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Abstract

A detailed analysis of a new partitioning in many-body perturbation theory recently pro-

posed by Knowles (J. Chem. Phys. 156, 011101, 2022), termed ’perturbation adapted parti-

tioning’ (PAPT), is presented. Level-shift and orbital rotation effects are identified as gears of

the zero-order Hamiltonian. These two components are examined separately, revealing that in

themselves neither of the two are competitive with the combined effect. The success of PAPT

can be attributed to determining a set of molecular orbitals and corresponding orbital ener-

gies that can systematically outperform the canonical orbitals and Koopmans’ energies based

Møller-Plesset partitioning.

The self-consistent version of the method is also tested in terms of energy and conver-

gence. Previous numerical studies are further complemented with an application on an inherent

multireference example and investigation of van der Waals interaction energies. In addition,

a rigorous mathematical analysis of the consequence of the linear dependence of projection

functions on the solution of the Knowles’ equations is provided.
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Introduction

As a reliable and cost-effective first approximation of the dynamical correlation energy, Møller-

Plesset (MP)1 partitioning based perturbation theory (PT) is ubiquitous in current day quantum

chemical applications.2,3 Its role is not always to provide a final answer, MP based correction

often appears as part of more convoluted approximation strategies.4–7 Early studies on the com-

putationally efficient calculation of MP energies and derivatives date from the 80’s8,9 and the sub-

ject has been repeatedly seeing inspired new approaches.10–23 Besides it prevalent use, limits of

applicability of MP based PT has been also investigated thoroughly. Breakdown of low order ap-

proximations in the case of quasi-degeneracy was soon revealed.24 Convergence of the MP series

is a rather theoretical than practical question, which was the subject of several numerical stud-

ies.25–28 Stunning numerical experience of divergence were explored with the help of analysis of

complex functions29–31 as well as inspection of matrix elements, especially zero-order excitation

energies.32

Relying on the single determinantal Fockian as zero-order is a straightforward but not unique

choice for correcting the Hartree-Fock (HF) approximation via PT. Several alternative partition-

ings have been explored, especially in view of the challenging cases of application. Malrieu e.g.

argued on the superiority of the Epstein-Nesbet (EN)33,34 partitioning over MP35 and advocated

the use of a mixture of the two in multireference situations.36 It is well-known that the EN and

MP partitionings are related by appropriate level-shifts at the zero-order.37 The idea of arbitrary

level-shift parameters introduced at zero-order and chosen by requiring that certain characteristic

of the PT series improves is present in several studies.38–49 Feenberg’s scaling, operating with a

single parameter50,51 was harnessed in the same vein.52 Optimization of all matrix elements of

the zero-order Hamiltonian, i.e. not only those in the diagonal is a more difficult task, that has

seen less attempts. Adopting a Hilbert-space based approach Adams constructed a block-diagonal

structure for the zero-order53 and showed properties reminiscent of a Feenberg scaled partition-

ing. The second-quantized formulation of a zero-order Hamiltonian corresponding to Adams’s

block-diagonal suggestion was put forward by Fink.54 A computationally facile repartitioning, op-
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erating with a specific, nondiagonal transformation formulated in the Hilbert-space was advocated

by Dietz et al.55 Choice for an effective one-body potential suitable for a zero-order operator was

initiated by Kelly,56,57 investigated by Bartlett and Silver58 and used extensively by Freed when

designing valence shell effective Hamiltonians on an ab initio basis.59–61 Amplitude regularization

in the Brillouin-Wigner framework, suggested by Head-Gordon, affecting orbitals in the occupied

subspace62,63 also falls in this category.

An important development was published recently by Knowles, suggesting a method termed

perturbation adapted partitioning (PAPT),64 which in the above context, represents an optimization

of a full one-body zero-order Hamiltonian. Improved convergence properties of the new partition-

ing were demonstrated for some difficult cases identified earlier with MP.

The present study aims at broadening the range of numerical comparison, focusing on the

performance of low order PT terms and showing alternative partitioning optimization techniques

investigated formerly in our laboratory.

The fact that PAPT formulates a Brilloiun-theorem conserving zero-order lends a further per-

spective to the subject. The Knowles’ partitioning can be considered a method that simultaneously

optimizes HF orbitals and orbital energies to be used in a many-body PT expansion. Starting from

the 60’s, a vivid interest grew in PT on localized orbitals, concerning how to perform PT with

localized orbitals65,66 and conversely, finding localized orbitals that are most advantageous for

developing a PT expansion for the correlation energy of the ground state.67,68 Regarding the for-

mer, Pulay advocated the application of the MP partitioning,8,9 while Kapuy conducted extensive

studies on applying only the diagonal elements of the Fockian as zero-order and leaving all non-

diagonal elements for perturbation.69–74 Numerical comparison of low order PT terms obtained

in localized orbitals invariably shows Pulay’s approach outperforming Kapuy’s. This means that

the extra effort put into solving the PT equations with a nondiagonal zero-order pays off in the

accuracy of the results. In addition, localized nature of the orbitals can be efficiently exploited

to the extent that computational economy eventually favors localized orbitals over canonicals for

large systems. Computational practice conveying an unequivocal message, Kapuy’s approach was
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largely abandoned, with some exceptions.75–77

As PAPT orbitals transform according to irreducible representations of the molecular point

group, they are inherently nonlocal. Knowles’ recent study nevertheless relates to the Kapuy-Pulay

dilemma mentioned above, with raising the question whether a set of noncanonical HF orbitals may

be advantageous not only for computational efficiency but also for the accuracy of the PT results.

Taking this point of view we separate level-shift and orbital rotation component of PAPT and assess

the performance of the two components separately. In particular, we examine whether a simpler,

level-shift approach may offer results of comparable accuracy. We also test Kapuy’s partitioning

in PAPT orbitals, and inspect whether they fit in the general trend when compared with Pulay’s

approach, i.e. MP evaluated in PAPT orbitals in our case.

Theoretical background of the methods studied in this report is given in Section Theory. A

subsection dwells on the separation of level-shift and orbital rotation, another subsection elaborates

on some features of Knowles’ partitioning, briefly mentioned in Ref.64 A further subsection is

devoted to the self-consistent solution of the PAPT equations, following the initiative of Ref.64

Numerical assessments followed by concluding remarks in section Conclusion closes the paper.

Theory

One-body zero-order Hamiltonians

The Fockian corresponding to the closed shell determinant composed with canonical molecular

orbitals

F = ∑
p

εp E p
p (1)

4
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represents the zero-order operator in the MP partitioning of PT. In the above E p
q is the shorthand

for generators of the unitary group

E p
q = ∑

σ

ϕ
†
pσ ϕ

−
qσ ,

while orbital energies read as

εp = hpp +
occ

∑
j

(
2⟨ϕpϕ j|ϕpϕ j⟩−⟨ϕpϕ j|ϕ jϕp⟩

)
(2)

with the ⟨12|12⟩ convention adopted for two-electron integrals. Spatial part of canonical molecular

orbitals is denoted by ϕp, latin indices i, j, . . . refer to occupied, a,b, . . . virtual and p,q, . . . generic

orbitals and σ stands for the spin label.

Improving PT results by substitution of a set of orbital energies different from Eq. (2) in Eq. (1),

and applying the thus produced one-body operator as zero-order has been investigated in several

studies.38,78–81 Such a tweak, termed level-shift, is a simple, special case of the more general

partitioning optimization strategy where every matrix element F pq of the one-body zero-order

F = ∑
pq

F pq E p
q (3)

is considered as parameter to be determined. Applying the constraint F ia = Fai = 0, only F i j and

Fab are up to choice and the Brillouin-theorem remains valid. This approach can be regarded as

seeking a set of occupied and virtual orbitals, ψp together with their associated orbital energies, ε p

facilitating to express the zero-order as

F = ∑
p

ε p ∑
σ

ψ
†
pσ ψ

−
pσ . (4)

In fact, it has been pointed out that there is a one-to-one correspondence between the F i j and Fab

matrix elements of a Brillouin-theorem complying one-body operator, Eq. (3) and the Apq elements

5
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of an arbitrary one-body operator introduced by Davidson to account for orbital localization at the

HF level.68,82 For a short recap on Davidson’s A-matrix technique and the correspondence between

F pq and Davidson’s Apq see the Appendix. Though the general form of Eq. (3) allows for occupied-

virtual mixing of orbitals, as applied in Bruecker’s theory,83,84 constraining the occupied-virtual

matrix elements of F to be zero is more akin to a localization transformation, that conserves the

Hartree-Fock determinant as eigenfunction of F .

Diverting from a diagonal zero-order raises a technical issue in connection with evaluating PT

terms. Redefined one-particle energies in Eq. (1) generate a mere shift in energy denominators and

diagonal matrix elements of the perturbation operator, the latter from 3rd order on in energy. The

expression in Eq. (3) is more complicated than level-shifts in the sense that it does not conserve

the set of canonical orbitals as the eigenbasis of the zero-order. Therefore, as the PT expressions

require to evaluate the effect of the inverse of the zero-order Hamiltonian at each successive or-

der, one either has to work with a nondiagonal representation of F or turn to the new eigenbasis,

c.f. Eq. (4). The former approach has been advocated by Pulay in the context of MP PT on the

basis of localized orbitals.8,9 With efficient linear equation solvers, this route is certainly more

advantageous than the 5th power scaling integral transformation involved by Eq. (4).

While evaluating the inverse of F is a technical matter, there is also a conceptual question

associated with Eqs. (1) and (3). Is it possible to separate and quantify the effect of level-shift and

orbital rotation implied by Eq. (3)? A formal answer is provided in the rest of the Section. The

expressions worked out below are used to quantify level-shift and orbital rotation ingredients of

the PAPT approach in the Applications Section.

Level-shift component of Eq. (3)

Simplicity of level-shifts lies with conserving the original basis. Once a set of parameters F pq are

determined, it is straightforward to deduce the level-shift component, in accordance with Eq. (1),

6
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as the effect of F pp solely. The associated zero-order, reading as

FLS = ∑
p

F pp E p
p (5)

can be considered a working expression behind the method which will be labeled PAPT-LS.

Orbital rotation component of Eq. (3)

In order to identify the orbital rotation implied by F , expression Eq. (4) is a suitable starting

point. Applying Davidson’s terminology, ψp are proper canonical orbitals to F , meaning that the

representation of F is diagonal. Obviously, an F to which a given set of ψp are proper canonical is

nonunique, the value of ε p being immaterial from this respect.

Let us approach the question from the point of view of Davidson’s A-matrix, composed of

elements Apq. Consider the nondiagonal representation of the Fockian on the basis of ψp

F = ∑
pq

Fpq ∑
σ

ψ
†
pσ ψ

−
qσ (6)

and seek matrix A such that the resulting F is diagonal. This requirement fixes Apq as85

Apq = (−1)np(N −1)Fpq for p ̸= q (7)

with np taking values 0 or 1 as the occupation number of spinorbital ψpσ and N standing for the

number of electrons in the system. Note that App remains arbitrary.

As a result of Eq. (7), F pq becomes zero for p ̸= q, as can be checked based on the expressions

of the Appendix. We argue that keeping App = 0 corresponds to the minimal and necessary mod-

ification of Fpq in order to arrive at an F diagonal on the basis of ψpσ . Accordingly, the orbital

rotation component of Eq. (3) is associated with App = 0, resulting in

FROT = ∑
p

Fpp ∑
σ

ψ
†
pσ ψ

−
pσ (8)
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where Fpp is the diagonal matrix element of the Fockian taken with ψpσ . The use of Eq. (8)

as zero-order on the basis of localized orbitals has been extensively studied by Kapuy69–73 and

it was recently revisited by Subotnik and Head-Gordon.77 From this point of view, a zero-order

Hamiltonian of the form of Eq. (4) for which ε p ̸= Fpp can be considered a level-shifted Kapuy-

partitioning.

The zero-order of Eq. (8) lies behind the method will be labeled PAPT-ROT below. Eigenbasis

of F is constructed for the sake of analysis. Evaluation of PT expressions in noncanonical or-

bitals ψp is facilitated by integral dressing allowing to sidestep explicit construction of localization

diagrams.85

Particulars of the PAPT equations

The incentive behind the PAPT equations for parameters F pq, as suggested by Knowles,64 is that

the zero-order operator should be as close as possible to the full Hamiltonian. This general idea is

given a well-defined sense by evaluating the effect of both H and F on the first order wavefunction

and equating certain projections of the two. Projecting functions, intuitively defined by Knowles64

are contracted doubly excited configurations, reading

|θ +
i j ⟩ = ∑

abk

(
cik

abEab
jk + c jk

abEab
ik

)
|HF⟩ , (9a)

|θ+
ab⟩ = ∑

i jc

(
ci j

acEbc
i j + ci j

bcEac
i j

)
|HF⟩ , (9b)

where |HF⟩ stands for the Hartree-Fock determinant and expansion coefficients ci j
ab of the first

order MP wavefunction

Ψ
(1) = ∑

i jab
ci j

ab Eab
i j |HF⟩ (10)

8
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are given as

ci j
ab = −1

2
⟨ϕiϕ j|ϕaϕb⟩

εa + εb − εi − ε j
.

Note that indices i, j, . . . and a,b, . . . are restricted as mentioned above. Introducing the normal

ordered form of operators HN = H −⟨H⟩ and FN = F −⟨F⟩, with ⟨.⟩ referring to the expectation

value with the Fermi vacuum, the PAPT equations read

⟨θ+
i j |FN |Ψ(1)⟩ = ⟨θ+

i j |HN |Ψ(1)⟩ for i ≤ j , (11a)

⟨θ+
ab|FN |Ψ(1)⟩ = ⟨θ+

ab|HN |Ψ(1)⟩ for a ≤ b . (11b)

Formulation of the equations with unitary generators is a minor difference with Ref.,64 that does

not alter the outcome. For the sake of consistent notation within the report, we use F for the

zero-order operator denoted Λ̂ in Ref.64

In terms of computational cost, PAPT is in league with MP3 and CCSD, exhibiting a formal

O(6) scaling with the dimension of the one-particle basis. This stems from the rhs of Eq. (11),

essentially requiring to construct the 2nd order wavefunction. With proper intermediers introduced,

the more demanding terms feature ∼ n2
occn4

virt dependence.

On the rank of Eq. (11)

Assuming hermiticity of F , the number of unknowns matches the number of equations in Eq. (11),

given by M = nocc(nocc + 1)/2 + nvirt(nvirt + 1)/2. The rank of the linear system is however

smaller than M, since projecting functions θ+
pq are linearly dependent. It was pointed out64 and

can be checked based on Eq. (9), that a vector of zero norm is constructed as

∑
i
|θ+

ii ⟩ − ∑
a
|θ+

aa⟩ = 0 . (12)

As mentioned in Ref.,64 the underdetermined PAPT equations define the zero-order apart from

9
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a constant shift, which is immaterial from the point of view of PT. To look into this matter, let us

rewrite Eq. (11) as

∑
R

TPR FR = YP (13)

where capital P is used as hyperindex for the generic index pair pq. To be more specific, the

inhomogeneous term of Eq. (13) reads

YP = ⟨θ+
pq|HN |Ψ(1)⟩ (14)

while the matrix of the linear system is given as

TPR = ⟨θ +
pq|ωR⟩ (15)

where, assuming that hyperindex R is associated with rs, |ωR⟩ is defined as

|ωR⟩ =
(

Er
s −⟨Er

s ⟩
)
|Ψ(1)⟩ . (16)

Let us invoke the singular value decomposition (SVD)86,87 of T in the form

T = U ΣV †

with U and V unitary and the entries of the diagonal Σ being σP. Substituting the SVD form of T

into Eq. (13), the PAPT equations are decoupled as

σP F ′
P = Y ′

P , P = 1, . . . ,M (17)
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where

F ′
P = ∑

R
VRP FR , (18a)

Y ′
P = ∑

R
URP YR . (18b)

As shown in the Appendix in detail, one singular value of T is zero, as a result of the the linear

dependence of θ+
pq. The corresponding left singular vector (column of U) describes the linear

combination of θ+
pq producing a vector of zero norm. Taking index M for which σM = 0, we

have Uii,M = −Uaa,M = 1/
√

nbasis and Upq,M = 0 for all p ̸= q, c.f. Eq. (12). This means, that

Y ′
M ∼ ∑

′
iYii −∑

′
aYaa = 0 and the P = M case of Eq. (17) is satisfied irrespective of the value of F ′

M.

In other words, a linear combination of parameters FP, described by the M’th right singular vector

(column of V , c.f. Eq. (18b)) remains undetermined, due to the linear dependence of θ+
pq.

In order to identify the M’th right singular vector, observe that functions ωR are also linearly

dependent, since

∑
p
|ωpp⟩ = ∑

p
E p

p |Ψ(1)⟩ −
(
∑
p
⟨E p

p⟩
)
|Ψ(1)⟩ = 0 . (19)

Relying on the Appendix, we can then see that the M’th right singular vector of T describes the

linear combination of ωR producing a vector of zero norm, i.e. Vpp,M = 1/
√

nbasis and Vpq,M = 0

for all p ̸= q. As a result, the combination of FP not determined by the PAPT equations is found

to be

F ′
M = ∑

p
F pp = TrF . (20)

The above expression is exactly what we aimed for, since altering the trace of F represents a

constant shift of the operator, that is administered at the zeroth and first term of the energy in a

trivial manner and has no consequence at higher orders. It is for this formal proof that the SVD-

based solution of Eq. (11) is needed. In practice, SVD of T can be circumvented by applying a
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linear solver allowing for singular matrices.

Note that the above derivation hinges upon the use of the normal ordered form, FN . Writing

Eq. (11) with H and F , instead of HN and FN , the M’th right singular vector of T is different

from the above. The noninformative P = M case of the decoupled set of equations leaves an F ′
M

undetermined which however contributes to the PT corrections. The PT terms get well defined

once an extra equation is supplied. When taking ⟨F⟩ = ⟨H⟩ as the additional requirement, one gets

back to Eq. (11).

On PAPT orbitals

Orbitals ψp, obtained from the set of canonical orbitals by transformation with the eigenvectors

of F are termed PAPT orbitals. Spatial symmetry of PAPT orbitals follow from the structure

of F arising as the solution of Eq. (13). It is relatively straightforward to see, that F exhibits a

block-diagonal form, with nonzero F pq occurring when ϕp and ϕq belong to the same irreducible

representation (ir) of the molecular point group.

Let us first inspect YP of Eq. (14), with hyperindex P standing for pq. Since HN |Ψ(1)⟩ belongs

to the totally symmetric ir, denoted by Γ1, θ +
pq should also transform according to Γ1 to allow for

a nonzero scalar product. Examining the first term on the right hand side of Eq. (9a), we focus on

what nature of indices i and j ensure that θ
+
i j is totally symmetric. Since cik

ab is a coefficient of the

totally symmetric Ψ(1), the ir of orbital i, Γi, matches the direct product of the ir of the other three

orbitals, Γa ⊗Γb ⊗Γk. In order for the excited function Eab
jk |HF⟩ to belong to Γ1, it is now the ir

of orbital j, Γ j that should match the direct product Γa ⊗Γb ⊗Γk. The other terms of Eq. (9) are

completely analogous, we can therefore conclude that Γp = Γq should hold to allow for a nonzero

YP.

Proceed now to matrix T , with elements given by Eq. (15) and focus on totally symmetric func-

tions θ+
pq, meaning Γp = Γq. For TPR to be nonzero, ωR should transform according to Γ1, which,

taking into account Eq. (16) is ensured by Γr = Γs. Establishing the symmetry of hyperindex P

as Γp ⊗Γq we see that matrix T couples hyperindices belonging to Γ1 among themselves and this

12
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property carries over for its inverse too. As a result, FP obtained from Eq. (13) can be nonzero if

P belongs to Γ1, i.e. Γp = Γq.

Self-consistent PAPT

Corrections to the HF approximation by PAPT rest on the partitioning

HN = FN +WN (21)

with FN determined from Eq. (13). The first order correction to the HF energy is zero with the

choice ⟨F⟩ = ⟨H⟩ while the first order correction to the HF determinant reads

Ψ
(1)
PAPT = ∑

i jab
di j

ab ∑
σσ ′

ψ
†
aσ ψ

−
iσ ψ

†
bσ ′ψ

−
jσ ′ |HF⟩ (22)

with di j
ab given as

di j
ab = −1

2
⟨ψiψ j|ψaψb⟩

εa + εb − ε i − ε j
(23)

and ψi,ε i introduced in Eq. (4). Concise form of low order PAPT energy corrections can be given

with Ψ
(1)
PAPT as

E(2)
PAPT = ⟨HF|HN |Ψ(1)

PAPT⟩ , (24a)

E(3)
PAPT = ⟨Ψ(1)

PAPT|WN |Ψ(1)
PAPT⟩ . (24b)

The possibility of setting PAPT self-consistent is mentioned in Ref.,64 meaning that once the PAPT

zero-order is obtained based on the 1st order MP wavefunction, the first order PAPT wavefunction

can be fed back to the PAPT equations generating a new zero-order. In formulae, wavefunction

parameters Eq. (23) can be used to define projection functions Eq. (9), and Eq. (22) can be used to

write Eq. (11) for the matrix elements of the zero-order. The procedure can be repeated till Ψ
(1)
PAPT
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becomes consistent with FN . Results obtained by this procedure are labeled PAPT-SC.

When iterated till self-consistency, the third order energy term of PAPT becomes zero. This

property, shared with Feenberg scaling,50 Adams partitioning53 and other optimized partition-

ings40,54 can be shown in formulae by e.g. arranging the self-consistent version of Eq. (11a) as

⟨θ+
i j |HN −FN |Ψ(1)

PAPT⟩ = 0 ,

and summing the i = j terms, multiplied by 0.5

1
2 ∑

i
⟨θ +

ii |HN −FN |Ψ(1)
PAPT⟩ = 0 .

Observing that Ψ
(1)
PAPT = 1

2 ∑i θ
+
ii once coefficients of Eq. (23) are used in Eq. (9) and taking into

account Eq. (21), the left hand side of the above expression is the self-consistent PAPT energy at

order three.

Once self-consistency of PAPT is achieved, Feenberg scaling50 is not any more effective. This

is most easily seen by noting that Feenberg scaling, which means a repartitioning of the Hamilto-

nian as

H = 1
1−µ

H(0)︸ ︷︷ ︸
H(0)′

+ W + µ

1−µ
H(0)︸ ︷︷ ︸

W ′

with the scaling parameter µ fixed by making the new third order energy zero, yields a new second-

order energy that can be recast to the form50,88

E(2)′ = (E(2))2

E(2) −E(3) .

It is then clear that if, in any partitioning, one has E(3) = 0, then E(2)′ = E(2), i.e., the original and

Feenberg’s second order energies coincide.
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Applications

Assessment of PAPT results collected in this Section is aided by comparison to optimalization

strategies addressing level-shifts only. One of the latter the methods, termed OPT-LS below, fixes

the value of F pp in Eq. (5) by requiring that the PT energy summed up to order three is station-

ary with respect to infinitesimal variation of these parameters.81 Optimizing PT denominators of

doubly excited determinants of the Hilbert-space in the same spirit leads to the linearized coupled-

cluster doubles (LCCD) model.40 Note, that the number of parameters optimized is markedly dif-

ferent in the two approaches, nbasis −1 and n2
occn2

virt in OPT-LS and LCCD, respectively. Though

OPT-LS is more akin to PAPT-LS regarding the parameter space, the main role of both OPT-LS

and LCCSD results shown below is to provide a basis of comparison for PAPT-LS. Benchmark-

ing of all PT methods is assisted by Full-CI whenever computationally attainable. In lack of this,

CCSD and CCSD(T) are shown for benchmark in weak correlation scenarios.

Total energies

The potential energy curves for the H2 molecule in cc-pVTZ basis89 calculated by HF, traditional

MP and standard PAPT are displayed in Figure 1 with Full-CI serving as reference. Fig. 1(b)

depicts polynomial curves of degree eight fitted around equilibrium bond distance. Of second

and third order of PAPT, only PAPT3 is displayed in Fig. 1(b) as they could not be discerned

on the scale of the plot. As Fig. 1 reflects, the approximation of the potential curve improves

in the order of MP2, MP3 and PAPT. The latter run closer to Full-CI at around equilibrium and

start to deviate at a larger bond length than MP2 or MP3. Although it slightly overestimates the

correlation energy, the shape of the PAPT3 curve around equilibrium is apparently superior to

MP3. Equilibrium bond lengths and quadratic force constants deduced from the polynomial fit,

collected in Table 1, complement the picture. Table 1 shows that the error (with respect to Full-CI)

of PAPT2 and PAPT3 is approximately -0.03% and 0.06% respectively, for the bond length and

0.3% and -0.3% respectively, for the force constant. In comparison, the error of MP3 is cca. -0.4%
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Figure 1: Potential energy curve of the H2 molecule in cc-pVTZ basis taken with HF, MP, PAPT
and Full-CI. Panel (b) is a zoom into the minimum region of the wider bond distance plot in panel
(a).

for the bond length and 3% for the force constant.

A more challenging example is provided by the distortion of the linear BeH2 molecule

into a singlet coupled system of three separated atoms. At the geometry points A-I, set

by Purvis and Bartlett92 the Be atom lays in the origin and the two H atoms are placed

symmetrically to the z-axis with coordinates in atomic unit (0,±2.54,0), (0,±2.08,1.0),
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Table 1: Equilibrium bond lengths (r) and quadratic force constants (K) of the H2 molecule from
polynomial curves of degree 8 fitted in the bond distance interval [0.5,1.25] Å.

Bond length Force constant
r [Å] K [a.u.]

HF 0.7340 0.3997
MP2 0.7366 0.3889
MP3 0.7391 0.3801
PAPT2 0.7420 0.3697
PAPT3 0.7426 0.3676
Full-CI 0.7422 0.3686
Experimental90, 91 0.7414 0.3680

(0,±1.62,2.0), (0,±1.39,2.5), (0,±1.275,2.75), (0,±1.16,3.0), (0,±0.93,3.5), (0,±0.70,4.0),

and (0,±0.70,6.0), respectively. Starting from a situation dominated by a closed shell determi-

nant at point A, the single reference approach gradually breaks down as the distortion takes place.

Points E and F are especially challenging for two determinants becoming of comparable weight in

the Full-CI solution.

Table 2: Total energies of BeH2 in cc-pVTZ basis taken with HF, MP3, PAPT3, PAPT3-SC, CCSD
and FCI as reference.

codified HF Full-CI MP3 PAPT3 PAPT3-SC CCSD
geometries Etot [a.u.] Etot [a.u.] Etot [a.u.] Etot [a.u.] Etot [a.u.] Etot [a.u.]

A -15.77138 -15.85679 -15.85210 -15.85726 -15.85741 -15.85588
B -15.73892 -15.82759 -15.82307 -15.82805 -15.82818 -15.82663
C -15.66635 -15.76102 -15.75506 -15.76109 -15.76133 -15.75955
D -15.60384 -15.70531 -15.69639 -15.70392 -15.70478 -15.70295
E -15.56761 -15.67808 -15.66277 -15.67209 -15.67786 -15.67301
F -15.53187 -15.68325 -15.62970 -15.64743 not. conv. -15.66265
G -15.63703 -15.74069 -15.72748 -15.74219 -15.74463 -15.73858
H -15.68140 -15.77790 -15.76687 -15.78004 -15.78197 -15.77657
I -15.70335 -15.79496 -15.78450 -15.79772 -15.79958 -15.79450

Fig. 2 assists to judge the quality of the total energies of the system collected in Table 2. As

apparent in Fig. 2, difference from Full-CI by CCSD lies on the order of a couple of mHa but

grows to the 20 mHa regime at point F, reflecting the inherent problem of the single determinant

based approach. While this phenomenon can not be expected to be cured by HF based PAPT,

it is interesting to observe its performance at the less troublesome but still challenging points.
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Comparison to MP3 shows that a considerable improvement is brought about by PAPT3 along

the entire process, omitting point F. The 5-15 mHa error of MP3 is cut back to the 1 mHa range

in absolute value by PAPT3 at points A-E and a somewhat larger but still improved error regime

of 5 mHa in absolute value is attained at geometry points G-I by PAPT3. Performance of the

self-consistent version of PAPT is more diverse than PAPT3. While the effect of PAPT3-SC is

negligible at points A-C, its improvement over PAPT3 is impressive at points D-E but deteriorates

PAPT3 errors by a rough factor of two at points G-I. At the genuinely multireference point F, the

self-consistent iteration did not converge by successive PAPT calculations. (Damping procedures

were not applied.) This indicates that the self-consistent PAPT variant may need more prudence

than PAPT itself when applied in the presence of static correlation.

A B C D E F G H I
Geometry points

0.00
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0.02

0.03

0.04

0.05

En
er

gy
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dPAPT3
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Figure 2: Energy differences (∆E) in millihartree of MP3, PAPT3, PAPT3-SC and CCSD from the
FCI reference for geometries A-I of BeH2 using the data presented in Table 2.
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Conformation energy barriers

Partitioning variants based on PAPT are contested with MP, OPT-LS and LCCSD on the example

of energy barriers for theoretical conformation changes of H2O, NH3 and CH4. Geometries are

optimized at the HF level in 6-311G** basis93 at C2v and D∞h symmetry arrangements of H2O, C3v

and D3h arrangements of NH3 and a C3v and Td conformations of CH4. Single point energies be-

hind the barriers collected in Table 3 are calculated in cc-pVTZ basis at the optimized geometries.

Benchmark is provided by CCSD(T) in Table 3, for comparison CCSD is also included.

Table 3: Energy barriers taken with HF, MP, various PAPT and CC methods for linear and bent
H2O, planar and pyramidal NH3, C3v and tetrahedral CH4 molecular conformations respectively.

H2O NH3 CH4
∆E [mEh]

HF 52.78 8.55 39.92
MP2 52.21 8.83 34.35
MP3 52.72 8.97 34.79
OPT2-LS 52.65 8.83 34.93
OPT3-LS 52.60 8.83 34.93
LCCSD 53.46 9.48 34.42
PAPT2 52.88 9.08 34.88
PAPT3 52.92 9.11 34.87
PAPT2-LS 53.15 9.18 34.57
PAPT3-LS 52.88 8.95 34.84
PAPT2-ROT 52.26 9.37 34.41
PAPT3-ROT 53.01 9.10 34.80
PAPT2-SC 52.94 9.13 34.86
PAPT3-SC 52.94 9.13 34.86
CCSD 53.10 9.18 35.07
CCSD(T) 53.29 9.43 34.42

We start by observing that PAPT3 improves over the MP3 barriers of H2O and NH3, reducing

the error by some 25-30%. The case of CH4 shows an opposite effect, the error of PAPT3 being

worse than that of MP3 by cca. 25%. For all three systems in Table 3, PAPT3 is either better or

essentially of the same quality as PAPT2.

Inspecting PAPT-LS, OPT-LS and LCCSD results in Table 3 we can get an impression of

the performance of simple level-shift techniques vis-à-vis the more sophisticated PAPT approach.
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One can resort to the level-shift component of PAPT, whereby PAPT2-LS yields better barriers

than PAPT3, while PAPT3-LS barriers are of MP3 quality only. The level-shift optimalization

method, OPT-LS is manifestly inferior to PAPT3 and deteriorate with stepping from second to

third order. While PAPT2-LS appears to give ground for praise of the level-shift methodology,

the initial enthusiasm is dampened by two factors. First, total energies by PAPT2-LS are sys-

tematically the largest among all tabulated methods. (E.g. the error in correlation energy is cca.

2.5% by PAPT2 and PAPT3 for both conformers of H2O while the same is 6.8% by PAPT2-LS.)

Second, the PAPT-LS results worsen instead of improving as the order of PT increases. Based

on this, PAPT-LS appears a less reliable approach than the full blown version of PAPT in spite

of fact that conformational PAPT2-LS barriers appear competitive with PAPT. It is interesting to

observe in Table 3, that while PAPT essentially brings CCSD quality results, the level-shift related

LCCSD values are even better, providing the closest values to the CCSD(T) benchmark for all

three systems.

Stepping to the orbital rotation component, PAPT-ROT barriers are occasionally better than

full PAPT, but the improvement is again not systematic with the order of PT. For NH3 and CH4

it is PAPT2-ROT that significantly reduces the error of the PAPT3 barrier, while it is PAPT3-

ROT that outperforms PAPT3 for H2O. Since PAPT-ROT can be considered a PAPT orbitals-based

Kapuy-partitioning, juxtaposing PAPT2-ROT with MP2 is particularly interesting and somewhat

unexpectedly shows that the numerical results for the barriers are better by Kapuy’s approach than

by MP2. The picture is the same, when considering total energies.

Self-consistent solution of the PAPT equations bring a rather marginal change in the barrier, an

order of magnitude smaller than the deviation of PAPT3 from CCSD(T). Note, that PAPT3-SC is

the same as PAPT2-SC in agreement with the Section where the self-consistent version of PAPT is

discussed.
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PAPT orbitals

A glimpse on Fig. 3 helps to get an impression of the orbital transformation implied by PAPT. The

example is provided by the C2v geometry of H2O, taking the three dimensional totally symmetric

block of the occupied block of F . Isocontours are drawn at two values for all three cases, i.e.

the 1a1, 2a1 and 3a1 occupied MOs. According to Fig. 3 the node structure of PAPT MOs is

somewhat enhanced as compared to canonical MOs but altogether the effect is relatively small

(note the isocontour values in the column DIFF). In particular, the 1a1 core MO, that is essentially

a 1s atomic orbital on oxygen, gets significantly delocalized over the hydrogen atoms by PAPT.

Dispersion interaction energies

Dispersive van der Waals interaction is studied on the example of a He dimer, computed in aug-

cc-pVTZ basis using Boys-Bernardi counterpoise correction.94 Interaction energy as a function

of interatomic distance, plotted in Fig. 4 shows, that though both MP3 and PAPT3 lie close to

Full-CI, MP3 is closer. Comparing the O(6) scaling schemes of MP3, CCSD and PAPT3 in Fig.

4, performance of the latter obviously falls behind the former two. The room for improvement

apparent in Fig. 4 from CCSD to Full-CI is nicely covered when triple excitations are brought

into play by the O(7) scaling noniterative correction of CCSD(T). Total energies, collected in

Table 4 provide some insight into the microHartree level inadequacy of PAPT3 in this example.

While PAPT3 is consistently superior to MP3 as indicated by the figures in Table 4, deviation from

Full-CI is more imbalanced by PAPT3 than with MP3.

Convergence of self-consistent PAPT calculations

As discussed above, the Knowles equations can be solved iteratively until self-consistency is

achieved. A short study on the convergence features of this iteration is carried out on the example

of the HF molecule at various H–F bond lengths and in various basis sets.

Table 5 presents second order energies for equilibrium, medium and prolongated H–F distances
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Figure 3: Visualization of canonical and PAPT MOs and their difference for the 1a1 (top) 2a1
(middle) and 3a1 (bottom) occupied orbitals of bent H2O molecule at different space contours to
illustrate the sterical properties.
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Figure 4: Difference between total energies of He2 and two helium atoms in aug-cc-pVTZ basis
taken with MP3, PAPT3, CCSD, CCSD(T) and Full-CI.

Table 4: Correlation energies of a He dimer and a monomer (computed in the dimer basis) at
various interatomic distances (R) taken with MP3, PAPT3 and Full-CI as reference in aug-cc-
pVTZ basis set.

System Distance MP3 PAPT3 FCI
R [Å] Ecorr [mEh]

He 2.8 -38.446 -39.696 -39.417
3.0 -38.445 -39.695 -39.416
3.2 -38.445 -39.695 -39.416

He2 2.8 -76.964 -79.460 -78.912
3.0 -76.938 -79.436 -78.884
3.2 -76.922 -79.420 -78.867

23

Page 23 of 41

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



as functions of the number of iteration steps. It shows that the convergence (without applying any

acceleration techniques) is quite fast: at around equilibrium requiring merely 5 and at double

equilibrium distance only 15 iterations to achieve µH accuracy, but even for 2.5 Re the second

order energy has converged to some 10 µH accuracy in 25 steps.

We note that, while one clearly expects poor convergence or even divergence of a single-

reference PTn series at large distances, it is not a priori evident why the PAPT iteration becomes

slower for prolongated bond lengths. However, we did not see divergent PAPT iterations for this

system (unlike for point F of BeH2 in Table 2).

Table 6 presents second and third order PAPT contributions in three different basis sets with

increasing flexibility for the HF molecule at around equilibrium bond length. The third order con-

tributions, which should tend to zero upon convergence, are shown as indicators. Self-consistency

of PAPT is reached within 4–5 iterations in each basis set, but it is interesting to observe that

most PAPT3 contributions are significantly smaller in the larger bases even at the first and second

iteration steps. From the third step on, the results do not exhibit any notable differences.

Table 5: Convergence of the second order cc-pVDZ energies (in Hartrees) during the iteration in
self-consistent PAPT for the HF molecule at equilibrium Re = 0.901461 Å, 2.0 Re and 2.5 Re bond
lengths.

no. of iterations Re 2.0 Re 2.5 Re
1 -0.206569 -0.248386 -0.286706
2 -0.206692 -0.252349 -0.298242

10 -0.206707 -0.255372 -0.307393
15 -0.206707 -0.255383 -0.307471
20 -0.206707 -0.255383 -0.307493
25 -0.206707 -0.255383 -0.307502

Conclusion

An analysis of the Knowles partitioning with the help of the established concepts of energy level-

shifts and orbital rotation has been provided. Level-shift component, PAPT-LS is identified in the
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Table 6: Basis set dependence of the convergence of self-consistent PAPT iterations for the HF
molecule at equilibrium geometry (Re = 0.901461 Å). The 2nd and 3rd order PAPT contributions
are shown in Hartrees.

PAPT2 PAPT3
no. of iterations cc-pVDZ cc-pVTZ aug-cc-pVTZ cc-pVDZ cc-pVTZ aug-cc-pVTZ

1 -0.206569 -0.285675 -0.293603 -0.000113 -0.000036 -0.000055
2 -0.206692 -0.285724 -0.293674 -0.000011 -0.000006 -0.000002
3 -0.206703 -0.285731 -0.293677 -0.000003 -0.000004 -0.000003
4 -0.206706 -0.285735 -0.293681 -0.000001 -0.000001 -0.000001
5 -0.206707 -0.285736 -0.293682 0.000000 0.000000 0.000000

canonical molecular orbital basis in a straightforward manner. The effect of orbital rotation solely,

denoted PAPT-ROT is grasped by formulating a Kapuy-type zero-order Hamiltonian on the basis of

PAPT orbitals. The two effects are not additive. Getting to PAPT from PAPT-ROT requires fixing

the energy levels of PAPT orbitals. From this standpoint, Knowles’ partitioning can be interpreted

as a level-shifted Kapuy-partitioning and its success can be attributed to the particular choice of

orbitals and orbital energies.

Orbitals behind PAPT are nonlocal, exhibiting spatial symmetry of the system. Deviation from

canonical HF orbitals is seemingly rather minor, the node structure getting slightly enhanced. At

difference with Kapuy-partitioning built on localized HF orbitals, delocalized PAPT orbitals based

Kapuy-partitioning provides an example for outperforming MP.

Compared to previously suggested level-shift optimalization in Fock-space,81 PAPT-LS is

found superior. The performance of separate level-shift or orbital rotation contribution of PAPT

is occasionally good but can not be claimed reliable, the picture changing with system, or with

stepping from total energies to energy differences. Neither of the two components are dominating

over the other. Level-shift and orbital rotation are roughly equal contributors in PAPT, and work in

synergy to achieve a systematic improvement over MP results.

A set of examples, involving systems affected by weak and strong correlation shows PAPT to

be of CCSD quality. Examples where PAPT3 is inferior to MP3 are rare. One such case is the

He dimer, where total energies of the monomer and dimer are well behaving, a slight imbalance

however results in the counterpoise corrected interaction energy being reproduced better by MP3
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than by PAPT, on the order of µEh. Self-consistent iteration of PAPT invariably improves the

results in single determinant dominated situations and requires a couple of iterations, the number

of steps found fairly independent on basis set size.

The success of PAPT corrections emphasizes that an appropriate set of HF molecular orbitals,

different from canonicals, and an appropriate set of orbital energies, different from Koopmans’

values can be a better choice than the generally used MP partitioning.
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Appendix

Davidson’s A-matrix

Suppose that a one-electron operator is given in the form

F = ∑
pq

F pq E p
q

where p,q are spatial indices of generic HF molecular orbitals and F complies with the Brillouin-

theorem in that F ia = Fai = 0 for i occupied and a virtual. Consider also the Hamiltonian, written

using the same set of orbitals as

H = ∑
pq

hpq E p
q + 1

2 ∑
pqrs

⟨pq|rs⟩
(

E p
r Eq

s −δqrE p
s

)
. (25)
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Based on the results of Davidson68 it is possible to rewrite the Hamiltonian with modified integrals

hpq and ⟨pq|rs⟩ in the form

H = ∑
pq

hpq E p
q + 1

2 ∑
pqrs

⟨pq|rs⟩
(

E p
r Eq

s −δqrE p
s

)
, (26)

where the significance of integrals with overbar is that they build the elements of F as usual for a

Fockian, i.e.

F pq = hpq +
occ

∑
j

(
2⟨p j|q j⟩−⟨p j| jq⟩

)
. (27)

Note however, that F differs from the Fockian, the elements of the latter given by

Fpq = hpq +
occ

∑
j

(2⟨p j|q j⟩−⟨p j| jq⟩) . (28)

Integrals hpq and ⟨pq|rs⟩ are derived by Davidson with the help of a Hermitian one-body operator

A = ∑
pq

Apq E p
q

that is added and subtracted to H of Eq. (25) to yield68,82

hpq = hpq + Apq (29a)

⟨pq|rs⟩ = ⟨pq|rs⟩−
Aprδqs + Aqsδpr

N −1
(29b)

where N denotes the number of electrons in the system. With the use of Eqs.(27)-(28) and Eq. (29),

the unique relation between elements Apq and F pq can be found as85

F pq −Fpq = Apq

(
1− N

N −1
+

np + nq

N −1

)
−

2δpq

N −1
TroA (30)

where TroA = ∑
occ
i Aii and np taking values 0 or 1 for p virtual or occupied, respectively.
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Given an F different from F , a set of molecular orbitals diagonalizing F are termed ’proper

canonicals’ by Davidson. When working with noncanonical (c.f. F is nondiagonal) but proper

canonical orbitals, the form of Eq. (26) of the Hamiltonian has the advantage, that matrix elements

in between determinants related by a single excitation yield elements of F that is proportional to

Kronecker-delta. In this sense proper canonical orbitals show some features of canonicals when

used in conjunction with Eq. (26). Obtaining integrals with overbar proceeds via Eq. (29).

Approaching from the angle where a set of noncanonical orbitals is provided, one may aim

for constructing a diagonal F to which the given orbitals a proper canonicals. Based on Eq. (30),

F pq = 0 for p ̸= q fixes the nondiagonal elements of A but leaves App arbitrary. Generating the

integrals with overbar with either of such A-matrices according to Eq. (29) allows to make use of

the diagonality of F when computing matrix elements of H. This technique, referred to as integral

dressing,85 facilitates to obtain PT corrections with a canonical many-body PT implementation, in

noncanonical, e.g. PAPT orbitals, applying either Kapuy’s or PAPT zero-order. In the former case

App = 0 is applied while in the latter App is set from Eq. (30) so that F pp matches PAPT orbital

energies.

Redundancy in pairing

Starting from Eq. (15), with somewhat simplified notation, consider an M×M matrix T given by

the elements

TPR = ⟨θP|ωR⟩ .

The SVD86,87 of T written as

T = U ΣV † (31)
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solves the pairing problem, i.e. it provides a set of vectors θ ′
P and ω ′

R fulfilling

⟨θ ′
P|ω ′

R⟩ = δPRσP

where σP are the diagonal entries of the singular value matrix Σ, and the paired vectors arise as

⟨θ ′
P| = ∑

Q
(U†)PQ ⟨θQ| , (32a)

|ω ′
R⟩ = ∑

Q
|ωQ⟩VQR . (32b)

Consider now the case where the overlap of vectors θP

SPR = ⟨θP|θR⟩

is singular, in particular let us suppose that the eigenvalue problem of S written as

W †SW = sdiag

produces sM = 0 and sP ̸= 0 for P = 1, . . . ,M−1, residing in the diagonal of sdiag. This means that

the set of θP is linearly dependent and among vectors

⟨θ̃P| = ∑
Q

(W †)PQ ⟨θQ| (33)

that corresponding to P = M is of zero norm

⟨θ̃M|θ̃M⟩ = (W †SW )MM = sM = 0 ,

c.f. Eq. (12). We wish to show that for index M

⟨θ̃M| = ⟨θ ′
M|
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holds with σM = 0, i.e. the zero norm vector constructible with θP is an element of the paired set

and corresponds to a zero singular value.

For this end let us consider T̃ built with

T̃PR = (W †T )PR = ⟨θ̃P|ωR⟩

and generate its left singular vectors as eigenvectors of T̃ T̃ †. The M’th row and column of the

latter matrix is obviously zero since

(T̃ T̃ †)PR = ⟨θ̃P ∑
Q
|ωQ⟩⟨ωQ| θ̃R⟩

and θ̃M is a vector of zero norm. The M×M matrix Ũ collecting the eigenvectors of T̃ T̃ † is

consequently block-diagonal, taking the form

ŨM×M =

 Ũ (M−1)×(M−1) 0

0 1

 (34)

and the M’th eigenvalue of T̃ T̃ † is zero. Right singular vectors of T̃ agree with those of T , since

T̃ †T̃ = T †T . This allows to write the SVD of T̃ as

T̃ = Ũ Σ̃V †

and deduce that the M’th entry of the diagonal matrix Σ̃ is σ̃M = 0. The SVD of matrix T arises by

transforming the above from the left by W leading to

T = WŨ Σ̃V † . (35)

Comparing Eqs.(35) and (31), U = WŨ and Σ = Σ̃ can be inferred and σM = σ̃M = 0 follows from
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the latter. The M’th element of the paired set is obtained by substituting into Eq. (32a) to get

⟨θ ′
M| = ∑

Q
(Ũ†W †)MQ ⟨θQ| = ∑

Q
(Ũ†)MQ⟨θ̃Q| (36)

with the help of Eq. (33). Taking into account the structure of Ũ exhibited in Eq. (34), ⟨θ̃M|

is recovered on the right hand side of Eq. (36). This completes the proof. The case of linear

dependence affecting ωR is completely analogous. When both θP and ωR form redundant sets, the

zero norm vectors are paired, with the corresponding singular value being zero.
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