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Real eigenvalues of non-hermitian operators∗
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ABSTRACT
A basic fact, having fundamental significance in quantum mechanics, is that hermitian (or self-
adjoint) operators have only real eigenvalues. However, in certain applications in molecular physics,
one deals with non-hermitian operators. We discuss a condition for non-hermitian operators to have
real eigenvalues, proving that it is the case if and only if it can be decomposed as a product of two,
generally non-commutinghermitian operators, one ofwhich is positive definite. The theorem is illus-
trated on the example of non-hermitian effective Hamiltonians occurring in the non-perturbative
form of the Bloch equation.
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1. Introduction

Standard self-consistent-field (SCF) equations

FCi = εiSCi (1)

with the Fock matrix F, molecular orbital (MO) coeffi-
cientsCi andMOenergies εi emerge from thematrix rep-
resentation of the eigenvalue equation of the Fock oper-
ator in the non-orthogonal basis set of atomic orbitals
characterised by the metric (overlap) matrix S. The
Fock operator being hermitian, its eigenvalues are real
numbers, so are the MO energies εi in a finite basis.
Equation (1) is usually solved by some efficient tech-
nique, e.g. the Cholesky-decomposition of the metric
matrix. However, multiplying by S−1, Equation (1) can
be rewritten as

GCi = εiCi (2)

where

G = S−1F (3)
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is a non-hermitian matrix, whose eigenvalues are never-
theless real.

In matrix theory, there is a theorem which precisely
formulates a condition under which a non-hermitian
matrix has only real eigenvalues. The statement is:

Theorem: Anon-hermitianmatrixG has real eigenvalues
if and only if it can be decomposed as a product of a positive
definite hermitian and another hermitian matrix.

Evidently, the (inverse) metric matrix being positive
definite, Equation (3) exactly exhibits this structure.

In this paper, after recapitulating the proof of the
above theorem formatrices in Section 2, we formulate the
question whether an analogous statement holds for non-
hermitian operators. An affirmative answer is provided in
Section 3.

In molecular physics, one often deals with non-
hermitian model Hamiltonians, despite the basic fact
that physical quantities are described by self-adjoint
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operators. Some important examples are:

(1) The similarity-transformedHamiltonian in coupled-
cluster (CC) theory [1–3],

ˆ̄H = e−T̂ĤeT̂ , (4)

where T̂ is the cluster operator
(2) Transcorrelated Hamiltonians [4–9]
(3) The effective Hamiltonian in the Bloch equation

[10–14], or the effective Hamiltonian inMukherjee’s
energy-independent partitioning technique [15]

(4) The original, non-hermitian formulation of Mayer’s
chemical Hamiltonian approach [16–18]

(5) Application of non-hermitian (complex) potentials
in the theory of resonances and scattering problems
[19]

Non-hermitian Hamiltonians have been widely stud-
ied in theoretical physics [20–24], out of the realm of
molecular physics, resulting in several alternatives of the
above theorem [22, 25].

Equation (4) is not of present interest, since (i) it
exhibits a similarity transformation, thus the eigenval-
ues of Ĥ and Ĥ coincide; and (ii) in CC theory, one does
not diagonalise Ĥ, but solves momentum-like equations
instead. Transcorrelated Hamiltonians are also exam-
ples for similarity transformations. An application of the
present result to item (3) will be presented in Section 4.
Items (4) and (5) are more special examples, these are not
discussed in this paper.

2. The proof for matrices

Proof of the theorem for matrices has to be elaborated in
both directions:

(1) If G = AB, with A and B hermitian and A positive
definite, then the eigenvalues of G are real

(2) IfG is diagonalisable and has real eigenvalues, then it
can be decomposed as G = AB with the mentioned
properties.

The theorem is well known in linear algebra. Here we
present a simple proof for completeness.

2.1. Direction (1)

Supposewe have two hermitianmatrices,A andB, withA
positive definite, the matrices A1/2, and A−1/2 are there-
fore well defined. (By A1/2, we mean the positive definite
square root of A which is obviously invertible.) Then, let

us construct the product matrix

G = AB ≡
C︷ ︸︸ ︷

A1/2 A1/2 B A1/2 A−1/2︸ ︷︷ ︸ ︸ ︷︷ ︸
A I

(5)

where the unit matrix I was introduced. Since A and B
are hermitian, so is C = A1/2BA1/2, thus we have

G = A1/2CA−1/2, (6)

which is a similarity transformation of the hermitian C.
Since the latter has real eigenvalues, those of Gmust also
be real, q.e.d.

2.2. Direction (2)

If G is diagonalisable, then

G = LD L−1 (7)

where D is a diagonal matrix, with some invertible
matrix L, which is, owing to the non-hermiticity of G,
not unitary. We assume that all diagonal elements of
D are real. Then, consider the construction augmenting
Equation (7) with a unit matrix I = L†L†−1 in between L
and D:

G = L L†︸︷︷︸
A

L†−1
D L−1︸ ︷︷ ︸
B

. (8)

Here B = L†−1DL−1 is hermitian for real D, while A =
LL† is positive definite and hermitian, by which the proof
for matrices is completed.

Note that the proof in this direction remains valid for
any decomposition of G as L′D′L′−1, where D′ is hermi-
tian but nondiagonal, thus the decompositionG = AB is
not unique.

3. The proof for operators

For linear operators, the theorem can be stated as follows.

Theorem: A non-hermitian operator Ĝ has real eigenval-
ues if and only if it can be decomposed as a product of two
hermitian operators one of which is positive definite.

The implications, again, have to be shown in both
directions. However, direction (1) emerges as a trivial
transcript of Equations (5)–(6)whichwerewritten for the
case ofmatrices: If operators Â and B̂ are hermitian and Â
is positive definite, then operator Ĝ = ÂB̂ has real eigen-
values, albeit it is not hermitian. (We must not suppose
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that Â and B̂ commute.) This statement follows from the
construction, analogous to (5)

Ĝ = ÂB̂ ≡
Ĉ︷ ︸︸ ︷

Â1/2 Â1/2 B̂ Â1/2 Â−1/2︸ ︷︷ ︸ ︸ ︷︷ ︸
Â Î

(9)

with Î standing for the unity operator. Operator Ĉ is her-
mitian by construction, and Ĝ is obtained as its similarity
transformation, the eigenvalues of Ĝ are real.

The reverse direction requires some care, as, to remain
general, one does not want to turn to a matrix rep-
resentation in which a ‘diagonal operator’ D̂ could be
defined. Instead, let us formulate the reverse statement
using the concept of spectral decomposition. Consider a
non-hermitian operator Ĝ having right eigenvectors ψi

Ĝ|ψi〉 = εi|ψi〉 (10)

with real eigenvalues εi, and left eigenvectors φi

〈φi|Ĝ = 〈φi|εi. (11)

For simplicity, the case of a discrete spectrum is dis-
cussed.

Non-hermiticity of Ĝ is manifested in that the two sets
of eigenvectors are not the same. However, they form a
biorthogonal set:

〈φi|ψk〉 = δik, (12)

assuming suitable normalisation 〈φi|ψi〉 = 1. This biorth-
ogonal property for non-hermitian operators is well
known in operator calculus, but, for completeness, we
recapitulate a proof in the Appendix.

With these two sets of eigenvectors, the spectral
decomposition of the non-hermitian operator Ĝwith real
eigenvalues εj can be written as

Ĝ =
∑
j
εj|ψj〉〈φj|, (13)

as it can be verified by simple substitution of Equation (13)
into Equations (10) and (11) and using biorthogonality,
Equation (12) of the eigenvectors.

Let us develop a constructive proof. Define two her-
mitian auxiliary operators

Â =
∑
i
si|ψi〉〈ψi| (14)

with the right eigenvectors of Ĝ and scalars si > 0, and

B̂ =
∑
j

εj

sj
|φj〉〈φj| (15)

with the real eigenvalues εj of Ĝ and the left eigenvec-
tors of the latter, Equation (11). Constructions of Equa-
tions (14) and (15) are not to be considered as spectral

decompositions, since neither of the sets {ψi} or {φj} are
orthonormal. Since both si and εj are real, both operators
Â and B̂ are hermitian by construction. Moreover, Â is
positive definite with si positive. Evaluating the product
one obtains:

ÂB̂ =
∑
i

∑
j
si
εj

sj
|ψi〉 〈ψi|φj〉︸ ︷︷ ︸

δij

〈φj|

=
∑
i
εi|ψi〉〈φi| = Ĝ. (16)

That is, the non-hermitian operator Ĝ having real eigen-
values has been decomposed as a product of two hermi-
tian operators ÂB̂, of which Â is positive definite. This
completes the proof in the reverse direction.

Since in the above construction the real positive
parameters in Â, si, are arbitrary, this decomposition is
not unique, just like the similar decomposition of matri-
ces in the preceding section. Note finally that the adjoint
of Ĝ is

Ĝ† = B̂Â.

For Ĝ to be non-hermitian, Â and B̂must not commute.
Further,

[
G,G†

]
= ÂB̂2Â − B̂Â2B̂ �= 0,

thus this Ĝ is not a normal operator, either. We can,
therefore, formulate the following

Corollary: If a normal operator N̂ is not hermitian, it
must have at least one complex eigenvalue.

4. Application to the theory of effective
Hamiltonians

Effective Hamiltonians have long been dealt with in
molecular physics, starting from Löwdin’s partitioning
technique [26, 27],Mukherjee’s energy-independent par-
titioning technique [15], the effective Hamiltonian in
‘ perturb-then-diagonalise’ versions of multi-reference
(MR) perturbation theory (PT) [28–32], and the field of
the Bloch equation [10, 11]. Wave operators and effec-
tive Hamiltonians have also been used in the field of the
ro-vibrational molecular Schrödinger equation [33–35],
an area on which Attila Császár, to whom this Volume
is dedicated to, has been extensively working. Here we
present an application to the non-perturbative formal
Bloch equation.
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Consider a set of exact eigenfunctions of a Hamilto-
nian Ĥ,

�1,�2, . . . �p.

They satisfy the eigenvalue equations

Ĥ�i = Ei�i, i = 1, 2, . . . p,

and, owing to the hermiticity of Ĥ, form an orthonormal
basis in the p-dimensional eigensubspace.

Consider now a set, formed by the same number of
model functions:

{�i}, i = 1, 2, . . . p,

which are chosen to be orthonormal, 〈�i|�j〉 = δij, span-
ning a p-dimensional model space. The interrelation
matrix between the two sets is

Tik = 〈�i|�k〉

For the set {�i}, we only assume that they represent an
approximation to �i which is not singularly wrong, i.e.
the diagonal overlaps

Tii = 〈�i|�i〉 �= 0

are nonzero for all i.We also assume thatmatrixT is non-
singular.

The next step is to define a formal wave operator 	̂ by

	̂ =
∑
ik

|�i〉T−1
ik 〈�k| (17)

where T−1
ik is a shorthand for the elements of the inverse

of matrix T. This wave operator obviously maps the
model space to the exact eigensubspace, and has the
following properties:

(1) It is idempotent:

	̂2 = 	̂

which results from simple substitution of Equation
(17)

(2) It is obviously not hermitian: 	̂† �= 	̂

(3) Tr 	̂ = p
(4) It satisfies the non-perturbative form of the Bloch

equation

Ĥ	̂ = 	̂Ĥ	̂, (18)

which, again, follows easily from simple substitution.

This form of the wave operator is a skew projec-
tor from the mathematical point of view, owing to the
properties of items (1) and (2).

The above construction makes clear that this wave
operator corresponds to a MR theory. The single-
reference version of (18), where p = 1 and the definition
	 = |�〉〈�| is used for the wave operator, was termed
the nonlinear Schrödinger equation by Löwdin [11] (see
also ref. [36]).

Note that Equation (18) can also be obtained from
the requirement that 	 commutes with the Hamilto-
nian, multiplying the commutator with 	 and using the
idempotency of the wave operator.

The Bloch Equation (18) is not easy to solve, partly
because it has many solutions. An equation of the same
structure can be written down in a one-electron theory
for the density matrix P and the Fockian F [37–39]:

FP = PFP.

Iterative solution of the above equation, albeit slow, is
possible [37–39], and it provides the density matrix with-
out explicit diagonalisation of F.

We now proceedwith constructing the decomposition
of the effectiveHamiltonian, formulated in the field of the
Bloch equation as

Ĥeff = Ĥ	̂. (19)

Matrix elements of Ĥeff in the model space read

Heff
ab = 〈�a|Ĥ	̂|�b〉. (20)

This is a p × p dimensional non-hermitian effective
Hamiltonian matrix, that is diagonalisable, and has p
exact eigenvalues. This can be simply verified:

(
HeffT

)
ij

=
∑
b

〈�i|Ĥ	̂|�b〉Tbj

=
∑
bkl

〈�i| Ĥ|�k︸ ︷︷ ︸
Ek�k

〉T−1
kl 〈�l|�b︸ ︷︷ ︸

δlb

〉Tbj

= EjTij, (21)

where the definition of thewave operatorwas substituted,
and the orthonormality of themodel space functions was
utilised. The result can simply be written as

(
T−1HeffT

)
ij

= Ejδij (22)

indicating that the interrelation matrix diagonalises the
non-hermitian Hamiltonian in the model space with all
of its eigenvalues remaining real. Therefore, in accord
with the theorem under discussion, the effective Hamil-
tonian of Equation (19) must feature a decomposed form
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as the product of a positive definite and a hermitian
operator. Rearranging Equation (20) as

Heff
ik =

∑
j
EjTijT−1

jk (23)

allows one to express the model space projection of Ĥeff

as

P̂Ĥeff =
∑
ik

|�i〉Ĥeff 〈�k|. (24a)

=
∑
j
Ej

∣∣∣∣∣∑
i
Tij �i

〉
︸ ︷︷ ︸

|ψj〉

〈∑
k

T−1
jk �k

∣∣∣∣∣︸ ︷︷ ︸
〈φj|

(24b)

=
∑
j
Ej

∣∣ψj〉〈φj
∣∣ (24c)

for real matrix elements of T. Here, the model space
projector

P̂ =
∑
i

|�i〉〈�i|

was used, and the form Equation (23) was substituted
for Ĥeff to get (24b). The form (24c) perfectly matches
the structure of Equation (13) in Section 2.2: it is a
spectral resolution of a non-hermitianHamiltonian, with
real eigenvalues Ej. Therefore, the construction used in
Section 2.2 applies. First, it is evident that the sets {ψ}
and {φ} are biorthogonal:

〈φj|ψl〉 =
∑
ik

T−1
jk 〈�k|�i〉︸ ︷︷ ︸

δki

Til = δjl.

Next, one defines, following Equations (14) and (15),

Â =
∑
i
si|ψi〉〈ψi|

with arbitrary but positive parameters si, and

B̂ =
∑
j

Ej
sj

|φj〉〈φj|.

Both Â and B̂ are hermitian and Â is positive definite, and
their product gives the effective Hamiltonian (24c). This
illustrates the theorem.

5. Conclusion

Inspired by the Hartree-Fock-Roothaan equation (the
eigenvalue problem of the Fockian represented in an
overlapping basis set), we recapitulated a theorem of
matrix theory stating that the spectrum of a nonhermi-
tian matrix is real if and only if it appears as a product

of two non-commuting hermitianmatrices, one of which
is positive definite. We presented a formal constructive
proof for the analogous statement for operators, using
the formalism of spectral decompositions for nonher-
mitian operators. The proof makes it evident that the
decomposition is not unique. The non-perturbative form
of the Bloch equation results in a nonhermitian effec-
tive Hamiltonian, and the formal theorem is illustrated
on this example.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] R.J. Bartlett, Coupled-cluster theory: an overview of
recent developments, inModern electronic Structure The-
ory, part I., edited by D.R. Yarkony (World Scientific,
Singapore, 1995), p. 1047.

[2] T.Helgaker, P. Jørgensen and J.Olsen,Molecular Electronic-
Structure Theory (Wiley, England, 2000).

[3] A. Köhn and A. Tajti, J. Chem. Phys. 127, 0114105 (2007).
doi:10.1063/1.2770708

[4] S.F. Boys and N.C. Handy, Proc. Roy. Soc. (London) A
310, 43 (1969).

[5] N.Handy,Mol. Phys. 21 (5), 817–828 (1971). doi:10.1080/
00268977100101961

[6] S. Ten-no, Chem. Phys. Lett. 330, 169–174 (2000).
doi:10.1016/S0009-2614(00)01066-6

[7] O. Hino, Y. Tanimura and S. Ten-no, J. Chem. Phys. 115,
7865–7871 (2001). doi:10.1063/1.1408299

[8] P. Jeszenszki, U. Ebling, H. Luo, A. Alavi and J. Brand,
Phys. Rev. Res. 2, 043270 (2020). doi:10.1103/PhysRev
Research.2.043270

[9] J.P. Haupt, S.M. Hosseini, P.L. Ríos, W. Dobrautz, A.
Cohen and A. Alavi, J. Chem. Phys. 158, 224105 (2023).
doi:10.1063/5.0147877

[10] I. Lindgren and J. Morrison, Atomic Many-Body Theory
(Springer, Berlin, 1986).

[11] P.O. Löwdin, Int. J. Quantum Chem. 72, 379 (1999).
doi:10.1002/(ISSN)1097-461X

[12] J.P. Killingbeck and G. Jolicard, J. Phys. A Math. Gen. 36,
R105–R180 (2003). doi:10.1088/0305-4470/36/20/201

[13] G. Jolicard and J.P. Killingbeck, J. Phys. A Math. Gen. 36,
R411–R473 (2003). doi:10.1088/0305-4470/36/40/R01

[14] J. Pittner, J. Chem. Phys. 118, 10876–10889 (2003).
doi:10.1063/1.1574785

[15] D. Sinha, S.K. Mukhopadhyay, R. Chaudhuri and D.
Mukherjee, Chem. Phys. Lett. 154, 544–549 (1989).
doi:10.1016/0009-2614(89)87149-0

[16] I. Mayer, Int. J. Quantum Chem. 23 (2), 341–363 (1983).
doi:10.1002/qua.v23:2

[17] I. Mayer, Int. J. Quantum Chem. 70 (1), 41–63 (1998).
doi:10.1002/(ISSN)1097-461X

[18] I.Mayer, G. Rather and S. Suhai, Chem. Phys. Lett. 270 (1-
2), 211–216 (1997). doi:10.1016/S0009-2614(97)00326-6

[19] N. Moiseyev, Non-hermitian Quantum Mechanics (Cam-
bridge University Press, Cambridge, 2017).

[20] G. Iwata, Prog. Theor. Phys. 6, 216–226 (1951).
doi:10.1143/ptp/6.2.216

https://doi.org/10.1063/1.2770708
https://doi.org/10.1080/00268977100101961
https://doi.org/10.1016/S0009-2614(00)01066-6
https://doi.org/10.1063/1.1408299
https://doi.org/10.1103/PhysRevResearch.2.043270
https://doi.org/10.1063/5.0147877
https://doi.org/10.1002/(ISSN)1097-461X
https://doi.org/10.1088/0305-4470/36/20/201
https://doi.org/10.1088/0305-4470/36/40/R01
https://doi.org/10.1063/1.1574785
https://doi.org/10.1016/0009-2614(89)87149-0
https://doi.org/10.1002/qua.v23:2
https://doi.org/10.1002/(ISSN)1097-461X
https://doi.org/10.1016/S0009-2614(97)00326-6
https://doi.org/10.1143/ptp/6.2.216


6 PÉTER R. SURJÁN ET AL.

[21] C.M. Bender and S. Boettcher, Phys. Rev. Lett. 80,
5243–5246 (1998). doi:10.1103/PhysRevLett.80.5243

[22] A. Mostafazadeh, J. Math. Phys. 44, 974–989 (2003).
doi:10.1063/1.1539304

[23] E. Ergun, Rep. Math. Phys. 75, 403–416 (2015). doi:10.
1016/S0034-4877(15)30013-6

[24] N. Bebiano and J. da Providencia, J. Math. Phys. 60,
012104 (2019). doi:10.1063/1.5048577

[25] A. Mostafazadeh, J. Math. Phys. 46, 102108 (2005).
doi:10.1063/1.2063168

[26] P. Löwdin, J. Mol. Spectr. 10, 12–33 (1963). doi:10.1016/
0022-2852(63)90151-6

[27] P.O. Löwdin, J. Math. Phys. 3, 969–982 (1962). doi:10.
1063/1.1724312

[28] B.H. Brandow, Rev. Mod. Phys. 39, 771–828 (1967).
doi:10.1103/RevModPhys.39.771

[29] J.J.W. McDouall and K.P.M.A. Robb, Chem. Phys. Lett.
148, 183–189 (1988). doi:10.1016/0009-2614(88)80296-3

[30] P.M. Kozlowski and E.R. Davidson, J. Chem. Phys. 100,
3672–3682 (1994). doi:10.1063/1.466355

[31] J.P. Finley, J. Chem. Phys. 108, 1081–1088 (1998).
doi:10.1063/1.475469

[32] J.P. Finley andH.A.Witek, J. Chem. Phys. 112, 3958–3963
(2000). doi:10.1063/1.480947

[33] C. Iung, C. Leforestier and R.E. Wyatt, J. Chem. Phys. 98,
6722–6734 (1993). doi:10.1063/1.464764

[34] P. Cassam-Chenai, J. Math. Chem. 49, 821–835 (2011).
doi:10.1007/s10910-010-9779-y

[35] P. Cassam-Chenai, G. Rousseau, A. Ilmane, Y. Bouret
and M. Rey, J. Chem. Phys. 143, 034107 (2015).
doi:10.1063/1.4926471

[36] P. Szakács and P.R. Surján, J. Math. Chem. 43, 314–327
(2008). doi:10.1007/s10910-006-9197-3

[37] D. Köhalmi, Á. Szabados and P.R. Surján, Phys. Rev. Lett.
95, 13002 (2005). doi:10.1103/PhysRevLett.95.013002

[38] Z. Szekeres, P.G.Mezey and P.R. Surján, Chem. Phys. Lett.
424, 420–424 (2006). doi:10.1016/j.cplett.2006.04.089

[39] D.A. Mazziotti, J. Chem. Phys. 115, 8305–8311 (2001).
doi:10.1063/1.1412002

Appendix

Here we recapitulate that Equation (12) is correct. Assume that
M̂ �= M̂† is a non-hermitian operator, its eigenvalue equation
reading

M̂|ψi〉 = ai|ψi〉. (A1)
The eigenvalue problem of the adjoint operator reads

M̂†|φj〉 = bj|φj〉. (A2)

Taking the adjoint of Equation (A2) one gets:

〈φj|M̂ = b∗
j 〈φj|, (A3)

with right and left eigenvectors (ψ and φ) and eigenvalues (a
and b∗) of M̂, respectively. Multiplying Equation (A1) by 〈φj|
from the left and Equation (A3) by |ψi〉 from the right, one
obtains:

〈φj|M̂|ψi〉 = ai〈φj|ψi〉 (A4)
and

〈φj|M̂|ψi〉 = b∗
j 〈φj|ψi〉. (A5)

Taking their differences:

0 =
(
ai − b∗

j

)
〈φj|ψi〉. (A6)

Assuming 〈φi|ψi〉 is nonzero, this leads to
ai = b∗

i .

That is, the left- and right eigenvalues are the complex conju-
gates of each other. (In the discussion of the present paper, ai
are real, thus they are equal.) In this case, one usually applies
the normalisation condition:

〈φi|ψi〉 = 1.

If, however, i �= j, the eigenvalue differences are nonzero in gen-
eral (the case of degeneracymay be separately discussed). Then,
we obtain:

〈φi|ψj〉 = 0.
Combining the last two equations one arrives at the biorthog-
onality property Equation (12).
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