1 + fM

, (23)

where relation [Ĥ, P̂sf] = 0 was taken advantage of, and M is given by Eq.(9). Introducing

first order coefficients arising from Eq.(18) provides the shorter expression

E (2) =

∑
K 6=0 c

(1)
K (H0K + f H̃0K − f EHPM0K)

1 + fM
, (24)

where H̃0K = 〈SLG|ĤP̂sf|Ψ(0)
K 〉, M0K = 〈SLG|P̂sfΨ

(0)
K 〉.

When adopting strong symmetry forcing78–80 according to SAPT terminology, a different
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second-order energy formula is obtained, reading as

E (2)
s = − 〈SLG|(Ĥ − EHP)P̂SQ̂P̂S(Ĥ − EHP)|SLG〉

〈SLG|P̂S|SLG〉

= E (2) +
〈SLG|ĤQ̂Ĥ|SLG〉 − 〈SLG|P̂sf(Ĥ − EHP)Q̂(Ĥ − EHP)P̂sf|SLG〉

2(1 + f M)
,

(25)

where Q̂ stands for the reduced resolvent, i.e., the inverse of (Ĥ(0) − E(0)) in the space

orthogonal to |SLG〉 (thus its matrix representation corresponds to the inverse of G). The

last term in Eq.(25) necessitates the inclusion of higher excitations than those contributing

to E (2), due to the appearance of the term featuring two instances of P̂sf. Rewriting this

term as

〈SLG|P̂sf(Ĥ − EHP)Q̂(Ĥ − EHP)P̂sf|SLG〉 =
∑
K,L6=0

(H̃0K − EHP M0K)QKL(H̃L0 − EHPML0)

(26)

makes it apparent that excited states |Ψ(0)
K 〉 contributing to the second order energy in

this scheme are those for which H̃0K is nonzero: elements of the first order interacting

space of |SLG〉, or any excited state that can be obtained from those states via excitations

that are MS and electron number preserving geminal-wise. Appearance of higher-order

excitations highlights the difference between weak and strong symmetry forcing: in the

latter, a symmetry projector is inserted into more than one position in the PT formulae,

resulting in a computationally more demanding expression.

2.3 Particulars of HP-SLG PT

2.3.1 Definition of Ĥ(0)

Performance of PT strongly depends on the choice for the zero-order Hamiltonian. The

PT scheme described in Sec. 2.2 necessitates a Ĥ(0) fulfilling Eq.(20), with the unprojected

geminal product as eigenfunction. The sum of effective operators, Eq.(14) serves for this
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purpose having the advantage that Ĥµ incorporates intrageminal two-electron terms and

that a decoupling of the equations yielding |Ψ(1)〉 is provided due to the block-diagonal

structure of G, cf. Eq.(18). The eigenvalue equation of the effective Hamiltonian, Eq.(11) in

principle ensures the zero order equation when writing Eq.(14) with Ĥeff
µ of Eq.(12). Note,

that ψµ,j in general differ for variationally optimized SLG and HP-SLG in accordance with

Heff
µ being different for the two schemes.

While the effective Hamiltonian of Eq.(12) is suitable from the part of the geminal solution

ψµ,0, the same does not necessarily apply for other geminal states. Concerns arise with spin-

flip involving terms of Eq.(12) (second and third terms on the right hand side), which stem

from purifying the geminal product involving ψµ,0, with factor f defined for the target spin of

the many-electron state. This calls for caution when considering excited geminal states, the

spin of which are not related to that of the HP-SLG function. Further precaution is warranted

when evaluating the effect of the local spin-flip on MS 6= 0 states. Since geminal functions

contributing to SLG are all characterized by MS = 0, this situation does not show up in the

context of HP-SLG, but it must be considered when P̂µ,sf involving terms are admitted in

Ĥ(0) with the purpose of developing PT. A straightforward generalization of P̂µ,sf for MS 6= 0

states results in undesirable Ŝz-violation at the level of Ĥµ and consequently by Ĥ(0). When

applying P̂µ,sf in this work, a workaround suggested by Ruiz102 is adopted to conserve MS.

We refer to Appendix A for further details on this.

A desirable feature of effective Hamiltonians in the half-projected framework is that they

should fall back to their spin-pure counterparts if the reference is spin-pure. In general, if

each geminal is an eigenstate of Ŝ2 (i.e., either purely singlet or purely triplet), operator Ĥµ

of Eq.(12) simplifies to

N Ĥµ(1 + f
M
Mµ

P̂µ,sf)− f
M
Mµ

Eµ,0 P̂µ,sf , (27)

and N Ĥµ is spin-pure in such a case. Though eigenstates of Eq.(27) are the same as those
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of N Ĥµ in the MS = 0 subspace, energy levels are different with the exception of Eµ,0

corresponding to ψµ,0. It is at this point where the caveat to plugging the full form of

Eq.(12) in Eq.(14) can be argued. When all geminals are singlet, the energy of an excited

singlet state ψµ,j, j 6= 0 (cf. excited solutions of Eq.(11)) of geminal µ by Eq.(27) is given as

2Eµ,j − Eµ,0 instead of the desired Eµ,j. The case of the MS = 0 triplet state is even more

pathological, it appearing as a downright intruder at the level of two-electron fragments,

with eigenvalue Eµ,0. The effect of the effective operator in Eq.(27) on spin-pure geminal

states is worked out in detail in Sec. A.2 of Appendix A. It is also discussed there that the

noninteracting nature of singlets with triplets cannot be called upon to alleviate the problem.

The ill-effect can be clearly attributed to the second and third terms on the right hand side

of Eq.(12), which are however needed for ensuring Eq.(20).

To remedy the situation, distinct effective Hamiltonians are formulated in distinct sub-

spaces of functions corresponding to geminal index µ. The three subspaces introduced are

associated with projectors

Ôµ = |ψµ,0〉〈ψµ,0|

R̂µ =
∑
j 6=0

|ψµ,j〉〈ψµ,j|

Q̂µ = 1− Ôµ − R̂µ ,

(28)

where states ψµ,j (j = 0, 1, . . .) are the MS = 0 solutions of Eq.(11), defined under Eq.(13),

while projector Q̂µ involves MS 6= 0 two-electron states in subspace µ as well as one-, three-

and four-electron states. With the use of projectors Ôµ, R̂µ and Q̂µ, the effective Hamiltonian

entering Eq.(14) is defined for µ ≤ N/2 as

Ĥµ = Eµ,0 Ôµ + R̂µ Ĥ
R
µ R̂µ + Q̂µ Ĥ

Q
µ Q̂µ . (29)

Of the several choices for quantities ĤR
µ and ĤQ

µ , three are reported in Section 4. Parti-

tioning variants are formulated with the aim of avoiding intruder effects as well as fine-tuning

performance. The cure e.g. for the above mentioned intruder problem, affecting space Rµ,
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is prompted by the following rewriting of Eq.(11)

(
N Ĥµ + f MĤµ P̂µ,sf

)
ψµ = Eµψµ + f Lµ P̂µ,sf ψµ . (30)

We now proceed by substitutingMM−1
µ Eµ in place of Lµ on the right hand side. Though this

violates the equation above, it presents no serious concern as we merely aim at formulating

a suitable Ĥµ for space Rµ . Note however, that MM−1
µ Eµ and Lµ match in the spin-pure

case, deviation from Eq.(30) can therefore be expected to be small when spin contamination

is small. The substitution is motivated by the observation that (1 + f M
Mµ
P̂µ,sf) appears on

the right hand side as a sort of metric. This hints to consider

(
1 + f

M
Mµ

P̂µ,sf
)−1 (

N Ĥµ + f MĤµ P̂µ,sf
)

(31)

as effective Hamiltonian. Formally, operator 1 + f M
Mµ
P̂µ,sf is invertible in the MS = 0 two-

electron subspace if and only if
∣∣∣ MMµ

∣∣∣ 6= 1, which excludes the spin-pure case. In general,

if some of the two-electron fragments are spin-mixed, then
∣∣∣ MMµ

∣∣∣ usually differs from 1, not

causing an issue with inversion. For spin-pure cases, a workaround is provided in Appendix A.

We proceed in the spirit of Eq.(31), and find treatment for the defect caused by P̂µ,sf in simply

omitting it, leading to the expression

Ĥc
µ =

N Ĥµ + f MĤs
µ

1 + f M
Mµ

. (32)

In the above MĤs
µ stands for the hermitian part of MĤµ

MĤs
µ = (MĤµ + MĤ†µ)/2 . (33)

This amendment becomes necessary due to the fact that MĤµ is non-Hermitian in general,

as discussed in Appendix A. Geminal energies by Eq.(32) are found to agree with that of
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N Ĥµ in the spin-pure limit for Mµ = 1, the intruder problem mentioned above is therefore

resolved.

As an alternative approach, one may think of removing the artificial intruder in the

spin-pure case for j 6= 0 via an additive correction by Eµ,0 and a scaling by 1/2. In the

general, spin contaminated case this takes the form of a shift by fMM−1
µ Eµ,0 and a scaling

by (1 + fMM−1
µ )−1. The corresponding modification of Eq.(12) leads to

Ĥb
µ =

(
N Ĥµ + f

(
MĤµ P̂µ,sf

)s
− f LµP̂µ,sf + f

M
Mµ

Eµ,0

)
/

(
1 + f

M
Mµ

)
, (34)

and the symmetrized form of MĤµ P̂µ,sf is applied in analogy with Eq.(33). It is easy to

show, that while Eq.(34) cures the problem of the artifical shift of singlet states, it leaves

MS = 0 triplet states degenerate with the singlet ψµ,0 ground state geminal. The effective

Hamiltonian Ĥb
µ is therefore not appropriate for space Oµ. Note that Ĥc

µ can be derived in

this alternative route also by omitting P̂µ,sf from Ĥb
µ and dropping the last two terms of the

numerator.

In the general case there is no guarantee for the denominator of Eq.(32) and Eq.(34)

not becoming zero. A discussion and workaround for the spin-pure case is presented in

Appendix A. In the general case the following modification may be of help:

Ĥd
µ =

N Ĥµ + f Mµ
MĤs

µ

1 + fM
. (35)

ApparentlyMµ is introduced in the second term both in the numerator and the denominator

when stepping to Eq.(35) from Eq.(32). This may be argued with the observation that fM

is positive and effect of P̂µ,sf/Mµ is unit in space Rµ in the spin-pure case, cf. Appendix A.

The sign of the second term in the round braces in Eq.(31) is therefore spoiled when omitting

just P̂µ,sf. In this view, Eq.(35) corresponds to omitting P̂µ,sf/Mµ from Eq.(31). One may

also realize the reassuring fact, that the denominator of Eq.(35) is proportional to Eq.(8).

The quantity in Eq.(8) tends to zero only in the limit of projecting an essentially spin-pure

17



geminal product in the wrong direction, i.e., using f = 1 for a triplet |SLG〉 (i.e., M = −1)

or f = −1 for a singlet |SLG〉 (i.e., M = 1). Since this situation is clearly pathological and

can be excluded by start, we consider the geminal Hamiltonian Ĥd
µ of Eq.(35) as one choice,

suitable for our purpose.

With the aim of modifying the least possible when arriving to Ĥµ, one may envisage yet

another alternative route, rewriting the geminal eigenvalue equation, Eq.(30) in the form

(
N Ĥµ + f MĤµ P̂µ,sf

)
ψµ = Eµ

(
1 + f

Lµ
Eµ
P̂µ,sf

)
ψµ .

Omitting the second term on the right hand side of Eq.(13c) and introducing κ =
MΛµ
Eµ,0

one

arrives at (
N Ĥµ + f MĤµ P̂µ,sf

)
ψµ = Eµ

(
1 + κ f

M
Mµ

P̂µ,sf
)
ψµ , (36)

suggesting a geminal Hamiltonian expression

Ĥe
µ =

{(
1 + κf

M
Mµ

P̂µ,sf
)−1 (

N Ĥµ + f
(
MĤµ P̂µ,sf

)s)}s

(37)

with superscript s referring to symmetrization as before. A notable characteristic of Ĥe
µ, as

compared to Ĥc
µ and Ĥd

µ is that it involves P̂µ,sf, yet its spin-pure limit in space Rµ is correct,

though finding the limit is occasionally hampered by
(

1 + κf M
Mµ
P̂µ,sf

)
being non invertible.

See Appendix A in this respect.

Functions belonging to space Qµ and to µ = V are orthogonal to those figuring in Eq.(11).

Based on this, complete omission of the second and third terms on the right hand side of

Eq.(12) is also warranted, resulting in the SLG counterpart of Eq.(12), N Ĥµ. This is applied

in all PT variants reported in Section 4 for µ = V . We mention that switching the operator

of Eq.(35) to N Ĥµ (or vica versa) in either space Qµ or for µ = V has only a slight effect on

energetic data.

Partitionings 1 − 3 tested in this work, formulated with the effective Hamiltonians de-
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scribed above, are summarized in Table 1.

Table 1: Partitioning variants tested in Sec. 4. Geminal subspaces involved in the reference
correspond to µ ≤ N/2, the virtual subspace is indicated by µ = V = N/2 + 1. Operators
Ĥb
µ , . . . , Ĥ

e
µ are given in Eqs.(34), (32), (35) and (37).

1 ≤ µ ≤ N/2 µ = V

partitioning ĤR
µ ĤQ

µ ĤV

1 Ĥc
µ Ĥb

µ
N ĤV2 Ĥe

µ Ĥe
µ

3 Ĥd
µ Ĥd

µ

In spin-pure situations Ĥd
µ falls back to N Ĥµ since fM = 1 and consequently f Mµ

MĤµ = N Ĥµ

in such cases. The statement also holds for operator Ĥe
µ. Variants 2 and 3 therefore provide

the desired limit in the spin-pure case. We stress at this point that exact degeneracy of

geminal states that initiated the development delineated in this section is resolved by all

partitionings listed in Table 1. While quasi-degeneracy remains a potential risk, the effect

did not show up in any variants and systems investigated in this work.

2.3.2 First order interacting space

The sum of geminal Hamiltonians form of Eq.(14) induces a product over fragments form

of functions Ψ
(0)
K used for expanding the first order correction, with fragments constructed

with orbitals belonging to specific geminal subspaces. This allows for a categorization of

functions Ψ
(0)
K , based on the number of geminals affected by excitation, the resulting number

of electrons as well as the MS value of affected subspaces. Functions Ψ
(0)
K spanning the first

order interacting space, i.e., having nonzero interaction with the reference are affected in at

least two and in at most four geminals. The functions themselves can be depicted as given

in Figs. 1. and 2. of Ref.,74 when restricting geminal subspace dimensions to two. Unaltered

part of the excited functions is derived from the geminal product |SLG〉. The structure of

the first order interacting space of the present PT scheme is exactly the same, as a result

of the analogous definition of Ĥ(0). Evaluation of the numerator of Eq.(24) necessitates two

19



extra terms for each Ψ
(0)
K as compared to the formulation of Ref.74 These are H̃0K and M0K ,

the expression of which are given in Appendix C.

Evaluation of the second order correction with strong symmetry forcing is more de-

manding since G has to be constructed in a space containing higher excitations than those

contributing to Eq.(24). This is due to the fact that the spin-flip counterpart of ψµ,0 is

not an eigenfunction of Ĥµ. Higher excitations arise by MS and particle number conserving

excitations in geminals considered unaffected in Figs. 1. and 2. of Ref.74 Excited states con-

tributing to Eq.(25), lying out of the first order interacting space described in the previous

paragraph can be categorized according to the number of ‘excess’ excited geminals. As this

number grows, the contribution is expected to become less significant. Our applications

resort to the case of just one ‘excess’ excited geminal in excitation case 3V of Ref.74 This

represents exact evaluation of Eq.(25) for the four-electron system of Section 4.1, while it

provides an approximate version of E (2)
s for the other examples of Section 4.

Excitation in one geminal At difference with the PT scheme of Ref.,74 excited states

affected in just one geminal of |SLG〉 may have nonzero first order coefficient since the

corresponding inhomogeneous term of Eq.(18), HL0 is nonzero. (Note, that the variational

problem is formulated for the projected geminal product while |SLG〉 contributes to HL0.)

These states however remain non-contributing to the second order energy correction due to

the generalized Brillouin-condition24

〈δHP-SLG | Ĥ − EHP |HP-SLG〉 = 0 . (38)

To see this, write the numerator of Eq.(22) for term L picked from Eq.(16), resulting

〈SLG|(Ĥ − EHP)P̂ |Ψ(0)
L 〉 c

(1)
L = 〈HP-SLG|(Ĥ − EHP)|Ψ(0)

L 〉 c
(1)
L . (39)
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Since Ψ
(0)
L is a function covered by the first order variation denoted δHP-SLG in Eq.(38),

the matrix element of Eq.(39) is zero. An analogous derivation reveals that such states do

not contribute to the second order energy correction with strong symmetry forcing either.

2.3.3 Invariance to spin-flip in SLG

If a set of geminals ψµ is optimal by HP-SLG, then its spin-flipped counterpart is also

optimal. Using the notation ψ̃µ := P̂sfψµ, the product function

|S̃LG〉 := P̂sf|SLG〉 =

N/2∏
µ=1

ψ̃+
µ |vac〉 (40)

yields the same half-projected function (up to a sign) and the same point on the HP-SLG

energy surface. It is desirable for a PT correction to be invariant to using either |SLG〉

or |S̃LG〉 as reference. The PT schemes developed here possess this feature, as shown in

Appendix B.

3 Computational details

In the applications of Section 4 the HP-SLG wavefunction is optimized with respect to

geminal coefficients, but not with respect to orbitals. These are UNOs, more specifically,

natural orbitals of the MS = 0 UHF wavefunction, that underlie the calculations, similarly

to Refs.74,103 We use acronyms HP-USLG and USLG to refer to UNOs, that are in general

not optimal orbitals of either HP-SLG or SLG. Geminal subspaces are determined by the

pairing of UNOs according to their occupation number: if occupancy of an orbital is above a

numerical threshold, it constitutes a one-dimensional geminal, while two-dimensional active

geminals are constructed from UNO pairs with occupation numbers adding up to 2. In case

of UNO occupation degeneracy we rely on Löwdin’s pairing theorem28,104 in assigning the

proper alpha-beta pairs.
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Both Ansätze are invariant under unitary transformation of doubly occupied orbitals,

while the zero-order Hamiltonian does not exhibit this feature. To avoid any ambiguity,

doubly occupied orbitals are pseudocanonicalized, meaning that they diagonalize the gener-

alized Fockian

Fij = 2hij +
∑
kl

γkl [2[ik|jl]− [ik|lj]] , (41)

where γ is the normalized one-particle reduced density matrix (1-RDM) of the respective

wavefunction.

Computational cost of the approach deserves some remark. The time-determining step is

the solution of the system of linear equations in Eq.(18), step count being determined by two

factors: the number of blocks of coefficient matrix G and the size of individual blocks. The

former depends on the number of fragments, while the latter is determined by dimension

of geminal subspaces. For excited N -electron functions not involving the virtual subspace,

dimension of a block is bounded by 16 from above, supposing at most two-dimensional

non-virtual geminal subspaces. In these cases the number of blocks is the decisive factor,

scaling as N4
gem, with Ngem standing for the number of geminals. Regarding excited states

with nonzero virtual geminal occupation, functions accommodating two electrons in the

virtual space generate the most computational demand. Solving for the largest block of

Eq.(18), having dimension ∼ N2
virt scales as N2

virt ×N2
virt, when performed efficiently. Since

Ngem << Nvirt holds typically, the computational cost is O(N2
gemN

4
virt). Finally, the cost

of additional spin projection needs to be mentioned. If weak symmetry forcing is applied,

evaluation of Eq.(24) is of essentially the same cost as obtaining a second-order correction

without spin projection, as construction of G and solution of Eq.(18) requires the same

process as for USLGPT. There is one additional term arising in Eq.(24) arising from spin

adaptation, that is H̃0K . Weak symmetry forcing therefore contributes a factor of two when

computing the coupling matrix elements between excited states and the ground state. Since

this is not the time-determining step of the computation, HP-USLGPT with the weak SAPT

formalism is essentially of the same cost as USLGPT.
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Excited states in general can not be expected to be represented well by geminal-based

methods. The states contributing to the spin contaminated SLG and/or HP-SLG reference

can however be assumed to be reliable. Lowest lying singlet and triplet states of radicaloids

constitute a typical example, providing the test cases of Section 4. Control on the target

state is achieved by choosing the appropriate geminal root in course of the variational op-

timization and by setting the value of parameter f accordingly. Geminal CI parameters

characterizing the lowest singlet and triplet states at the level of the reference are collected

in the Supplementary Material, together with the weights of separate spin components of

the wavefunction.

Working PT formulae of the report are Eq.(24) and Eq.(25), labeled as ‘w’ and ‘s’ for

weak and strong respectively. The latter is evaluated approximately except for the case

of Section 4.1. The zero order Hamiltonian entering the above expressions is one of the

variants 1 − 3 presented in a concise manner in Appendix A. Thus ‘HP-USLG-PT2 3w’

refers to Eq.(24) with Ĥ(0) according to line three of Table 1.

Benchmarks are either provided by full CI (FCI) or by high accuracy theoretical data

reported in the literature. Results by HP-USLG-PT are presented and discussed vis-à-vis

USLG-PT, the main motive of the work being the amendment of the latter in case of severe

spin contamination.

4 Results

4.1 H4

Rectangle to square distortion of the H4 system is investigated in the vicinity of the square

geometry in 6-311G∗∗ basis. Note, that due to the unrestricted nature of the geminal ref-

erence, the cusp characteristic of singlet coupling at the square arrangement105 is missing

here. Ground state of the system by FCI is triplet in the geometry range investigated, with

vertical excitation energy of the lowest lying singlet state falling between 7 mEh and 31 mEh.
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When computed by USLG, the ground state is spin contaminated with total spin ranging

from 1.43 to 1.80 when moving from rectangle to square geometry, while the singlet is spin-

pure with correct spatial symmetry (Ag for rectangle and B2g for square). Spin symmetry

violation of the triplet USLG state is accompanied by spatial symmetry breaking. The

picture is reversed in some sense for HP-USLG that results a triplet state both spin-pure

and of correct spatial symmetry (B1g for rectangle and A2g for square). Aiming for the singlet,

HP-USLG provides a solution of correct spatial symmetry and slightly spin contaminated

(with 〈Ŝ2〉HP-USLG falling between 0.03 and 0.04). Note, however, that spin contamination

is marginal only after projection. The underlying geminal product function has more of a

mixed character, as is apparent from Table 2, which contains spin component analysis of the

geminal-based wavefunctions at two different geometries.

Table 2: Weight (in total coefficient squared sense) of Ŝ2-eigenfunctions corresponding to
eigenvalue S in geminal-based wavefunctions, obtained for the singlet and triplet states of
H4 in 6-311G∗∗ basis, for selected geometries. For details see legend of Fig. 1.

singlet state triplet state

USLG
HP-USLG,
before proj.

HP-USLG,
after proj. USLG

HP-USLG,
before proj.

HP-USLG,
after proj.

α
=

85
◦ S = 0 1 0.8477 0.9949 0.2906 0.1038 0

S = 1 0 0.1480 0 0.7063 0.8443 1
S = 2 0 0.0043 0.0051 0.0031 0.0519 0

〈Ŝ2〉 0 0.3219 0.0304 1.4313 2.0000 2.0000

α
=

90
◦ S = 0 1 0.8314 0.9936 0.1031 0.1037 0

S = 1 0 0.1632 0 0.8949 0.8444 1
S = 2 0 0.0054 0.0064 0.0020 0.0519 0

〈Ŝ2〉 0 0.3586 0.0384 1.8020 2.0000 2.0000

For a system built of two geminals, optimal CI coefficients of fragments are not unique24

by HP-USLG. While this has no effect on the HP-USLG energy, PT corrections by Eq.(24)

and Eq.(25) are affected since they are based on the unprojected function. Adopting the

notation of Eq.(4), angles η1 and η2 are uniquely determined, while choice for δ1 and δ2 has

one degree of freedom: for f = 1, tan(δ1) · tan(δ2) = K1 while for f = −1, tan(δ1)/ tan(δ2)

has to be set to equal K2 (constants K1 and K2 can be deduced from the CI expansion

of the optimal HP-USLG wavefunction). To avoid any ambiguity, δ1 and δ2 are chosen to
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fulfill the constraint above, and at the same time maximize the squared norm of the pro-

jected function. It can be shown that this choice results in δ2 = ±δ1 for the singlet and

δ2 = ±(π/2− δ1) for the triplet (sign of δ1 and δ2 depending on the sign of K1 and K2,

respectively). This choice is reasonable since unwanted components of the unprojected func-

tion are of the smallest possible norm, a situation preferable for HP-SLG-PT as underlined

by the results in Sec. 4.2.1. Spin component data of the HP functions in Table 2 correspond

to the wavefunctions parametrized accordingly.

Energies and singlet-triplet splittings for a few selected geometries obtained by HP-USLG-

PT2 are collected in Table 3, complemented by unperturbed data and USLG-PT2. Energy

gaps of the references providing zero-order approximation to the wavefunction, USLG and

HP-USLG are both found to give overestimates as compared with the FCI data in Table 3.

Results by HP-USLG are only slightly better than those by USLG.

Second order geminal PT based on USLG yields poor results, even reversing the order

of singlet and triplet for α = 85◦. Examining the error of individual states shown in Figs. 1

and 2, the error of USLG-PT2 is found to be between 5 mEh and 10 mEh for the singlet

and around 20 mEh for the triplet. The source of poor performance of geminal PT based on

USLG is accordingly an imbalanced treatment of singlet and triplet-like reference states, as

has been observed in connection with UMP17 when the system has a triplet ground state.

In comparison, projected PT applied to HP-USLG brings a substantial improvement

to energy differences, if the partitioning is chosen appropriately. As seen in Table 3, HP-

USLG-PT2 variants 1 and 2 perform better than USLG-PT2, but they still underestimate

the singlet-triplet gap. A look at individual energies in Figs. 1 and 2 reveals that both states

are characterized by a larger error than USLG-PT2 and an imbalance remains in that the

triplet exhibits larger error by HP-USLG-PT2 1, than the singlet. It may appear disturbing,

that singlet energies by USLG-PT2 and HP-USLG-PT2 are markedly different even though

both states are essentially spin-pure. This can be argued with the nonnegligible spin contam-

ination of the zero-order of the HP-USLG-PT2 scheme, i.e. the geminal product underlying
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HP-USLG, cf. Table 2. Variant 3 of HP-USLG-PT2 is more successful in predicting the

gap, notably because it does not increase the error of USLG-PT2 for the triplet, cf. Fig. 1, it

merely flattens the error curve. Based on Table 3, HP-USLG-PT2 variant 3 can estimate the

singlet-triplet gap with an error of 5-15 % even though energetic description of the individual

states is not highly accurate. In our experience, HP-USLG-PT2 energy contributions are in

general suppressed compared to USLG-PT2. In the present example a smaller PT2 energy

contribution to the singlet HP-USLG solution brings forth a more balanced description of

states. The geminal product states underlying the HP-USLG wavefunction have a similar

amount of spin contamination for the singlet and triplet roots in the sense that weight of

the target component is around 0.85 for both states. The case of USLG is less balanced, this

weight being 1.0 for the singlet, and only 0.71 for the triplet. Energy gaps shown in Fig. 3

complement the picture: the farther the geometry gets from square the closer HP-USLG-PT2

gets to FCI.

A few words are now due on the performance of different partitionings in Table 3. Variant

2 is seen to be more accurate than variant 1, achieving a shift of total energies in the correct

direction, and improving gaps too. The numerical difference can be mainly attributed to Ĥb
µ

in space Qµ being replaced by Ĥe
µ in variant 2 and implies that the latter is more successful.

Results by 2 fall between 1 and 3. Difference between variants 2 and 3 signifies that Ĥd
µ is

even more fortunate in space Qµ than Ĥe
µ.

Data in Table 3 also serves for comparison of weak and strong symmetry forcing, cf. Eqs.(24)

and (25), revealing that altering the partitioning may have larger effect than changing the

symmetry forcing strategy. Gaps are only slightly changed when comparing weak and strong

versions of the same HP-USLG-PT2 variant. According to expectations, difference between

weak and strong symmetry forcing is found to be more pronounced in numerical terms for

larger systems, vide infra.
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Figure 1: Energy error (relative to FCI, given in mEh) for the triplet state of the H4 molecule
in 6-311G∗∗ basis, obtained by geminal-based models. The H atoms form the vertices of a
rectangle, moving on a circle of 1.0 bohr radius. With X denoting the centre of mass, the
angle α = ∠(HXH) is varied.
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Figure 2: Energy error (relative to FCI, given in mEh) for the singlet state of the H4 molecule
in 6-311G∗∗ basis, obtained by geminal-based models. For further details see the legend of
Fig. 1.

Table 3: Total energy of the triplet state (given in Eh) and singlet-triplet gap (∆E = ES−ET,
in mEh) of the H4 molecule in 6-311G∗∗ basis, obtained by geminal-based models. See the
legend of Fig. 1 for geometry. Benchmark is provided by FCI.

α / ◦

85 87 90
method ET ∆E ET ∆E ET ∆E
USLG −1.863433 20.41 −1.863819 31.08 −1.864476 39.53
USLG-PT2 −1.907742 −3.59 −1.909983 6.52 −1.912708 14.58
HP-USLG −1.871671 18.72 −1.874354 30.36 −1.875856 38.30
HP-USLG-PT2 1w −1.902642 −1.15 −1.905227 10.54 −1.906674 18.68
HP-USLG-PT2 1s −1.901692 −1.01 −1.904286 10.56 −1.905741 18.50
HP-USLG-PT2 2w −1.906081 2.669 −1.908614 14.25 −1.910031 22.29
HP-USLG-PT2 2s −1.905021 2.709 −1.907566 14.18 −1.908993 22.03
HP-USLG-PT2 3w −1.908620 6.854 −1.911105 18.63 −1.912689 26.28
HP-USLG-PT2 3s −1.907585 6.869 −1.910085 18.53 −1.911389 25.99
FCI −1.928906 7.13 −1.931197 20.44 −1.932478 30.84
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Figure 3: Vertical excitation energies (ES − ET, in mEh) of the H4 molecule in 6-311G∗∗

basis, obtained by geminal-based models. Benchmark is provided by FCI. For details on
geometry see Fig. 1.
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4.2 Diatomic molecules

4.2.1 O2

Singlet-triplet splitting is computed for the oxygen molecule in 6-31G basis. At the geome-

tries taken from experiment UHF is spin contaminated, with two occupation numbers being

1.00 for the π-type bonding UNOs. In addition to this, two more geminals are correlated,

corresponding to the π-type lone pairs of the oxygens. Apart from the orbitals assigned to

these three geminals, all other UNOs (occupation number greater than 1.998) are considered

doubly occupied and are pseudocanonicalized.

Starting with USLG, both states are found spin-pure,74 energy gaps by USLG-PT2 are

accordingly expected to be adequate. The energy error of the USLG-PT2 gap is in fact 4%

as compared with FCI, as shown in Table 5. Since no spin contamination appears at the

level of USLG, it can not be claimed as a drive for computing HP-USLG, which is examined

in this situation in order to gain experience.

Distinct solutions are found for HP-USLG for both states, slightly spin contaminated

and slightly below USLG in energy, by cca. 5.5 mEh, cf. Table 5. The triplet HP-USLG

solution is characterized by 〈Ŝ2〉HP-USLG = 2.000, and 〈Ŝ2〉HP-USLG = 0.017 stands for the

singlet. Optimal geminal parameters collected in Table 4 reveal the difference in the HP-

USLG solutions compared to USLG, that is rather imperceptible when looking at total

spin. Examining the parameters in Table 4, the two lone pair geminals are essentially found

singlet for all methods and states (δ1 and δ2 being close to zero). Total spin of the product

is therefore determined essentially by the bonding geminal.

For HP-USLG, a peculiar phenomenon can be observed: the geminal product function

of the singlet state has more of a triplet character, since δ3 in Table 4 is closer to 90◦ than

to zero. Weight of the components (in coefficient squared sense) with even S is consequently

less than that of the unwanted, odd S components. This results in a negative value for

M (cca. −0.79). Multiplied by f = 1 corresponding to projection to singlet and plugged in
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Eq.(8), a rather small value is obtained which in turn contributes the denominator to Eq.(24).

The case of the triplet state is completely analogous: the bonding geminal is mainly singlet

in HP-USLG (δ3 in Table 4 is small), resulting in M≈ 0.79, which, combined with f = −1

once again yields a small denominator in Eq.(24). Though the wavefunction is normalized

after projection, such zero-order states can undermine the performance of SAPT since it

relies on the unprojected reference.

Table 4: Optimal geminal parameters (δ, η in degrees) and corresponding quantities for the
O2 molecule in 6-31G basis.

triplet
µ 1 2 3
δµ, USLG 0.00 0.00 90.00
ηµ, USLG 1.39 1.39 n.a.
δµ, HP-USLG 0.88 0.88 18.86
ηµ, HP-USLG 1.44 1.44 45.00
Mµ, HP-USLG 0.9995 0.9995 0.7910

singlet
µ 1 2 3
δµ, USLG 0.00 0.00 0.00
ηµ, USLG 1.35 1.35 45.00
δµ, HP-USLG 0.90 0.90 71.20
ηµ, HP-USLG 1.40 1.40 45.00
Mµ, HP-USLG 0.9995 0.9995 −0.7922

The effect of projecting in the “wrong direction” manifests both in total energies and

gaps by HP-USLG-PT2 in Table 5. A small denominator in Eq.(24), if not counteracted by

a similarly small numerator, results in a large second order correction in absolute value. This

is the reason for HP-USLG-PT2 energies getting way below FCI (variants 1 and 2). Even

though variant 2 shifts energies closer to FCI for both states, the adiabatic gap is improved

only slightly compared to 1. Variant 3 performs better in this regard, however, the adiabatic

excitation energy by HP-USLG-PT2 remains essentially of the same quality as HP-USLG.

Concluding this example, a couple of milihartrees energy lowering at the level of HP-

USLG induces a significant change in the geminal product wavefunction, raising the weight

of the unwanted spin component above that of the target component. Projected PT schemes
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Table 5: Energy of the triplet ground state and first excited singlet state of the oxygen
molecule (in Eh) in 6-31G basis. Energy difference ∆E = ES−ET is given in mEh. Geome-
tries are taken from Ref.106 as RS = 1.21563 Å and RT = 1.20752 Å. The 1s core orbitals of
the oxygen atoms are frozen in FCI calculations.

method ET ES ∆E
USLG −149.531307 −149.497527 33.78
USLG-PT2 −149.739058 −149.699740 39.32
HP-USLG −149.536840 −149.503014 33.84
HP-USLG-PT2 1w −149.863768 −149.724597 139.2
HP-USLG-PT2 2w −149.820329 −149.725780 94.55
HP-USLG-PT2 3w −149.760113 −149.729031 31.08
FCI −149.784823 −149.744266 40.56

that apply symmetry projection along with composing the correction become unreliable in

such a situation.

4.2.2 NH

Similarly to the oxygen molecule, the ground state of the NH molecule is triplet (3Σ), and the

lowest lying singlet state (1∆) is multiconfigurational. Single-reference methods consequently

miss a significant amount of correlation for the singlet state, and therefore overestimate the

singlet-triplet gap.98

Calculations are carried out in cc-pVTZ basis107 to allow comparison to data of Ref.108

Geometries of the two states are based on experiment. For both interatomic distances, the

MS = 0 UHF solution is strongly spin contaminated with 〈Ŝ2〉UHF ≈ 1.01. All valence

electrons (altogether 6 electrons in 3 geminals) are correlated in geminal computations.

Occupation number threshold separating the doubly occupied orbitals from active UNOs is

1.9999 in this case. Both the ground state and the singlet excited state can be described

by USLG in a spin-pure manner. Similarly to the case of O2, stepping to HP-USLG does

not appear an absolute must. Investigating half-projection nonetheless, distinct HP-USLG

solutions of cca. 10 mEh below USLG are found, characterized by a total spin value 2.00

for the triplet and 〈Ŝ2〉HP-USLG = 0.02 for the singlet. In contrast with O2, the geminal

product underlying HP-USLG exhibit proper spin character for both states, meaning that
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the singlet weight is most pronounced for even S, and the product is dominantly triplet for

odd S. Individual spin components listed in the Supplementary Material reveal that while

the triplet HP-USLG wavefunction is essentially spin-pure, the geminal product underlying

HP-USLG is spin contaminated, though dominantly triplet. Based on this, a breakdown of

HP-USLG-PT, similar to that seen in Section 4.2.1 is not anticipated on this example.

Table 6: Total energy of the triplet state of the NH molecule in cc-pVTZ basis (ET, in Eh).
Adiabatic singlet-triplet gaps (EST = ES − ET) are given in kcal/mol. Bond lengths are
RS = 1.034 Å and RT = 1.036 Å, based on Ref.106

method ET ∆EST

USLG −54.973483 40.8
USLG-PT2 −55.092502 34.3
HP-USLG −54.983334 40.4
HP-USLG-PT2 1w −55.071873 26.0
HP-USLG-PT2 2w −55.079467 30.8
HP-USLG-PT2 3w −55.087020 36.2
CASPT2(2,2)2 36.5
CASPT2(FV)2 37.0
EMP2(0)2 35.8
EMP22 35.7
SUPT22 36.7
SF-OD1 38.2
expt.3 35.93
1 Ref.108

2 Ref.97

3 Ref.106

Adiabatic gaps by HP-USLG-PT2 as well as other perturbative methods are collected in

Table 6. Energetic values by spin-flip EOM-CCD with optimized orbitals, obtained with the

same basis and geometry, labeled SF-OD can be regarded as benchmark in Table 6, exper-

imental gap is shown for reference. Gaps by geminal models USLG and HP-USLG largely

agree in providing an overestimation, HP-USLG being only slightly better than USLG. Cor-

rection by second order PT invariably reduces the gap. An excessive effect can be observed

with variants 1, 2 that were found relatively poorly performing in Section 4.1 too. The gap

by USLG-PT2 is also worse than the reference USLG, when compared to SF-OD. Partition-

ing 3 improves upon USLG-PT2 in a way similar to that seen in Section 4.1: PT correction
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of the triplet is slightly, that of the singlet is more considerably shrunk, compared to USLG-

PT. This results in the cca. 10% error of the USLG-PT2 gap diminished to around 5% by

HP-USLG-PT2 in partitioning 3. The observation of Section 4.1 applies here too in that HP-

USLG-PT2 individual energies are worse than USLG-PT2 estimates, while gaps are more

reliable by HP-USLG-PT2 with a well chosen partitioning.

Gaps by HP-USLG-PT2 also compare more favourably with experiment, though this ob-

servation may be biased by definition issues of the energy of transition by experiment. Gaps

by HP-USLG-PT2 in partitioning 3 are similar to PT corrected values of fully projected

single determinant schemes, EMP2 and SUPT2. These latter as well as CASPT2 corre-

spond to a significantly larger basis (aug-cc-pVQZ),97 comparison is hence not completely

appropriate.

4.3 O3

Ozone is a popular test system of multireference approaches both in its ground and excited

states.109–112 While a large amount of experimental data is available, reproducing these by

theoretical methods remains a challenging task, necessitating a careful, balanced treatment

of static and dynamic correlation, as pointed out by Gauss and coworkers.113

We investigate the singlet ground state and the lowest lying triplet state in cc-pCVDZ

basis.114 The C2v equilibrium geometry of the ground state is employed with parameters

borrowed from Ref.113 Vertical excitation energies obtained by geminal-based methods are

benchmarked against high accuracy linear response based on singles, doubles and full triples

involving CC (CCSDT-LR), cited from Ref.113 Results of CCSD based LR are also shown

for reference in Table 7.

The MS = 0 UHF solution is highly spin contaminated with 〈Ŝ2〉UHF = 0.95. Total spin

is considerably improved at the USLG level, yielding 〈Ŝ2〉USLG = 0.014 for the singlet type

root, when correlating six geminals. Two of the correlated geminals are of π character,

and the other four are built with orbitals of σ symmetry. Occupation number threshold
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for doubly occupied orbitals is 1.9996. Singlet part of the most correlated geminal is of

1A1 symmetry, while its triplet component can be described as 3B2. Spin contamination is

therefore necessarily accompanied by spatial symmetry violation. The triplet state is both

spin-pure and of correct spatial symmetry by USLG. In comparison, HP-USLG is slightly

contaminated for both states, resulting 〈Ŝ2〉HP-USLG = 0.023 for the singlet, and 2.001 for the

triplet solution. While the slight spin violation persists, spatial symmetry of the singlet root

is fully restored by HP, and is not spoiled for the triplet root either.

Perturbative corrections based on geminal reference functions are displayed in Table 7.

Total spin being satisfactory by USLG, PT formulation of Ref.74 is fairly adequate and serves

as a good basis of comparison for HP-USLG-PT variants.

Table 7: Ground state energy (in Eh) and vertical excitation energy (in eV) of the lowest
triplet state of the ozone molecule in cc-pCVDZ basis, obtained by different geminal based
models. Single-reference CC based linear response calculations are cited as benchmark.
Symmetry of the molecule is C2v with parameters taken from Ref.113 as RO–O = 1.2569 Å
and ∠(OOO) = 116.54◦.

1A1
3B2

USLG −224.3653 0.977
USLG-PT2 −224.8791 1.503
HP-USLG −224.3746 0.937
HP-USLG-PT2 1w −224.8714 2.426
HP-USLG-PT2 2w −224.8659 1.956
HP-USLG-PT2 3w −224.8651 1.464
HP-USLG-PT2 3s −224.8081 1.720
CCSD-LR1 −224.9981 1.421
CCSDT-LR1 −225.0311 1.716
expt.2 1.29
1 Ref.113

2 Ref.115

A considerable underestimation of the gap can be observed in Table 7, at the level of

reference. Accepting CCSDT-LR as the best theoretical estimate in Table 7, USLG based

PT schemes bring significant improvement.

In accord with all other cases investigated, suppressed energy corrections by HP-USLG-

PT are apparent in Table 7 when comparing total energies with that of USLG-PT. The effect
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varies both with partitioning scheme and the state in question, resulting diverse values for

the gap. Schemes denoted 1w and 2w are seen to give an overcorrection when compared

with the gap of CCSDT-LR. The success of HP-USLG-PT partitioning 3 is comparable to

USLG-PT in predicting the gap when applying weak symmetry forcing. As anticipated, dif-

ference between weak and strong symmetry adaptation is more pronounced on this example,

than for the H4 system, albeit strong symmetry forcing is evaluated with approximations,

cf. Sec. 2.3.2. Results by 3s represent the most reduced PT correction regarding individual

state energies while the gap is more in line with CCSDT-LR when compared with its weak

counterpart. Similarly to the case of the NH molecule, partitioning 1 results an overcorrec-

tion of the gap, while partitioning 2 falls in between 1 and 3.

Investigations with 4 correlated geminals, reported in the Supplementary Material, reflect

similar tendencies.

4.4 Para-benzyne

Diradical character of benzyne isomers increases in the order of ortho, meta, para, which is

accompanied by decreasing singlet-triplet gaps in the same order. Though UHF is heavily

spin contaminated for all isomers, geminal coefficient optimization yields spin-pure USLG

solutions with the exception of the singlet state of para-benzyne, for which 〈Ŝ2〉USLG = 1.05.

For this solution, spin contamination is accompanied by breaking of spatial symmetry at the

level of the many-electron state.

Adiabatic excitation energies by USLG are of correct sign and order of magnitude. Incor-

porating dynamic correlation by means of PT further improves gaps.74 The only exception

is the para isomer, for which USLG-PT2 provides incorrect energetic estimates, reversing

the order of the singlet and triplet states. Poor performance of USLG based PT for para-

benzyne has been linked to the spin contamination of the reference, providing the chief

motive in developing HP-USLG based PT.

Computational details and geometry are the same as in Ref.,24 6-31G∗ basis set is em-
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ployed. Four geminals are correlated both at the USLG and at the HP-USLG level: three

of them are built with π orbitals of the carbon atoms, while the fourth consists of σ orbitals

responsible for the diradical character.

Previous results24 at the level of HP-USLG were encouraging yet unsatisfactory since

HP was successful at removing most of the spin contamination, adiabatic gap for para-

benzyne however deteriorated as compared to USLG. By restoring spin symmetry of the

geminal reference partially, spatial symmetry is fully recovered for both states. The reason

behind is that singlet component of the correlated geminals corresponds to 1Ag while triplet

components are described as 3B1u in the D2h point group. Consequently, product of an

even number of triplets is of 1Ag symmetry, while an odd number of triplets results in 3B1u.

Half-projection removes completely the 3B1u component of the product for f = 1 and the

1Ag component is eradicated for f = −1.

Total energies, adiabatic gaps as well as spin expectation values are collected in Table 8

for the para isomer. Results by spin-flip EOM-CCD with optimized orbitals,108 denoted

SF-OD in Table 8 serve as benchmark. Experimental gap is indicated for reference.

As Table 8 reflects, PT based on the partially spin-purified geminal reference successfully

amends the qualitative failure of USLG-PT. Ordering of the states and magnitude of the

gap is correct by HP-USLG-PT2 in any of the partitionings. Comparing the performance of

different HP-USLG-PT2 variants, trends are similar to those observed in previous test cases.

Second order energy is suppressed by HP-USLG-PT2 when compared with USLG-PT and

the effect is more sizeable for strong symmetry forcing. Regarding the gaps, partitionings

1 and 2 are rather similar. Focusing on weak symmetry forcing, 1w and 2w overestimate

the adiabatic gap, by cca. 40-50%, taking SF-OD as benchmark. Variant 3w provides an

estimation from the other side, underestimating the gap by cca. 30%.

Strong symmetry forcing uniformly increases the gap, deteriorating the performance of

variants 1 and 2. At the same time, gap by 3s is remarkably in line with SF-OD (being in

cca. −4% error) and falls within the error margin of the experimental value.
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Table 8: Total energy of the ground state (in Eh) and adiabatic gap (in eV) of para-benzyne
in 6-31G∗ basis. Geometries and SF-OD values are taken from Ref.108 Spin expectation
value of geminal based references is also tabulated. (Carbon-carbon distance of 1.4186 Å for
the triplet state of para-benzyne is clearly in error in Ref.108 Based on the nuclear repulsion
data, this parameter is corrected for 1.367 Å.)

method 1Ag
3B1u

USLG −229.422647 0.139
USLG-PT2 −229.972968 −0.290
HP-USLG −229.438909 −0.004
HP-USLG-PT2 1w −229.962303 0.264
HP-USLG-PT2 1s −229.833469 0.281
HP-USLG-PT2 2w −229.958385 0.240
HP-USLG-PT2 2s −229.830363 0.261
HP-USLG-PT2 3w −229.948724 0.121
HP-USLG-PT2 3s −229.822766 0.167
SF-ODa −230.15415 0.174
expt.b 0.165± 0.016

〈Ŝ2〉USLG 1.05 2.00

〈Ŝ2〉HP-USLG 0.25 2.17
a Ref.108

b Ref.116

5 Conclusion

While shortcomings of the singlet coupled geminal product Ansatz can be rectified by allow-

ing geminals to get spin-mixed, spin contamination of the resulting many-electron function

may undermine dynamical correlation schemes built upon it. At the same time, geminal

product structure of the reference is advantageous from the point of view of PT, allowing

for a zero-order Hamiltonian composed as a sum of geminal Hamiltonians, incorporating

intrageminal correlation. This PT technique can not be applied straightaway when spin

contamination of the reference is cured by projection operators, since the resulting sum of

geminal products is not an eigenfunction of a sum of geminal Hamiltonians construction.

Performing spin-symmetry adaptation along with composing the correction terms by PT is

a workaround developed and tested in this study.

Partial restoration of spin symmetry is performed at the level of reference, adopting a
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variation after projection scheme regarding CI coefficients of the strongly orthogonal geminal

Ansatz. In principle, orbitals can also be subjected to optimization, though for the time being

they are conserved as natural orbitals of the UHF wavefunction. Orbital subspaces are here

determined based on the pairing of UNOs, they are consequently at most two-dimensional.

Symmetry adapted PT is applied in two schemes, either with weak or with strong sym-

metry forcing. The zero-order reference is provided by the geminal product underlying

the variationally optimized HP-USLG function. Half-projected energy corresponding to the

variational solution is recovered at order one in energy. First order correction to the wave-

function utilizes the geminal eigenvalue equation arising from the energy optimum condition

of HP-USLG. Several variants for the effective geminal operators contributing to the zero-

order Hamiltonian are tested, differing in the effect on geminal states not contributing to

the geminal product.

Numerical comparison of PT formulations reveals a general picture of suppressed second

order energy correction by symmetry adapted PT juxtaposed USLG based PT, the latter

lacking any treatment of spin symmetry. This applies to all partitioning variants (admittedly

at a varied extent) and can be attributed to the SAPT formalism, i.e. to the second and

third terms in the numerator of Eq.(24) when adopting weak symmetry forcing. First order

coefficients c
(1)
K are largely in line by symmetry adapted PT and USLG based PT. Strong

symmetry forcing is evaluated in an exact manner for the H4 system. For this system

shrinking of the PT correction is more expressed by strong symmetry forcing than by the

weak scheme. The statement also holds for the cases of Sec. 4 where strong symmetry forcing

is evaluated in an approximate manner. Contributions neglected in Eq.(25) can be shown

to be of negative sign, lifting the approximation is therefore expected to get total energies

in strong symmetry forcing closer to those by the weak scheme.

Singlet-triplet gaps evaluated in the test cases are quite sensitive to the correction of the

individual states. Gaps by HP-USLG-PT generally improve upon the value obtained at the

level of HP-USLG. The results are qualitatively similar to USLG-PT2 when half-projection
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has a marginal effect on the reference function (e.g. the case of NH and O3). Gaps are

considerably improved by HP-USLG-PT2 as compared with USLG-PT2 when significant

spin contamination affects USLG (e.g. the case of H4 and para-benzyne). We report failure

of HP-USLG-PT2 as compared to USLG-PT2 when half-projection introduces a significant

spin contamination at the level of the geminal product as compared to USLG (cf. the case

of O2). This situation is easily identified as it involves projection in the “wrong direction” in

course of the PT procedure, accompanied by relatively small norm of the projected geminal

product.

Of the partitionings tested in this work, variant 2 involves the least modification starting

from the HP-USLG geminal eigenvalue equation, regarding excited subspaces Rµ and Qµ.

This variant is usually outperformed by 3. Main difference between variant 2 and 3 is the

complete omission of the local spin-flip divided by Mµ. Results by HP-USLG-PT are most

sensitive to the definition of the zero-order in excited space Qµ and for the virtual orbital

subspace µ = V . Geminal Hamiltonian Ĥd
µ performs rather similarly to the USLG limiting

expression N Ĥµ both in space Qµ and for µ = V . Applying the level-shifted Hamiltonian

Ĥb
µ instead of Ĥd

µ in space Qµ is usually accompanied by a deterioration of the gap values as

reflected by the comparison of variants 1 and 3.

Of the partitionings tested in this work, variant 3 may be suggested as a well performing

method, free from the occasionally ill-defined division or inversion, discussed in Appendix A.
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A Partitionings used in the PT scheme

A.1 Local spin-flip

Derivation of Eq.(12) involves MS = 0 geminal states with two electrons, whereas in the

PT development MS 6= 0 two-electron states also occur, moreover geminals occupied by

zero, one, three and four electrons show up as well. This raises a question on the effect of

P̂µ,sf. Adopting the straightforward definition in Eq.(12) that P̂µ,sf flips all alpha spins to

beta and vica versa in subspace µ (up to a sign), and substituting it in Eq.(14) leads to

[Ĥ(0), Ŝz] 6= 0. When the first order correction, |Ψ(1)〉 is obtained in this way, it violates Ŝz.

Since |SLG〉 can be characterized by MS = 0, the MS 6= 0 components of an Ŝz-violating

|Ψ(1)〉 are noninteracting through Ĥ and can not have a direct contribution to the second

order energy. An indirect effect through values of c
(1)
K is however possible. This is considered

undesirable and a definition of P̂µ,sf according to Ruiz102 is adopted in order to avoid this

situation. In the spirit of Ref.102 P̂µ,sf is defined as flipping the spin of min(k, l) electrons, in

all possible ways in subspace µ. Here k is the number of electrons with alpha spin, l is the

number of electrons with beta spin occupying orbitals in subspace µ. The effect of P̂µ,sf is

similar to Eq.(6) in other respects. To be more specific, taking a determinant with k alpha

and l beta electrons (k ≥ l) in subspace µ, we have for i1, . . . , il, j1, . . . , jk ∈ µ

P̂µ,sf i+1β . . . i
+
lβj

+
1α . . . j

+
kα|φ〉 = (−1)l

∑
1≤t1<...<tl≤k

i+1α . . . i
+
lαj

+
1α . . . j

+
t1β
. . . j+

tlβ
. . . j+

kα|φ〉 . (A.1)

In the above, |φ〉 is the part of the determinant not involving orbitals from subspace µ and

left intact by P̂µ,sf. The effect of P̂µ,sf is completely analogous to P̂sf when k = l, in particular
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P̂µ,sf |1ψµ〉 = |1ψµ〉 (A.2a)

P̂µ,sf |30ψµ〉 = − |30ψµ〉 (A.2b)

P̂µ,sf |3−1ψµ〉 = |3−1ψµ〉 (A.2c)

P̂µ,sf |31ψµ〉 = |31ψµ〉 (A.2d)

where 1ψµ,
3
0ψµ,

3
−1ψµ and 3

1ψµ are singlet, triplet MS = 0, triplet MS = −1 and triplet

MS = 1 two-electron functions, respectively. An MS = ±1/2 one-electron state in subspace

µ is also left intact by P̂µ,sf, while it transforms a three-electron fragment as

P̂µ,sf i+β j
+
αm

+
α |φ〉 = − i+α j+

βm
+
α |φ〉 − i+α j+

αm
+
β |φ〉 . (A.3)

In the case of two-dimensional geminal subspaces, as occurs in this work for µ 6= V , the effect

of P̂µ,sf in Eq.(A.3) is found to be the unit operator, since either i = j or i = m.

A.2 Geminal energies by Eq.(12) in the spin-pure limit

As discussed in Sec. 2.3.1, eigenstates of Ĥeff
µ of Eq.(27) match those of N Ĥµ in the spin-

pure limit, but energy differences are not the same. Appearance of spin-flip terms causes an

artificial shift in geminal energies that is pinpointed below for functions of space Rµ.

In order to evaluate the effect of Eq.(27), the spin-pure limit of Mµ = cos(2δµ) and M

of Eq.(9) is to be set. For the singlet, δµ = 0 in Eq.(4), therefore Mµ = 1, while Mµ = −1

pertains to the triplet for which δµ = π/2. A value of Mµ = 0 occurs for a fragment µ with

equal weight of the singlet and triplet components. For a spin-pure product, either singlet

or triplet, fM = 1 holds, since all geminals being singlet implyM = f = 1, and all-but-one

geminals singlet and one triplet means M = −1 = f .

Taking the case of a singlet 1ψµ,0 (i.e., Mµ = 1), the effect of Ĥµ of Eq.(27) on a singlet

42



geminal, 1ψµ,j is

(
N Ĥµ

(
1 +
P̂µ,sf
Mµ

)
− Eµ,0

P̂µ,sf
Mµ

)
|1ψµ,j〉 = (1 + 1)N Ĥµ|1ψµ,j〉 − Eµ,0|1ψµ,j〉

= (2Eµ,j − Eµ,0)|1ψµ,j〉 .

(A.4)

The above result is obviously according to expectations for j = 0 (belonging to space Oµ)

but not for j 6= 0.

Staying with Mµ = 1, Ĥµ of Eq.(27) acting on a triplet MS = 0 geminal 3
0ψµ results,

taking into account Eq.(A.2b)

(
N Ĥµ

(
1 +
P̂µ,sf
Mµ

)
− Eµ,0

P̂µ,sf
Mµ

)
|30ψµ〉 = (1− 1)N Ĥµ|30ψµ〉 + Eµ,0|30ψµ〉

= Eµ,0|30ψµ〉 .

(A.5)

Degeneracy of the triplet excited state with the singlet ground state geminal, as reflected

by the above can not be reasoned out with their noninteracting character. On one hand,

the spin-pure situation is just a limiting case in our approach. Quasi-degeneracy that can

be envisaged based on Eq.(A.5) for slight spin-contamination is not welcome. On the other

hand, geminals constitute fragments of the many-electron state. Even in the spin-pure

limit, the product of two excited triplet geminals has a singlet component and therefore

may contribute a divergent term to the PT correction of a singlet ground state if relying on

Eq.(A.5).

For a triplet geminal entering the product function |SLG〉 from subspace µ, we have

Mµ = −1 and thus Ĥµ of Eq.(27) acting on a singlet excited geminal 1ψµ,j results, taking

into account Eq.(A.2a)

(
N Ĥµ

(
1 +
P̂µ,sf
Mµ

)
− Eµ,0

P̂µ,sf
Mµ

)
|1ψµ,j〉 = (1− 1)N Ĥµ|1ψµ,j〉 + Eµ,0|1ψµ,j〉

= Eµ,0|1ψµ,j〉 .

(A.6)
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The case being analogous to that of Eq.(A.5), comments of the previous paragraph apply.

A.3 Hermiticity of Eq.(12)

Examining Hermiticity of Ĥµ of Eq.(12) one can see that it holds when acting on MS = 0

two-electron functions in subspace µ, but it is spoiled when stepping to MS 6= 0 two-electron

states or subspace µ occupied by one or three electrons. Of the terms constituting Ĥeff
µ of

Eq.(12), N Ĥµ is Hermitian, as both NF a and NF b are Hermitian matrices. Making use

of
(MF a

)†
= MF b it is easy to see that MĤµ P̂µ,sf is self-adjoint in the space spanned by

MS = 0 two-electron states, but neither MĤµ nor MĤµ P̂µ,sf are self-adjoint in general. To

ensure Hermiticity, when term MĤµ P̂µ,sf of Eq.(12) is taken into account in defining the

zero-order Hamiltonian, it is substituted by its Hermitian part,

(
MĤµ P̂µ,sf

)s
=

1

2

(
MĤµ P̂µ,sf + P̂µ,sf

(
MĤµ

)†)
.

This obviously does not introduce any change in the MS = 0 two-electron subspace.

A.4 Spin-pure limit of partitioning variants

We now investigate the effective Hamiltonians formulated in Sec. 2.3.1. Evaluating the effect

of either Ĥb
µ or Ĥc

µ in the spin-pure case for Mµ = −1 requires the examination of a limit,

since the numerator and the denominator are zero in both cases. A workaround is offered

by considering e.g. Ĥc
µ as

Ĥc
µ = lim

λ→1

N Ĥµ + f λMĤs
µ

1 + f λM/Mµ

. (A.7)

In the spin-pure case with an MS = 0 triplet ψµ,0, the numerator of the above expression

becomes N Ĥµ(1− λ), while the denominator simplifies to 1− λ, allowing the limit to be

evaluated as N Ĥµ. The case of Ĥb
µ is analogous, the effect of the last two terms of the

numerator of Eq.(34) on an excited singlet geminal cancel.
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As mentioned in Sec. 2.3.1, operator Ĥe
µ as given in Eq.(37) is ill-defined in the spin-pure

situation. The limiting case can still be evaluated by inserting λ to the terms containing

P̂µ,sf in Eq.(37) and considering the λ→ 1. Utilizing that [N Ĥµ, P̂µ,sf] = 0 holds in space Rµ

one gets

Ĥe
µ(λ) =

(
1 + λκ f

M
Mµ

P̂µ,sf
)−1 (

N Ĥµ + λ f MĤµP̂µ,sf
)

=

(
1 + λκ f

M
Mµ

P̂µ,sf
)−1(

1 + λ f
M
Mµ

P̂µ,sf
)
N Ĥµ .

Recognizing that κ = 1 in the spin-pure case results N Ĥµ on the right hand side of the above

expression.

B Equivalent energies by different references

If the SLG wavefunction given in Eq.(2) corresponds to the minimum on the HP surface,

then

|S̃LG〉 := P̂sf|SLG〉 =

N/2∏
µ=1

ψ̃+
µ |vac〉 (B.8)

yields the same half-projected energy. Quantities corresponding to |S̃LG〉 will be indicated

by a tilde. Based on the expressions given in Ref.24 the following relationships can be set

between quantities corresponding to |SLG〉 and |S̃LG〉. Components of the unnormalized

1-RDM of |S̃LG〉 read as

N γ̃a = Nγb

N γ̃b = Nγa

Mγ̃a = Mγb

Mγ̃b = Mγa .

(B.9)
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Consequently, Fockians can be evaluated as

N F̃ a = NF b

N F̃ b = NF a

MF̃ a = MF b

MF̃ b = MF a,

(B.10)

while energy-like quantities will be identical to those by |SLG〉:

N Λ̃µ = NΛµ

MΛ̃µ = MΛµ

Θ̃ = Θ

Ẽµ = Eµ

(B.11)

Using the notation of Sec. 2.3.1, components of the geminal Hamiltonian corresponding to

ψ̃µ can be expressed as

N ˆ̃
Hµ =

(µ)∑
kl

(NF b
klk

+
α l
−
α + NF a

klk
+
β l
−
β

)
+

1

2

(µ)∑
klmn

[kl|mn]
∑
σ,σ′

k+
σ l

+
σ′n
−
σ′m

−
σ

M ˆ̃
Hµ =

M
Mµ


(µ)∑
kl

(MF b
klk

+
α l
−
α + MF a

klk
+
β l
−
β

)
+

1

2

(µ)∑
klmn

[kl|mn]
∑
σ,σ′

k+
σ l

+
σ′n
−
σ′m

−
σ


L̃µ = Lµ

(B.12)

Suppose the unprojected reference used in the PT scheme is |S̃LG〉. Then the first order

interacting space is spanned by the states {Ψ̃(0)
K } (K 6= 0), where Ψ̃

(0)
K is the spin-flip coun-

terpart of Ψ
(0)
K belonging to the first order interacting space of |SLG〉, i.e., Ψ̃

(0)
K = P̂sfΨ

(0)
K .

The projected second order energy thus becomes

Ẽ (2) =

∑
K 6=0 c̃

(1)
K (〈S̃LG|Ĥ|Ψ̃(0)

K 〉+ f 〈S̃LG|ĤP̂sfΨ̃
(0)
K 〉 − f EHP〈S̃LG|P̂sfΨ̃

(0)
K 〉)

1 + fM
. (B.13)
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Relying on the fact that [Ĥ, P̂sf] = 0 and P̂2
sf = 1, it follows that

〈S̃LG|Ĥ|Ψ̃(0)
K 〉 = 〈SLG|ĤΨ

(0)
K 〉 = H0K , (B.14)

while

〈S̃LG|ĤP̂sf|Ψ̃(0)
K 〉 = 〈SLG|ĤP̂sf|Ψ(0)

K 〉 = H̃0K . (B.15)

Also,

〈S̃LG|P̂sfΨ̃
(0)
K 〉 = 〈SLG|P̂sfΨ

(0)
K 〉 = M0K . (B.16)

Thus

Ẽ (2) =

∑
K 6=0 c̃

(1)
K (H0K + f H̃0K − f EHPM0K)

1 + fM
. (B.17)

Coefficients c̃
(1)
K are obtained as the solution of the system of linear equations

∑
K 6=0

G̃LK c̃
(1)
K = −〈Ψ̃(0)

L |Ĥ|S̃LG〉 , ∀L 6= 0 . (B.18)

Based on Eq.(B.14), the right hand side of Eq.(B.18) is simply −HL0, i.e., the same as that

of Eq.(18), while coefficient matrix G̃ is defined as

G̃LK = 〈Ψ̃(0)
L |

ˆ̃
H

(0)

|Ψ̃(0)
K 〉 − Ẽ0δKL . (B.19)

Excited states can be given in a concise form as Ψ̃
(0)
K =

∏N/2+1
µ=1 ϕ̃+

µ,K |vac〉, where ‘creation

operator’ corresponding to an empty geminal is just the identity. Zero order operator is

expressed as a sum of geminal Hamiltonians as

ˆ̃
H

(0)

=

N/2+1∑
µ=1

ˆ̃
Hµ , (B.20)
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where
ˆ̃
Hµ is the analogue of Eq.(28) with

ˆ̃
Hµψ̃µ,0 = Ẽµ,0ψ̃µ,0. Therefore Ẽ0 =

∑N/2
µ=1 Ẽµ,0,

while

G̃LK =

N/2+1∑
µ=1

〈Ψ̃(0)
L |

ˆ̃
Hµ − Ẽµ,0|Ψ̃(0)

K 〉

=

N/2+1∑
µ=1

{∏
ν 6=µ

〈ϕ̃ν,L|ϕ̃ν,K〉 · 〈ϕ̃µ,L|
ˆ̃
Hµ − Ẽµ,0|ϕ̃µ,K〉

}

=

N/2+1∑
µ=1

{∏
ν 6=µ

〈ϕν,L|ϕν,K〉 · 〈ϕ̃µ,L|
ˆ̃
Hµ − Ẽ ′µ,0|ϕ̃µ,K〉

}
.

(B.21)

For comparison,

GLK =

N/2+1∑
µ=1

{∏
ν 6=µ

〈ϕν,L|ϕν,K〉 · 〈ϕµ,L|Ĥµ − Eµ,0|ϕµ,K〉

}
. (B.22)

It remains to be shown that with any choice of the partitioning, e.g., any choice of
ˆ̃
Hµ,

zero-order geminal energies fall back to those obtained if SLG is used as a reference. In

particular, we need to show that

Ẽµ,0 = Ẽµ,0 , (B.23)

and

〈ϕ̃µ,L|
ˆ̃
Hµ|ϕ̃µ,K〉 = 〈ϕµ,L|Ĥµ|ϕµ,K〉 . (B.24)

Note, that in this case ϕ̃µ,L and ϕµ,L are spin-flip counterparts of each other: ϕ̃µ,L = P̂sfϕµ,L,

where P̂sf is understood in the sense of flipping the spin of all electrons.

It is straightforward to check that

P̂sf
N ˆ̃
Hµ = N ĤµP̂sf , (B.25)
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and therefore

〈ϕ̃µ,L|N
ˆ̃
Hµ|ϕ̃µ,K〉 = 〈P̂sfϕµ,L|N

ˆ̃
Hµ|P̂sfϕµ,K〉 = 〈ϕµ,L|N ĤµP̂2

sf|ϕµ,K〉 = 〈ϕµ,L|N Ĥµ|ϕµ,K〉 ,

(B.26)

where
(
P̂sf

)†
= P̂sf was taken advantage of. Similarly, utilizing P̂sf

M ˆ̃
Hµ = MĤµ P̂sf com-

bined with the fact that [P̂sf, P̂µ,sf] = 0 (whether P̂µ,sf is understood as local spin-flip or in

the sense of Eq.(A.1)) it can be shown that

〈ϕ̃µ,L|M
ˆ̃
HµP̂µ,sf = 〈ϕµ,L|MĤµP̂µ,sf|ϕµ,K〉 (B.27)

Thus whichever variant of Ĥµ is used, 〈ϕ̃µ,L|
ˆ̃
Hµ−Ẽµ,0|ϕ̃µ,K〉 = 〈ϕµ,L|Ĥµ−Eµ,0|ϕµ,K〉 proving

that G̃ = G. That is, the left hand side of Eq.(B.18) coincides with that of Eq.(18),

consequently, their solutions are the same: c̃
(1)
K = c

(1)
K (∀K 6= 0). Substituting this result into

Eq.(B.17), we arrive at

Ẽ (2) =

∑
K 6=0 c

(1)
K (H0K + f H̃0K − f EHPM̃0K)

1 + fM
= E (2) . (B.28)

C Matrix elements involved in the second order energy

expression

This work adopts the notation of Ref.74 regarding the MS = 0 excitation cases |Ψ(0)
K 〉 be-

longing to the first order interacting space. To follow the structure more closely, we list

matrix elements H̃K0 = 〈Ψ(0)
K |ĤP̂|SLG〉 and MK0 = 〈Ψ(0)

K |P̂sfSLG〉 below. Quantities used

in Eq.(24) are obtained as H̃0K = H̃∗K0 and M0K = M∗
K0. For the ξth excited MS = 0

two-electron fragment in subspace µ we use the notation ψµ,ξ =
∑(µ)

ij C ij

ξµ
i+β j

+
α |vac〉. For con-

venience, the following notations are used: Mξµ0 =
(µ)∑
ij

C∗ij
ξµ

Cji, which is not necessarily zero.
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Furthermore,

Mγaij
ξµ0

:=
M
Mµi

〈ψµ,ξ|j+
α i
−
α |ψ̃µ,0〉 =

M
Mµi

(µ)∑
k

C∗kj
ξµ

Cik

Mγbij
ξµ0

:=
M
Mµi

〈ψµ,ξ|j+
β i
−
β |ψ̃µ,0〉 =

M
Mµi

(µ)∑
k

C∗jk
ξµ

Cki

MF s
jk := hjk +

1

M
∑

τ 6=µj ,µk

τ∑
lm

(
Mγlm[jm|kl]− Mγslm[jm|lk]

)
, s ∈ {a, b} .

(C.29)

Operator P̂ (ij) acts on a quantity involving indices i, j as P̂ (ij)z(i, j) = z(i, j)− z(j, i).

Matrix element MK0 is potentially nonzero only for Case 5 of excitation category II:

1. Category II

a) Case 5: Ψ
(0)
K =

(
µ∑
ij

C ij

ξµ
i+β j

+
α

)(
ν∑
kl

C kl
ξν
k+
β l

+
α

) ∏
ρ 6=µ,ν

ψ+
ρ,0|vac〉

MK0 =
MMξµ0Mξν0

MµMν

(C.30)

Hamiltonian matrix elements are

1. Category II

a) Case 1: Ψ
(0)
K = i+β j

+
α k

+
β l+α

∏
ρ6=µ,ν

ψ+
ρ,0|vac〉 , i > k, j ∈ µ , l ∈ ν

H̃K0 =
M

MµMν

P̂ (ik)

(
Cji

[
ν∑
l′

MF b
kl′Cll′ +

ν∑
l′m′

[kl|m′l′]Cl′m′

]

+
ν∑
l′

Cll′

[
µ∑
i′

[kj|l′i′]Ci′i +

µ∑
j′

[ik|j′l′]Cjj′
])

b) Case 2: Ψ
(0)
K = i+α j

+
β k

+
α l+β

∏
ρ 6=µ,ν

ψ+
ρ,0|vac〉 , i > k, j ∈ µ , l ∈ ν

H̃K0 =
M

MµMν

P̂ (ik)

(
Cij

[
ν∑
l′

MF a
kl′Cl′l +

ν∑
l′m′

[kl|m′l′]Cm′l′

]

+
ν∑
l′

Cl′l

[
µ∑
i′

[kj|l′i′]Cii′ +

µ∑
j′

[ik|j′l′]Cj′j

])
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c) Case 3: Ψ
(0)
K = i+α j

+
α k+

β l
+
β

∏
ρ6=µ,ν

ψ+
ρ,0|vac〉 , i > j ∈ µ , k > l ∈ ν

H̃K0 =
M

MµMν

P̂ (ij)P̂ (kl)

µ∑
i′

ν∑
k′

Cji′Ck′l[ik|k′i′]

d) Case 5: Ψ
(0)
K =

(
µ∑
ij

C ij

ξµ
i+β j

+
α

)(
ν∑
kl

C kl
ξν
k+
β l

+
α

) ∏
ρ 6=µ,ν

ψ+
ρ,0|vac〉

H̃K0 =
Mξµ0Mξν0

MµMν

{ ∑
τ 6=µ,ν

τ∑
pq

hpq
Mγqp +

∑
τ 6=µ,ν

M
Mτ

τ∑
pqrs

C∗pqCsr[pq|rs]

+
1

2M
∑
τ,κ6=µ,ν
τ 6=κ

τ∑
pr

κ∑
qt

(Mγrp
Mγtq[pq|rt]−

∑
s∈{a,b}

Mγsrp
Mγstq[pq|tr])

}

+
Mξµ0

Mµ

{ ν∑
pq

hpq
Mγ qp

ξν0
+

1

M
∑
τ 6=µ,ν

ν∑
pr

τ∑
qt

(Mγ rp

ξν0

Mγtq[pq|rt]

−
∑

s∈{a,b}

Mγsrp
ξν0

Mγstq[pq|tr])
}

+
Mξν0

Mν

{ µ∑
pq

hpq
Mγ qp

ξµ0
+

1

M
∑
τ 6=µ,ν

µ∑
pr

τ∑
qt

(Mγ rp

ξµ0

Mγtq[pq|rt]

−
∑

s∈{a,b}

Mγsrp
ξµ0

Mγstq[pq|tr])
}

+
MMξµ0

MµMν

ν∑
cdkl

C∗kl
ξν

Cdc[kl|cd] +
MMξν0

MµMν

µ∑
abij

C∗ij
ξµ

Cba[ij|ab]

+
1

M

µ∑
ij

ν∑
kl

Mγ ij

ξµ0

Mγ kl
ξν0

[jl|ik]− 1

M

µ∑
ij

ν∑
kl

∑
s∈{a,b}

Mγsij
ξµ0

Mγskl
ξν0

[jl|ki]

(C.31)

e) Case 16: Ψ
(0)
K = i+β j

+
α k

+
β l

+
α

∏
ρ6=µ,ν

ψ+
ρ,0|vac〉 , i > k , j > l ∈ µ

H̃K0 =
M

MµMν

P̂ (ik)P̂ (jl)Clk

ν∑
mn

Cmn[ij|nm]

2. Category IIV
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a) Case 1V: Ψ
(0)
K = i+α j+

β

∏
ρ6=µ

ψ+
ρ,0|vac〉 , i ∈ V , j ∈ µ

H̃K0 = − M
Mµ

µ∑
j′

Cj′j
MF a

ij′ −
M
Mµ

µ∑
i′j′

Ci′j′ [ij|i′j′]

b) Case 2V: Ψ
(0)
K = i+β j+

α

∏
ρ6=µ

ψ+
ρ,0|vac〉 , i ∈ V , j ∈ µ

H̃K0 =
M
Mµ

µ∑
j′

Cjj′
MF b

ij′ +
M
Mµ

µ∑
i′j′

Ci′j′ [ij|j′i′]

c) Case 3V: Ψ
(0)
K = i+β j+

α

∏
ρ6=µ

ψ+
ρ,0|vac〉 , i, j ∈ V

H̃K0 =
M
Mµ

µ∑
kl

Clk[ij|kl]

3. Category III

a) Case 8: Ψ
(0)
K = i+α j

+
β k

+
α l

+
β m

+
α n

+
β

∏
ρ6=µ,ν,λ

ψ+
ρ,0|vac〉 , i > k, j > l ∈ µ , m ∈ ν , n ∈ λ

H̃K0 =
M

MµMνMλ

P̂ (ik)P̂ (jl)Cij

ν∑
m′

λ∑
n′

Cmm′Cn′n[kl|n′m′]

b) Case 10: Ψ
(0)
K = i+α j

+
β k

+
α l+βm

+
αn

+
β

∏
ρ6=µ,ν,λ

ψ+
ρ,0|vac〉 , i > k, j ∈ µ , l > n,m ∈ ν

H̃K0 =
M

MµMνMλ

P̂ (ik)P̂ (ln)CkjCmn

λ∑
op

Cpo[il|po]

c) Case 12: Ψ
(0)
K =

(
µ∑
ij

C ij

ξµ
i+β j

+
α

)
k+
α l

+
βm

+
α n

+
β

∏
ρ6=µ,ν,λ

ψ+
ρ,0|vac〉 , k > m, l ∈ ν , n ∈ λ
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H̃K0 =
MMξµ0

MµMνMλ

P̂ (km)
{
Ckl

[ λ∑
n′

Cn′n
MF a

mn′ +
λ∑

n′m′

Cm′n′ [mn|m′n′]
]

+
λ∑
n′

Cn′n

[ ν∑
l′

Cl′l[km|l′n′] +
ν∑
k′

Ckk′ [ml|n′k′]
]}

+ P̂ (km)
Ckl
MνMλ

λ∑
n′

Cn′n

µ∑
j′j

(
(Mγa

j′j
ξµ0

−
Mξµ0

Mµ

Mγaj′j)[jm||j′n′]

+(Mγb
j′j
ξµ0

−
Mξµ0

Mµ

Mγbj′j)[jm|j′n′]
)

(C.32)

d) Case 13: Ψ
(0)
K =

(
µ∑
ij

C ij

ξµ
i+β j

+
α

)
k+
β l

+
αm

+
β n

+
α

∏
ρ6=µ,ν,λ

ψ+
ρ,0|vac〉 , k > m, l ∈ ν , n ∈ λ

H̃K0 =
MMξµ0

MµMνMλ

P̂ (km)
{
Clk

[ λ∑
n′

Cnn′
MF b

mn′ +
λ∑

n′m′

Cn′m′ [mn|m′n′]
]

+
λ∑
n′

Cnn′

[ ν∑
l′

Cll′ [km|l′n′] +
ν∑
k′

Ck′k[ml|n′k′]
]}

+ P̂ (km)
Clk
MνMλ

λ∑
n′

Cnn′

µ∑
j′j

(
(Mγb

j′j
ξµ0

−
Mξµ0

Mµ

Mγbj′j)[jm||j′n′]

+(Mγa
j′j
ξµ0

−
Mξµ0

Mµ

Mγaj′j)[jm|j′n′]
)

(C.33)

e) Case 14: Ψ
(0)
K = i+α j

+
α k

+
β l

+
αm

+
β n

+
β

∏
ρ 6=µ,ν,λ

ψ+
ρ,0|vac〉 , i > j ∈ µ , k > m, l ∈ ν , n ∈ λ

H̃K0 =
M

MµMνMλ

P̂ (ij)P̂ (km)Clk

µ∑
i′

λ∑
n′

Cii′Cn′n[im|n′i′]

f) Case 15: Ψ
(0)
K = i+β j

+
β k

+
α l

+
βm

+
α n

+
α

∏
ρ 6=µ,ν,λ

ψ+
ρ,0|vac〉 , i > j ∈ µ , k > m, l ∈ ν , n ∈ λ

H̃K0 =
M

MµMνMλ

P̂ (ij)P̂ (km)Ckl

µ∑
j′

λ∑
n′

Cj′iCnn′ [jm|n′j′]

4. Category IIIV
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a) Case 4V: Ψ
(0)
K = i+α j+

β k
+
α l

+
β

∏
ρ 6=µ,ν

ψ+
ρ,0|vac〉 , i ∈ V , j > l, k ∈ µ

H̃K0 =
M

MµMν

P̂ (jl)Ckl

ν∑
mn

Cmn[ij|mn]

b) Case 5V: Ψ
(0)
K = i+β j+

α k
+
β l

+
α

∏
ρ 6=µ,ν

ψ+
ρ,0|vac〉 , i ∈ V , j > l, k ∈ µ

H̃K0 =
M

MµMν

P̂ (jl)Clk

ν∑
mn

Cmn[ij|nm]

c) Case 6V: Ψ
(0)
K = i+α j+

β

(
ν∑
kl

Ckl
ξν
k+
β l

+
α

) ∏
ρ 6=µ,ν

ψ+
ρ,0 |vac〉 , i ∈ V , j ∈ µ

H̃K0 = − MMξν0

MµMν

( µ∑
j′

Cj′j
MF a

ij′ +

µ∑
i′j′

Ci′j′ [ij|i′j′]
)

− 1

Mµ

µ∑
j′

Cj′j

ν∑
kk′

(
(Mγa

k′k
ξν0

− Mξν0

Mν

Mγak′k)[ik||j′k′]

+(Mγb
k′k
ξν0

− Mξν0

Mν

Mγbk′k)[ik|j′k′]
)

(C.34)

d) Case 7V: Ψ
(0)
K = i+β j+

α

(
ν∑
kl

k+
β l

+
α

) ∏
ρ 6=µ,ν

ψ+
ρ,0 |vac〉 , i ∈ V , j ∈ µ

H̃K0 =
MMξν0

MµMν

( µ∑
j′

Cjj′
MF b

ij′ +

µ∑
i′j′

Cj′i′ [ij|i′j′]
)

+
1

Mµ

µ∑
j′

Cjj′
ν∑
kk′

(
(Mγb

k′k
ξν0

− Mξν0

Mν

Mγbk′k)[ik||j′k′]

+(Mγa
k′k
ξν0

− Mξν0

Mν

Mγak′k)[ik|j′k′]
)

(C.35)

e) Case 8V: Ψ
(0)
K = i+α j+

α k+
β l

+
β

∏
ρ 6=µ,ν

ψ+
ρ,0 |vac〉 , i ∈ V , j ∈ µ , k > l ∈ ν

H̃K0 =
M

MµMν

P̂ (kl)
ν∑
l′

µ∑
j′

Cl′lCjj′ [ik|l′j′]

f) Case 9V: Ψ
(0)
K = i+β j+

β k+
α l

+
α

∏
ρ 6=µ,ν

ψ+
ρ,0 |vac〉 , i ∈ V , j ∈ µ , k > l ∈ ν
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H̃K0 =
M

MµMν

P̂ (kl)
ν∑
l′

µ∑
j′

Cll′Cj′j[ik|l′j′]

g) Case 10V: Ψ
(0)
K = i+α j

+
α k+

β l+β
∏

ρ 6=µ,ν
ψ+
ρ,0 |vac〉 , i > j ∈ V , k ∈ µ , l ∈ ν

H̃K0 =
M

MµMν

µ∑
k′

ν∑
l′

Ck′kCl′l[ij||l′k′]

h) Case 11V: Ψ
(0)
K = i+β j

+
β k+

α l+α
∏

ρ 6=µ,ν
ψ+
ρ,0 |vac〉 , i > j ∈ V , k ∈ µ , l ∈ ν

H̃K0 =
M

MµMν

µ∑
k′

ν∑
l′

Cll′Ckk′ [ij||l′k′]

i) Case 12V: Ψ
(0)
K = i+β j

+
α k+

α l+β
∏

ρ 6=µ,ν
ψ+
ρ,0 |vac〉 , i, j ∈ V , k ∈ µ , l ∈ ν

H̃K0 =
M

MµMν

µ∑
k′

ν∑
l′

Ckk′Cl′l[ij|k′l′]

5. Category IV

a) Case 17: Ψ
(0)
K = i+α j

+
β k

+
α l+αm

+
β n

+
α o+

β p+
β

∏
ρ6=µ,ν,λ,σ

ψ+
ρ,0|vac〉 ,

i > k, j ∈ µ , l > n,m ∈ ν , o ∈ λ , p ∈ κ

H̃K0 =
M

MµMνMλMκ

P̂ (ik)P̂ (ln)CijClm

λ∑
o′

κ∑
p′

Co′oCp′p[kn||p′o′]

b) Case 18: Ψ
(0)
K = i+β j

+
α k

+
β l+βm

+
αn

+
β o+

α p+
α

∏
ρ6=µ,ν,λ,κ

ψ+
ρ,0|vac〉 ,

i > k, j ∈ µ , l > n,m ∈ ν , o ∈ λ , p ∈ κ

H̃K0 =
M

MµMνMλMκ

P̂ (ik)P̂ (ln)CjiCml

λ∑
o′

κ∑
p′

Coo′Cpp′ [kn||p′o′]

c) Case 19: Ψ
(0)
K = i+α j

+
β k

+
α l+βm

+
αn

+
β o+

α p+
β

∏
ρ6=µ,ν,λ,κ

ψ+
ρ,0|vac〉 ,

i > k, j ∈ µ , l > n,m ∈ ν , o ∈ λ , p ∈ κ
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H̃K0 =
M

MµMνMλMκ

P̂ (ik)P̂ (ln)CijCml

λ∑
o′

κ∑
p′

Coo′Cp′p[kn|p′o′]

6. Category IVV

a) Case 14V: Ψ
(0)
K = i+α j+

α k
+
β l

+
α m+

β n+
β

∏
ρ 6=µ,ν,λ

ψ+
ρ,0 |vac〉 ,

i ∈ V , j > l, k ∈ µ , m ∈ ν , n ∈ λ

H̃K0 =
M

MµMνMλ

P̂ (jl)Cjk

ν∑
m′

λ∑
n′

Cm′mCn′n[il||m′n′]

b) Case 15V: Ψ
(0)
K = i+β j+

β k
+
α l

+
β m+

α n+
α

∏
ρ 6=µ,ν,λ

ψ+
ρ,0 |vac〉 ,

i ∈ V , j > l, k ∈ µ , m ∈ ν , n ∈ λ

H̃K0 =
M

MµMνMλ

P̂ (jl)Ckj

ν∑
m′

λ∑
n′

Cmm′Cnn′ [il||m′n′]

c) Case 16V: Ψ
(0)
K = i+α j+

β k
+
α l

+
β m+

β n+
α

∏
ρ 6=µ,ν,λ

ψ+
ρ,0 |vac〉 ,

i ∈ V , j > l, k ∈ µ , m ∈ ν , n ∈ λ

H̃K0 =
M

MµMνMλ

P̂ (jl)Ckj

ν∑
m′

λ∑
n′

Cm′mCnn′ [il|m′n′]

d) Case 17V: Ψ
(0)
K = i+β j+

α k
+
β l

+
α m+

β n+
α

∏
ρ 6=µ,ν,λ

ψ+
ρ,0 |vac〉 ,

i ∈ V , j > l, k ∈ µ , m ∈ ν , n ∈ λ

H̃K0 =
M

MµMνMλ

P̂ (jl)Cjk

ν∑
m′

λ∑
n′

Cmm′Cn′n[il|m′n′]
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(18) Löwdin, P.-O. Quantum Theory of Many-Particle Systems. III. Extension of the

Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects. Phys.

Rev. 1955, 97, 1509–1520.
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