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Laboratory of Theoretical Chemistry,

Institute of Chemistry, Faculty of Science,
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In a recent paper [Phys. Rev. C 101, 041302(R) (2020)] Demol at al. published and interest-
ing method to improve results from finite-order perturbation theory. Their applications on nuclear
many-body problems show that the numerical results are very accurate, capable of converting di-
vergent series to fast-converging sequences. We argue that one reason of this impressive accuracy is
connected to those of related methods which proved to be useful in many-electron theory.

Owing to the complexity of the quantum many-body
problem, perturbational theoretical (PT) approaches are
extensively used even for strong interactions where the
PT series is often divergent. This makes it important to
develop methods which regularize divergences and pre-
dict accurate approximations to eigenenergies by resum-
mation or similar techniques.

A successful theory was recently proposed by Demol
et al[1]. They noted that when treating a many-body
Hamiltonian of form

H(c) = H0 + c H1

perturbatively (here H0 is a zero order Hamiltonian, H1

is the perturbation, c ∈ [0, 1] is a continuously variable
perturbation parameter), the many-body problem may
be easier to solve for small values of parameter c even if
the emerging many-body PT (MBPT) series at the phys-
ical value of c is divergent. The authors envision a ba-
sis set obtained by finding eigenvectors Ψ(ci) for several
selected parameter values ci ≤ Re, where Re is the con-
vergence radius of MBPT. Thereby, a low-dimensional
manifold {Ψ(ci)} emerges, in the subspace of which exact
eigenstates corresponding to the physical case c = 1 can
be effectively approximated. They term this as eigenvec-
tor continuation. Further, to make the procedure more
practical, they realize that the space {Ψ(ci)} is connected
to the space of vectors

{
Φ(k)

}
by a simple linear transfor-

mation, where Φ(k) is the k-th order perturbational wave
function, k = 0, 1, · · ·P . Finally, Demol et al. propose to
solve the (P +1)× (P +1) dimensional matrix eigenvalue
problem of H = H(c = 1) in the overlapping metric of
the perturbed functions:

P∑
l=0

〈Φ(k)|H|Φ(l)〉 XP
l = EP

P∑
l=0

〈Φ(k)|Φ(l)〉 XP
l (1)

with increasing order P to get energies with increasing
accuracy.

The results are impressive: the values of the ground
state energies EP converge fast with increasing P to the
exact energies.

The aim of this Comment is to provide some explana-
tion of this success and to relate the method proposed in
[1] to other existing methods.

The perturbed wave functions Φ(k), k = 1, 2, . . . P in
Ref.[1] were computed from a recursive PT scheme which
is worth recalling here:

Φ(k) = Q
(
H1 − E

(1)
0

)
Φ(k−1) −Q

k−1∑
l=2

E
(l)
0 Φ(k−l) (2)

(see e.g. Ref.[2]), where E
(l)
0 are the ground state energies

at order l, while Q is the reduced resolvent

Q =
(

1− |Φ(0) 〉〈 Φ(0)|
)(

E
(0)
0 −H0

)−1 (
1− |Φ(0) 〉〈 Φ(0)|

)
,

which in spectral resolution simplifies to

Q =

∞∑
j 6=0

|Φ(0)
j 〉〈 Φ

(0)
j |

E
(0)
0 − E

(0)
j

,

if Φ
(0)
j is the j-th eigenvector of H0. (Though not explic-

itly stated there, we presume that in Ref.[1] the Rayleigh-
Schrödinger PT is applied.)

As it is apparent from Eq.(2), the most dominant (and
most expensive to compute) term in Φ(k) is the first
one, QH1Φ(k−1), which, apart from the reduced resol-
vent Q, essentially generate a Krylov basis, in which the
exact wave function can be, in principle, expanded. This
expansion, which goes via the nonorthogonal sequence
of functions H1Φ(k−1), is known to be slowly conver-
gent. Much better expansion is provided by the Lanczos
basis[3], which is generated by Schmidt-orthogonalizing
the new vectors to the previous ones in each iteration
step. Lanczos expansions were reported to be sometimes
numerically unstable and/or slowly convergent[4–7].

A significant breakthrough has been proposed by
Davidson[5] in 1975 (for subsequent reviews with more
details see[6, 8]). He, after obtaining P pieces of vectors
in the iterative space, applied a PT-like formula to gener-
ate a new vector, which was immediately orthogonalized
to the space of vectors obtained previously. Then, to
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select the best approximation, the Hamiltonian is diago-
nalized in the space of thus obtained P + 1 vector, and
the procedure is iterated until convergence. The latter
is very fast in most cases. This algorithm has spread in
many-electron configuration interaction codes[9–11].

It is apparent that the method of Demol et al[1]. is sim-
ilar to Davidson’s technique with two small differences:
1) Demol et al[1]. use standard RSPT to generate an
overlapping basis for representing the Hamiltonian, while
Davidson’s matrices are diagonalized in an orthogonal
metric at each step.
2) Stepping from P to P +1 Demol generates a new basis
vector by essentially acting on the P -th correction vector
with the Hamiltonian, c.f. the first term on the rhs of
Eq. (2). Compared to this, Davidson generates the new
basis vector by acting with the Hamiltonian on the best
estimate obtained by diagonalization at step P .

These differences are not too large to prevent sharing
the good convergence properties of Davidson’s iteration
and the eigenvalue continuation technique.

To illustrate the above, we tabulate the results of cal-
culations of the correlation energy of a many-electron
system, for which PT is divergent.

TABLE I. Convergence of the electron correlation energy (in
atomic units) for the H2 molecule described by triple zeta
polarized basis[12] at 2.5 Å bond distance. The first order
results are zero in the partitioning applied.

order RSPT BWPT
Eigenvalue

continuation
Davidson
iteration

2 -0.23167 -0.12650 -0.11857 -0.11857
3 -0.20390 -0.11544 -0.13109 -0.13474
4 0.07250 -0.13489 -0.13524 -0.13541
5 0.00406 -0.13110 -0.13538 -0.13543
6 -0.81974 -0.13562 -0.13543 -0.13543

exact -0.13543

Table I shows a comparison of RSPT, the Brillouin-
Wigner[13, 14] PT (BWPT, vide infra), eigenvalue con-
tinuation as of Ref.[1], and a Davidson iteration scheme.
The divergence of RSPT is apparent, while the BWPT
results seem to have a convergent, although slow and os-
cillatory behavior. However, the numbers obtained from
the two other iterative schemes are quite similar and con-
verge nicely to the exact eigenenergy of the model Hamil-
tonian obtained from exact diagonalization.

A few further comments apply.

First, we fully agree with Demol et al[1]. that energy
values obtained for smaller values of c, i.e., for ci ≤ Re

contain much information and may be used to estimate
the physical energy corresponding to c = 1. In fact,
in our laboratory we have applied analytic continuation
techniques based on these c values[15] and their complex
generalizations[16, 17]. We note, however that, in order
to apply these techniques, it was not necessary to resolve
the problems H(ci)Φ = E(ci)Φ for all points i, since
energies E(ci) can be generated from the PT results at
c = 1 by scaling the latter by ci.

Second, Eq. (2) is based on a Rayleigh-Schrödinger PT
scheme. This is of course preferred in a many-body the-
ory if PT energies are directly used, since they are exten-
sive with respect to the system size. However, if, via di-
agonalizations, the exact energies are approached, a sim-
ple Brillouin-Wigner PT method[13, 14] could be equally
used to generate the wave function sequence

{
Φ(k)

}
, or

the even simpler iterative form of the Schrödinger equa-
tion HΦ = EΦ with H = H0 + H1:

Φ(i+1) = Φ(0) + ∆E QΦ(i) −QH1Φ(i) (3)

with ∆E = 〈Φ(0)|H1|Φ〉 being updated at each iteration
step i. Note that this iteration procedure is simpler than
the recursive RSPT formula (2), as the latter contains
a non-Markovian part in its second term. We do not
tabulate numbers obtained from (3) and subsequent di-
agonalizations (1), as the result is very similar to the 4th
or 5th columns of Table I. The first 6 BWPT estima-
tions are also shown there. At order 6, the estimation
is correct to 3 digits, and we note that 5 digits accuracy
is achieved only after 16 iterations by BWPT. It has to
be added that BWPT iterations are more expensive than
RSPT ones or those in eigenvalue continuation, since in
BWPT the energy corrections are not expanded and one
has to iterate for them at each order. For a detailed anal-
ysis of the mathematical structure of BWPT and RSPT,
see e.g. Ref.[18]. A study on the convergence properties
of BWPT can be found in Ref.[19].
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[17] Z. É. Mihálka, A. Szabados, and P. R. Surján, J. Chem.
Phys. 150, 031101 (2019).

[18] W. Silvert, American Journal of Physics 40, 557 (1972).
[19] J. M. Leinaas and T. T. S. Kuo, Annals of Physics 111,

17 (1978).


