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ABSTRACT
Variational improvement of the wave-function at the sacrifice of spin-symmetry is ex-
ploited within the antisymmetrized product of strongly orthogonal geminals (APSG)
ansatz. The role of orbital optimization is explored for the unrestricted APSG wave-
function, with applying half-projection for partial spin purification, prior to varia-
tion. Dynamical correlation is incorporated by a symmetry-adapted formulation of
perturbation theory, which corrects for spin along with the effect of perturbation.
Splitting between the lowest singlet and triplet levels of cyclobutadiene is investi-
gated along the automerization coordinate of the ground state.
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1. Introduction

Two-electron functions, geminals, offer a far more accurate description of the electronic
structure of atoms and molecules than the molecular orbital (MO) based mean-field
approach does. Accounting for a good amount of static correlation, geminal wave-
functions[1–3] are capable of describing single bond fission correctly. They can be
thought of as bridging the gap between MO and valence bond (VB) approaches. Un-
fortunately, general geminal wave-functions are prohibitive to deal with for large elec-
tronic systems, similarly to VB methods.

For reasons of tractability, considerable simplifications have been introduced in gem-
inal based models from the early days. Among these, singlet coupling of two-electron
units (aka perfect pairing)[4] has become widespread, mostly in combination with the
strong orthogonality restriction. The latter entails expanding each geminal with the
help of one-electron orbitals, φ which are assigned exclusively to it[5]. Energy opti-
mization of the one-electron orbitals underlying the antisymmetric geminal product
is computationally feasible with the above two assumptions. The associated geminal
mean-field wave-function has been introduced under the names Generalized Valence

CONTACT Á. Szabados Email: agnes.szabados@ttk.elte.hu
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Bond[6], Antisymmetrized Product of Strongly orthogonal Geminals (APSG)[7, 8] as
well as Restricted Strongly orthogonal Singlet-type Geminals[9]. Intergeminal correla-
tion, missing at the geminal mean-field level, may be recovered by Perturbation Theory
(PT)[10–17] or coupled-cluster (CC)[18–23] methodology, which usually perform well
when the effect is relatively small. There are however important cases, when correlation
between singlet geminals becomes substantial. Breaking multiple covalent bonds, rear-
ranging or simultaneously elongating adjacent single bonds is an important example,
when perfect pairing breaks down due to spins recoupling in the process[24, 25]. This
observation motivated developments allowing for spin-contamination. Singlet-triplet
mixture at the geminal level[26–29] directly introduces spin components missed by
perfect pairing, while retaining the single geminal product character of the ansatz.
Close relation of APSG with single-reference CC theory[30–32] inspired alternative,
cluster considerations based relaxing of the perfect pairing assumption[32–35]. Aban-
doning strong orthogonality is another avenue of progress, aiming to incorporate the
most correlation with geminal based, yet tractable schemes[36–43].

The geminal product ansatz can be regarded as a theoretical implementation of
the Lewis electron pair concept, formulated and employed mostly in relation with the
ground state of molecular systems. Accordingly, geminal based modelling of electron-
ically excited states generally adopts a linear response or equation-of-motion (EOM)
approach[44–46]. There are however cases where incorporation of triplet geminals in
the wave-function affords to target excited states of the system with a genuine geminal
product description. Molecules of biradical character provide an example, where one
(dominantly) triplet pair and the rest (mostly) singlet pairs can be a realistic first
guess for the lowest triplet state[47]. Similarly to the ground state, inclusion of in-
tergeminal correlation has been found imperative for accurate modelling of the triplet
state and singlet-triplet gap, when starting from a geminal reference[48–53].

Orbital near-degeneracies are characteristic at the effective one-electron level de-
scription of biradicals, which made them popular test systems for electronic struc-
ture developments[54–59]. Apart from genuine multireference approaches[60–64], well
crafted single reference based descriptions have also been shown to perform well. Ex-
amples for the latter include the spin-flip method[65] EOM coupled-cluster (CC) oper-
ating with electron-attachment[66–68] or the method of moments in CC[69–71]. Note,
that conventional noniterative corrections to CCSD fail for biradicals. The nonitera-
tive CC(P;Q) methodolgy circumvents the problem by stepping beyond singles and
doubles in the definition of the cluster operator (denoted as space P ) and taking de-
terminants from an orthogonal space Q to construct biorthogonal moments used for
noniterative correction[72–75].

When modeling biradicals with unrestricted geminals, the challenge lies not with
orbital denegeracy, but with the simultaneous treatment of spin purification and in-
tergeminal correlation. Spin-symmetry violation in the overall wave-function can un-
fortunately hinder the description of dynamical correlation, as observed both at the
single-determinantal[76–80] and at the multi-reference level[13, 50]. Spin restoration
of the unrestricted geminals’ product function has been investigated previously, ei-
ther preceding variational optimization or applied a posteriori[81–84]. While the for-
mer approach obviously yields more complicated equations, it suppresses Coulson-
Fischer type discontinuities[85], characteristic of unresticted schemes and magnified
by projection-after-variation. Projected then varied, spin-unrestricted approaches have
been extensively studied at the HF level in the 1970’s[86] Considering the pair-function
character of unrestricted Hartree-Fock (UHF), spin-projected then varied approaches
are also to be mentioned here. The field was extensively studied in the 1970’s[86]
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and has been living a renaissance lately[87–89]. Spin-symmetry breaking has been ex-
ploited to account for static correlation not only at the UHF level[90, 91], but also in
the spin-projected unrestricted form[92, 93].

Correlation corrections to spin-projected unrestricted wave-functions occurred so
far mainly with PT methodology[51, 52, 94–96]. Our own efforts focused on restora-
tion of spin-symmetry by Half-Projection (HP) as advocated by Smeyers[97, 98].
This approach, employing the spin-flip operator, is far more simple than full spin-
projection[88, 99–101]. Effect of the HP operator can be incorporated in the equations
determining the perturbation corrections. The method, known nowadays as symmetry
adapted perturbation theory (SAPT), was elaborated extensively by the Polish school
for intermolecular interactions[102–104]. Pilot applications performed on the example
of para-benzyne focused on the effect of partitioning and symmetry enforcing in PT
and sufficed with partial variational optimization. In particular, optimization of the
reference resorted to geminal coefficients, while orbitals were taken as natural orbitals
at the unrestricted Hartree-Fock (UHF) level[51].

In the present work we take the simpler diradical test case of cyclobutadiene and
examine the effect of full variational optimization, including orbital and geminal co-
efficients at the level of the reference. Following a brief summary of the essence of
the half-projected and perturbed, unrestricted geminal theory in Section 2., results of
the computations are presented vis à vis highly accurate benchmark data provided by
Refs.[64, 105].

2. Theory

2.1. Half-projected geminal reference

The strongly orthogonal geminal wave-function ansatz pertinent to this study can be
written as

Ψ =

N/2∏
µ

ψ+
µ |vac⟩ (1)

with geminal ψµ expanded with the help of one-electron orbitals in the form

ψ+
µ =

(µ)∑
ij

C
(µ)
ij φ+

iβφ
+
jα . (2)

Number of electrons in the system, denoted by N is assumed to be even. Restriction on
the sum in Equation (2) refers to orbitals assigned to subspace µ. Geminal coefficient

matrix C, built with entries C
(µ)
ij is accordingly blockdiagonal over orbital subspaces.

Normalization of ψµ implies

(µ)∑
ij

|C(µ)
ij |2 = 1 . (3)

Throughout the paper latin letters are used for spatial orbital index, µ, ν refer to
geminals and α, β are spin-indices.
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Unrestricted nature of geminals manifests in the geminal coefficient matrix C having
a nonzero symmetric and antisymmetric part in general. This induces a spin-symmetry
breaking in the product of Equation (1), which is partially remedied by applying the
HP operator

P̂HP =
1

2

(
1 + f P̂

)
(4)

yielding

ΨHP-APSG = P̂HP Ψ . (5)

In the above P̂ is the spin-flip operator and f = (−1)S distinguishes between even and
odd spin quantum number, targeting a singlet or a triplet state by the spin projection
in Equation (5).

Full variational optimization of HP-APSG implies

⟨δΨHP-APSG | Ĥ − EHP-APSG | ΨHP-APSG⟩ = 0 (6)

with taking into account variation of geminal coefficients C
(µ)
ij and one-electron orbitals

φi when composing δΨHP-APSG. The HP-APSG energy is obtained as the Rayleigh-
quotient

EHP-APSG =
⟨ΨHP-APSG | Ĥ | ΨHP-APSG⟩

⟨ΨHP-APSG | ΨHP-APSG⟩ , (7)

as the wave-function in Equation (5) is not normalized to unity.
Variation with respect to geminal coefficients leads to pseudo eigenvalue equations,

yielding optimal geminals ψµ as

Ĥeff
µ ψµ = Eµ ψµ , µ = 1, . . . , N/2 (8)

The effective geminal Hamiltonian

Ĥeff
µ =

(µ)∑
kl

(
NF a

kl + f ηµ
MF a

kl P̂µ

)
φ+

kα φ
−
lα (9a)

+

(µ)∑
kl

(
NF b

kl + f ηµ
MF b

kl P̂µ

)
φ+

kβ φ
−
lβ (9b)

+
1

2

(µ)∑
klmn

[kl|mn]
∑
σ,σ′

φ+
kσ φ

+
lσ′ φ

−
nσ′ φ−

mσ

(
1 + f ηµ P̂µ

)
(9c)

− f κµ P̂µ (9d)

includes explicit two-body terms, responsible for intrageminal correlation, while terms
involving NF a and NF b describe ordinary mean-field interaction. Appearance of the
local spin flip-operator, P̂µ in Equation (9) is a consequence of HP. It contributes zero-,

one- and two-body terms to Ĥeff
µ , all bringing a coupling beyond mean-field. Explicit
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expression of the overlap-related constant ηµ, the energy-related quantity κµ as well
as that of the Fockian-type operators in Equation (9) is not particularly relevant from
our present purpose, and is skipped for brevity. We refer to Equation (11) of Ref.[84]
on this matter, for completeness.

A methodological novelty of the present work is full variational optimization of
the half-projected geminal wave-function, for which the HP-APSG acronym is intro-
duced.1 It implies solving Equation (8) for geminal coefficients in ψµ in a self-consistent
manner in optimization micro cycles, while the energy is minimized with respect to
orbital rotation by a Newton–Raphson type process in iteration macro cycles. The
unitary transformation corresponding to orbital rotation can be expressed as[106, 107]

Û = exp(R̂), where

R̂ =
∑
pq

RpqÊpq , (10)

matrix R is antisymmetric and the spin-summed excitation operator is defined as

Êpq =
∑

σ

φ+
pσ φ

−
qσ . (11)

Energy is expanded with respect to R̂, its O(R̂) term yielding the orbital gradient[108]

gpq = ⟨[Ĥ, Êpq − Êqp]⟩ = 2 (Fpq − Fqp) (12)

in the real case, for p < q. Elements of the generalized Fockian are given by

Fpq =
∑

j

hpj γjq + 2
∑
jkl

[pj|kl] Γkl,qj (13)

and elements of the one- and two-body reduced density matrices, γ and Γ are evaluated
as

γpq = ⟨ΨHP-APSG,n |Êqp| ΨHP-APSG,n⟩ ,

Γpq,rs =
1

2
⟨ΨHP-APSG,n |ÊrpÊsq − δpsÊrq| ΨHP-APSG,n⟩ ,

(14)

with ΨHP-APSG,n denoting the normalized HP-APSG function. Note that F of Equa-
tion (13) is different from the Fockian-type matrices appearing in Equation (9).

The orbital Hessian, evaluated for (p < q, r < s) is obtained from the O(R̂2) term
of the energy expansion as

Horb
pq,rs =

1

2
(1 − P̂pq)(1 − P̂rs)

(
⟨[[Ĥ, Êpq], Êrs]⟩ + ⟨[[Ĥ, Êrs], Êpq]⟩

)
, (15)

where P̂ab is a permutation operator. In our applications, we resorted to a diagonal

1While APSG often stands for the singlet coupled ansatz, we use it here to encompass the spin-unrestricted
case as well and let prefix HP remind to that. Note that HP has no effect on singlet-coupled APSG.
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approximation of the orbital Hessian, with elements given by

Horb
pq,pq = 2hqqγpp + 2hppγqq − 4hqpγqp − 2Fqq − 2Fpp

+ 4
∑

ij

([iq|jq]Γpj,pi + [ip|jp]Γqj,qi + [qi|jq]Γpj,ip + [pi|jp]Γqj,iq)

− 8
∑

ij

([iq|jp]Γqj,pi + [qi|jp]Γqj,ip + [qp|ji]Γij,qp)

+ 4
∑

ij

([pp|ij]Γij,qq + [qq|ij]Γij,pp) ,

(16)

assuming all involved quantities are real.
Computational cost of calculating the HP-APSG reference function is determined

by transformation of one- and two-electron integrals to the basis of new MOs, per-
fomed at each step of the orbital optimization macro cycle. A slight advantage in
economy is offered by the fact, that integrals indexed solely by orbitals of the so-
called virtual geminal (i.e. featuring zero occupation number in HP-APSG) are not
needed. The necessary integrals in a macro cycle can therefore be obtained at the cost
of O

(
NoN

4
b

)
, with Nb denoting the number of basis functions and No referring to

the number of orbitals belonging to any of the the µ = 1, . . . , N/2 subsets. Conver-
gence of the macro iteration was enhanced by direct inversion in the iterative subspace
method[109], similarly to previous studies[110, 111].

It is possible to avoid the integral transformation by expressing all quantities on the
basis on atomic orbitals, as reported by Rassolov[9], formal scaling of the most costly
procedure is however unchanged. A final note on HP-APSG is that geminal subspace
dimension, i.e. length of the expansion in Equation (2) is kept fixed, at difference with
Ref.[9] where it is treated as a variational parameter.

2.2. Symmetry-adapted perturbation correction

A convenient PT correction to Equation (1), exploiting the strongly orthogonal gem-
inal product structure can be devised as

|Ψ(1)⟩ =
∑
K ̸=0

c
(1)
K |ΨK⟩ , (17)

with excited states ΨK taking the form

|ΨK⟩ =

N/2∏
µ

ψ+
µ,K |vac⟩ . (18)

Functions ψµ,K in Equation (18) are expanded over geminal subspace µ, they may
however be excited solutions of Equation (8), moreover they are not necessarily two-
electron functions. Focusing on the first-order interacting space, one-, three- and four-
electron functions occur among ψµ,K . This construction ensures orthogonality of ΨK ’s.
All ψµ,K coming from the lowest root of the geminal eigenvalue equation corresponds
to the function of Equation (1), designated as K = 0 when needed. Excited func-
tions contributing to Equation (17) accommodate at least two ψµ,K different from the
ground state solution of Equation (8)[50].
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The linear equation of the first order coefficients c
(1)
K reads as∑

K ̸=0

GLK c
(1)
K = −HL0 (19)

where GLK = ⟨ΨL|Ĥ(0)|ΨK⟩ − E(0)δLK and HL0 = ⟨ΨL|Ĥ|Ψ⟩. With the zero-order
operator taking a sum over geminal operators form

Ĥ(0) =

N/2∑
µ=1

Ĥµ + ĤV , (20)

the zero-order energy is a sum of geminal eigenvalues

E(0) =

N/2∑
µ=1

Eµ (21)

and matrix G adopts a block-diagonal structure, allowing a block-by-block solution
of Equation (19). Operators on the rhs of Equation (20), Ĥµ and ĤV , where V refers
to the subset of virtual orbitals, are defined furher below. Description of excited state
blocks, as well as many-body formulae of GLK and HL0 contributing to the first order
wave-function are given in Ref.[50].

Correction schemes as detailed above serve well for improving geminal product type
reference functions[13, 50, 112, 113], the spin-projection element of HP-APSG however
calls for additional attention. Seeking a correction to the wave-function of Equation
(5), one may apply a general PT framework to HP-APSG[52], adopting a partitoning
successful at the HF level, e.g. Møller-Plesset or Epstein-Nesbet. Alternatively, it is
possible to rely on the Dyall-type[114] zero-order of Equation (20), involving genuine
two-body interaction. With this latter option a step back has to be taken concerning
the zero-order wave-function, since a sum-over-geminals operator features product-
over-geminals eigenfunctions of the type of Equation (1) but not that of Equation
(5). Symmetry-projection can however be incorporated in the PT equations, thereby
restoring symmetry at finite orders of the series, in the spirit of SAPT[102–104]. With
HP playing the role of the symmetry-operator, SAPT-type corrections to HP-APSG
have been worked out in two alternative forms. In both formulations Equation (7)
represents the energy up to first order, denoted EHP below, for brevity. The second
order energy is expressed as[51]

E(2)
w =

∑
K ̸=0

c
(1)
K (H0K + f H̃0K − f EHPM0K)

1 + f ⟨Ψ|P̂Ψ⟩
(22)

in the weak symmetry forcing scheme, with H̃0K = ⟨Ψ|ĤP̂|ΨK⟩, and

M0K = ⟨Ψ|P̂|ΨK⟩, many-body formulae of which are given in Ref.[51].
The second order pertinent to the strong symmetry forcing variant reads

E(2)
s = E(2)

w +

∑
K,L̸=0

H0KG
−1
KLHL0 − ∑

K,L̸=0

(H̃0K −EHPM0K)G−1
KL(H̃L0−EHPML0)

2(1 + f ⟨Ψ|P̂Ψ⟩)
(23)
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Note, that E
(2)
s is considerably more demanding computationally than E

(2)
w due to

the second term in the numerator on the rhs of Equation (23). It involves excited

states |ΨK⟩ for which H̃0K is nonzero, which may involve excitations conserving MS

quantum number and electron number of geminals, on top of the elements of the first
order interacting space of |ΨK⟩, as discussed in relation to Equation (18).

It remains to specify geminal Hamiltonians, contributing to Equation (20). Operator

ĤV belonging to the virtual geminal subspace is the simplest to derive from Equation
(9), by omitting P̂µ containing terms alltogether. Operator Ĥµ for µ = 1, . . . , N/2
requires more consideration due to the fact, that Equation (9) was deduced from
the variational equations focusing on the ground state of geminal subspace µ[84].
Its application as zero-order regarding other states of subspace µ may have adverse
effect, e.g. intruder states. For this reason Ĥµ is defined with the help of projectors in

subspace µ, ensuring that its effect is identical to that of Ĥeff
µ only on the ground state

of geminal µ. Interaction between ground and excited states in subspace µ are omitted
in Ĥµ. Regarding the block of excited geminal states, various possibilities were tested.

We here apply option 3 of Ref.[51], defining Ĥµ as

N Ĥµ + ⟨ψµ|P̂µ|ψµ⟩ MĤs
µ

1 + f ⟨Ψ|PΨ⟩ (24)

when acting on excited functions in subspace µ. In the above N Ĥµ arises from the first

terms in the round braces in terms (9a)-(9c) of Ĥeff
µ . Second term in the round braces

of terms (9a)-(9c) of Ĥeff
µ give rise to MĤs

µ by omitting P̂µ and symmetrizing.

3. Cyclobutadiene automerization process

Gradual transformation of cyclobutadiene from one rectangular Kekulé-structure to
the other through the square arrangement is an example highlighting the shortcoming
of perfect pairing. The characteristic cusp at the square geometry on the ground state
potential energy curve obtained by the singlet-coupled model is mitigated when letting
geminals become singlet-triplet mixed[25, 81]. Orbitals underlying the two wavefunc-
tion models are also markedly different. While natural orbitals of singlet geminals
tend to localize on bonds, lone pairs, etc., spin-contamination at the geminal level
delocalizes the orbitals. This is already present with natural orbitals of the UHF
wavefunction, which adheres to Equation (1), with spin-unrestricted geminals and
a constrained parametrization of the geminal coefficient matrix. Here we examine the
effect of stepping from UHF Natural Orbitals (UNO) to those optimized with the full-
blown parametrizaton of matrix C entering the energy expression of the half-projected
geminal product. Acronym HP-APSG refers to the fully optimized reference function,
HP-APSG(U) stands for results obtained on the basis of UNOs. Geminal subspace
dimensions are kept at two, as inherited from UHF and six geminals are correlated in
the APSG model. Core orbitals are frozen at the level of UHF or HP-APSG.

Reaction coordinate, λ parametrizes the rectangle to square transformation as

li(λ) = (1 − λ) li(R) + λ li(TS) , i = 1, 2 (25)

in agreement with Refs.[62, 105]. In the above li(R) and li(TS) are the C−C bond
distances optimized at the multireference average quadratic coupled-cluster level of
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theory, for the minimal energy rectangular (R) and the square transition structure
(TS) of the ground state. Double and single C−C bonds lenghts, corresponding to
i = 1 and i = 2, differ at the rectangular arrangement. Carbon-hydrogen bond lengths
and ∠(H,C,C) bond angles are fixed at the optimized value of the R structure as λ
interpolates between the λ = 0 rectangle and λ = 1 square.

Focusing on the lowest singlet and triplet states of the system, energies by the
weak symmetry forcing PT scheme on top of HP-APSG are displayed in Fig.1, la-
beled PT2w. Performance of the strong symmetry forcing variant, PT2s is shown in
Fig.2. A blow-up in the computational effort generated by the second term in the
numerator on the right hand side of Equation (23) is avoided by starting with those
excited states K,L which enter the first term and allowing at most one extra gemi-
nal becoming excited in these. Benchmark data taken from Ref.[105] are provided by
CCSDT and the perturbatively corrected selected configuration interaction mehodol-
ogy of Malrieu, termed CIPSI[115]. Both benchmarks rest on the orbitals optimized
at the single determinantal level, restricted HF (RHF) in the case of the singlet and
restricted open-shell HF for the triplet state. This represents a particular challenge for
the ground state. To alleviate the cusp feature produced with RHF orbitals, the high-
level methodology of full triples is needed in the case of CC. Regarding the selected
CI procedure, a variational space dimension on the order of 100,000 must be reached,
and the same quality is needed for the CIPSI-driven CC(P;Q) ground state curve to
become of correct shape. Sampling of the determinantal space is significantly more
modest in the case of HP-APSG based PT. The six geminals correlated at the level
of HP-APSG generate an incomplete model space of dimension 4096. It is the number
of excited functions of the form of Equation (18), contributing to PT2w, that is on
the order of 500,000, comparable to the dimension of the variational space of CIPSI,
mentioned above.

While curve shape by geminal based PT methods is satisfactory in the vicinity of
λ = 1, barrier height of the ground state and singlet-triplet gap are less favorable.
The ground state curve by PT2w is too flat, producing a roughly 50% deficit in the
barrier height as compared to the benchmark value. This results in an overestimation
of the singlet-triplet gap at λ = 1 even if the excited state curve nicely overlaps with
those by the benchmarks, as reflected by Fig.1. The ground state curve by PT2s
displayed in Fig.2 overcompensates the defect of PT2w, resulting in more than 50%
overestimation of the barrier height. Deviation of the singlet-triplet gap at λ = 1 from
the benchmark value is also affected by the excited state curve of PT2s, as it is shifted
up by some 15-20 mEh from CCSDT or CIPSI+PT2. By a compensation of errors,
the 7.5 mEh HP-APSG-PT2s singlet-triplet gap at λ = 1 is in good agreement with
the benchmark 7.6 mEh by CCSDT. The 9.5 mEh CIPSI-PT2 gap is slightly larger
than CCSDT but even that is overcome by the HP-APSG-PT2w value of 12.7 mEh,
which is clearly too large. Singlet-triplet gap at λ = 1 by alternative multireference PT
methodologies in similar quality basis (631+G(d)) vary in the 6.5 − 8.5 mEh range[64],
in good agreement with the 7.5 mEh HP-APSG-PT2s value in cc-pVDZ basis.

Considering the effect of orbital optimization at the level of HP-APSG, it improves
energies in the correct direction for both the ground and excited state in Fig.1, the
order of magnitude of the effect is however small. Orbital optimization appears espe-
cially marginal when compared to the effect of symmetry forcing, i.e. the difference
between HP-APSG-PT2 data between Figs.1 and 2. With this is mind, and regarding
that the PT2s formula is implemented with a rather crude approximation, it appears
premature to draw conclusion on the seemingly negative impact of orbital optimization
in Fig.2. At the same time, the need for more refined approximations in evaluating
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Figure 1. Potential energy curve of the lowest two states of cyclobutadiene in cc-pVDZ basis, along a rect-
angle to square (λ = 1) transformation. Energy difference, ∆E is measured from the ground state value at

λ = 0.0 for each method. Hollow symbols are used for the ground state, filled symbols indicate the first excited

state. Note, that HP-APSG based results are not spin-pure, f = −1 is applied in Equation (4) for the excited
state. Perturbation correction in the weak symmetry forcing variant, labeled PT2w is evaluated according to

Equation (22). Results labeled CIPSI+PT2 and CCSDT are taken from [105]. The former corresponds to the

perturbatively corrected CIPSI energies, extrapolated at each geometry based on the six largest variational
space data.

Equation (23) is underlined.
An insight into active orbitals is provided by the contour plots in Figures 3 and 4,

giving occupation numbers (i.e. diagonal elements of the spin-summed density matrix
γ) and total spin-squared expectation value as well. Point-group symmetry conform-
ing feature of orbitals plots is in line with the delocalization effect of geminal spin-
contamination. A conservation of locality also applies in that σ pairs extend mainly
over carbon atoms and less for hydrogens. One can say to a good approximation that
C − H σ bonds remain at the RHF level. Occupation numbers in Figs. 3 and 4 are
in agreement with the expectation that correlation mainly affects π geminals. In fact,
with Pulay’s standard UNO thresholds[116] of 1.98, 0.02 only the π geminals would
be correlated. We applied a less stringent threshold with the purpose of giving more
variational flexibility to the HP-APSG(U) and HP-APSG reference.

Focusing on occupation numbers and total spin in comparison of UHF and HP-
APSG(U), it is apparent in Figs. 3 and 4, that geminal coefficient optimization with
orbitals kept as UHF has a significant effect. (This obviouly does not apply to the 1.000
occupation numbers of the most correlated geminal at λ = 1.0, being a mark of the
perfect biradical structure.) When stepping from HP-APSG(U) to orbitals optimized
at the level of HP-APSG, changes are significanly smaller in occupation numbers as
well as in the expectation value of total spin-squared. Orbital plots of π-geminals,
dominated by carbon pz orbitals, remain unaffected by variational improvement. Tiny
changes can be observed on the orbital plots of HP-APSG σ-geminals as compared to
UHF, e.g. hydrogen contributions slightly diminish. Similarity in HP-APSG geminals
of the ground and excitated state in both Figures lends support to spin-flip approaches.
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Figure 2. Potential energy curve of the lowest two states of cyclobutadiene in cc-pVDZ basis, along the reac-
tion coordinate, λ. Perturbation correction in the strong symmetry forcing variant, labeled PT2s is evaluated

according to Equation (23) in an approximate form. See text and legend of Fig.1 for more.

4. Conclusion

The HP-APSG reference represents an economical wavefunction model, providing a
geminal-based interpretation of the electronic structure and serving as reliable starting
point for correlation correction. Geminal-unrestriction accompanied by spin-projection
at the many-electron level extends the applicability of the strongly orthogonal geminal
product reference to the lowest singlet and triplet states of biradicals. Starting from
natural orbitals of the UHF wavefunction a HP-APSG optimized orbital set can be
easily reached. Alternative, local minima may deserve further exploration, e.g. in the
vicinity of the perfect-pairing optimized orbital set. Symmetry restoration of the unre-
stricted geminal ansatz is an essential element of the methodology. Symmetry forcing
at finite orders of the PT series appears more promising in the strong variant than its
weak counterpart.
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0.090
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HPAPSG(U)
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0.003

1.996

0.004
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⟨S2⟩ = 2.018
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0.964
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0.003

1.995
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1.898

0.102
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0.969

Figure 3. Optimized orbitals and occupation numbers at the UHF and HP-APSG level, at the end point of

the automerization process, λ = 0.0. Occupation numbers of HP-APSG(U) correspond to γ of the HP-APSG
wavefunction, evaluated on the basis of UNOs. Contour plots are drawn with the cutoff value 0.05 in Jmol[117].
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Figure 4. The same as Fig.3 at the square geometry, λ = 1.0.
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[41] P. Cassam-Chenäı, J. Math. Chem. 62, 222–227 (2024).
[42] P.A. Johnson, C.É. Fecteau, F. Berthiaume, S. Cloutier, L. Carrier, M. Gratton, P.

Bultinck, S.D. Baerdemacker, D.V. Neck, P.A. Limacher and P.W. Ayers, The Journal
of Chemical Physics 153, 104110 (2020).

[43] M. Richer, T.D. Kim and P.W. Ayers, International Journal of Quantum Chemistry
125, e70000 (2025).

[44] K. Chatterjee and K. Pernal, The Journal of Chemical Physics 137, 204109 (2012).
[45] K. Chatterjee and K. Pernal, Theoretical Chemistry Accounts 134, 1–9 (2015).
[46] H. Zhang, J. Zou, X. Ren and S. Li, The Journal of Physical Chemistry Letters 14,

6792–6799 (2023).
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[83] P. Jeszenszki, P.R. Surján and Á. Szabados, Journal of Chemical Theory and Computa-

tion 11, 3096–3103 (2015).
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[87] C.A. Jiménez-Hoyos, T.M. Henderson, T. Tsuchimochi and G.E. Scuseria, J. Chem.

Phys. 136 (16), 164109 (2012).
[88] Y. Qiu, T.M. Henderson and G.E. Scuseria, The Journal of Chemical Physics 145,

111102 (2016).
[89] H.Z. Ye and T. Van Voorhis, Journal of Chemical Theory and Computation 15 (5),

2954–2965 (2019).
[90] K. Yamaguchi, K. Ohta, S. Yabushita and T. Fueno, Chem. Phys. Lett. 49 (3), 555 –

559 (1977).
[91] P. Pulay and T.P. Hamilton, J. Chem. Phys. 88 (8), 4926–4933 (1988).
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