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Abstract

We argue that the so-called localization diagrams, originating from off-diagonal Fockian

elements, do not have to be dealt with explicitly in the Davidson-Kapuy many-body perturba-

tion theory with localized orbitals, but can be accounted for by dressed two-electron integrals.

Introduction

In developing many-body perturbation theory (MBPT) in terms of localized (or any non-canonical)

orbitals, the following distinct strategies have been devised.

• Pulay advocated to preserve the Møller-Plesset partitioning,1 i.e., to choose the Fockian F̂

as the zero order Hamiltonian. Since F̂ is not diagonal in a localized basis, one has to solve

appropriate linear equations in course of evaluating corrections of each successive order.2,3

• Based on early works by Amos and Musher4 and Davidson,5,6 Kapuy paved the way to a

different approach.7–11 He kept only the diagonal elements of F̂ in the zero order Hamilto-
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nian, thereby changing the partitioning. As a result, the offdiagonal Fockian elements enter

the perturbation operator as one-body terms. In a diagrammatic representation, these terms

introduce "localization diagrams" involving one-body Hamiltonian vertices occurring from

the third order on. Examples for such localization diagrams were presented already in Ref.5

This type of partitioning has been named after Davidson and Kapuy12 and this nomenclature

is applied in this paper. For a review, see Ref.13

A common initiative of both approaches is that MBPT calculations can be performed much faster

in terms of localized molecular orbitals (LMOs), since the latter permit one to neglect excitations

between far-lying orbitals. Keeping the MP partitioning as advanced by Pulay usually results in

better energies in the 2nd and 3rd orders at the price of some extra effort spent in solving the linear

equations. Low order energies of the Davidson-Kapuy method are often less accurate, but, owing

to the diagonality of the zero order Hamiltonian, easier to compute.

Subotnik and Head-Gordon recently emphasized this aspect,14 pointing out that localization

diagrams are not necessary to compute when stopping at the second order in energy. They de-

vised orthonormal occupied and virtual orbitals which were localized but the associated Fockian

remained diagonally dominated, thereby achieving highly accurate second-order energies using

the Davidson-Kapuy method.

The aim of this paper is to show that explicit evaluation of localization diagrams is not neces-

sary at all. Following Davidson,6 one can assign the matrix elements of an arbitrary one-electron

operator (that we call Davidson’s A-matrix) to the one-body and two-body parts of the Hamilto-

nian in an appropriate manner and realize that this formulation is equivalent to turning to a new set

of occupied and virtual orbitals. In particular we show that

1. elements of Davidson’s A-matrix can be simply constructed from a given set of (say, local-

ized) orbitals

2. fixing the A-matrix according to point 1. permits one to generate terms of the Davidson-

Kapuy PT series with the use of canonical MBPT expressions with "dressed" two-electron
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integrals. Integral dressing has to be performed only once, before the PT calculation is

started, and generates negligible computational cost.

Davidson’s A-matrix technique

Davidson suggested5,6 to rewrite the N -electron Hamiltonian

H =
N∑

n

h(n) +
N∑

n<m

g(n,m) (1)

as

H =
N∑

n

h(n) +
N∑

n<m

g(n,m) (2)

where

h(n) = h(n) + A(n)

and

g(n,m) = g(n,m)− A(n) + A(m)

N − 1
.

Here A is an arbitrary hermitian one-electron operator, while indices n,m = 1, 2, . . . N label elec-

trons. He called the attention that while Hamiltonians (1) and (2) are the same, the corresponding

Fockians are not. Choosing these two Fockians as zero order Hamiltonians corresponds to different

partitionings in MBPT.

To recapitulate Davidson’s derivation in second quantized notation, let us denote spatial molec-

ular orbitals by i, j, . . . , use σ for spin label, and put i+σ (i
−
σ ) for creation(annihilation) operators of

the corresponding spinorbitals. Then the total Hamiltonian in an orthonormal basis is written as

H =
∑

ij

hij
∑

σ

i+σ j
−
σ +

1

2

∑

ikjl

[ik|jl]
∑

σσ′

i+σ k
+
σ′l

−
σ′j

−
σ (3)

(note that Davidson presented his formulae for the non-orthogonal case, that we do not need here).
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Applying Davidson’s transformation one writes

H =
∑

ij

(hij + Aij)
∑

σ

i+σ j
−
σ +

1

2

∑

ikjl

[ik|jl]
∑

σσ′

i+σ k
+
σ′l

−
σ′j

−
σ −

∑

ij

Aij
∑

σ

i+σ j
−
σ

where Aij correspond to the matrix elements of an arbitrary hermitian one-electron operator. The

last term can be identically transformed as

−
∑

ij

Aij
∑

σ

i+σ j
−
σ = −

∑

ijk

Aij
N − 1

∑

σσ′

i+σ k
+
σ′k

−
σ′j

−
σ (4)

= −
∑

ijkl

Aijδkl
N − 1

∑

σσ′

i+σ k
+
σ′l

−
σ′j

−
σ

= −1

2

1

N − 1

∑

ijkl

(Aijδkl + Aklδij)
∑

σσ′

i+σ k
+
σ′l

−
σ′j

−
σ

where the one-body Hamiltonian was first diluted15,16 to a two-electron form, then it was sym-

metrized to exhibit the usual symmetry of two-electron integrals. With this transformation, the

original Hamiltonian reads

H =
∑

ij

hij
∑

σ

i+σ j
−
σ +

1

2

∑

ikjl

[ik|jl]
∑

σσ′

i+σ k
+
σ′l

−
σ′j

−
σ (5)

where

hij = hij + Aij (6)

and

[ik|jl] = [ik|jl]−
(
Aijδkl + Aklδij

N − 1

)
. (7)

Integrals with overlines are dressed by the extra terms indicated at the rhs of Eqs. (6) and (7), with

i, j, . . . being molecular orbitals. The Fockians associated to the two forms of H , Eqs.(3) and (5),
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assuming a closed-shell system for simplicity, read

Fij = hij +
occ∑

k

(2[ik|jk]− [ik|kj]) (8)

and

F ij = hij +
occ∑

k

(
2[ik|jk]− [ik|kj]

)
(9)

Their difference is evaluated as

F ij − Fij = Aij

(
1− N

N − 1
+
ni + nj
N − 1

)
− 2δij
N − 1

Trocc(A) (10)

where ni = 1 if i is an occupied orbital, otherwise ni = 0, Trocc refers to the partial trace of matrix

A the summation extending to the occupied orbitals only.

One realizes that if ni = 1 and nj = 0, i.e., i corresponds to an occupied and j to a virtual

orbital, and the original Fockian satisfies the Brillouin theorem Fij = 0, then from Eq.(10)

F ij = Aij

(
1− N

N − 1
+

1

N − 1

)
= 0 for ni = 1, nj = 0 (11)

since δij = 0. This means that Davidson’s transformation keeps the occ–virt block of the Fockian

zero. The interpretation is, therefore, that matrix A generates an orbital transformation, which

mixes occupied (virtual) orbitals among themselves, but does not generate any occ–virt mixing.

In some applications of MBPT, one does not want to start from true Hartree-Fock orbitals

which minimize the energy of zero order determintal wave function. In such a case the Brillouin

theorem is not satisfied, i.e., Fij 6= 0 for occupied i and virtual j. One has then to apply the so-

called generalized MBPT17 that takes also single substitutions into account. In the present context,

this means that, using Eqs.(10) and (11), one has

F ij = Fij (12)
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for occ-virt elements. The violation of the Brillouin theorem, therefore, is inherited by the Davidson-

transformed Fockian, while the occ-occ and virt-virt blocks of F will become diagonal as a result

of the transformation. The latter, therefore manifests a so-called semicanonical transformation,17,18

used often in generalized MBPT.19

Matrix A corresponding to a set of orbitals: integral dressing

Since Fockians (8) and (9) are different, so are their eigenvectors. Assume that in the original

partitioning the canonical orbitals ψi are eigenvectors of F . The eigenvectors of F , ϕi, constitute

another set of orbitals, which can be e.g., localized, at the same time, they are "canonical" with

respect to operator F . Such orbitals ϕi were denoted "proper canonical orbitals" by Davidson.6

Matrix A is, so far, arbitrary. Now one may ask the question: Given a set of non-canonical

orbitals, say a set of LMOs, ϕi, what is the formula for matrix A such that the transformed Fockian

matrix F is diagonal in this basis.

The answer is clear from Eq(10). If one wants to have matrix F diagonal, one chooses two

orbital labels i 6= j, sets F ij = 0, and solves this equation for Aij . Diagonal matrix elements Aii

can set be zero, if one wants to conserve the diagonal elements of F as those of F . Eliminating the

offdiagonal F elements determines A as follows:

Aij = ±(N − 1)Fij for i 6= j (13)

with the negative sign to be chosen for occupied orbitals, while the positive sign being valid for

virtual ones, keeping Aii = 0.

In summary, for a set of orbitals ϕi which are not canonical in the original sense, i.e., the

Fockian F is not diagonal in their basis, there exists a matrix A defined by Eq.(13), so that the

associated Fockian F of Eq. (9) is diagonal.

Substituting Eq.(13) into Eq.(7) one gets the "dressed" two-electron integrals as
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[ik|jl] = [ik|jl]− (±Fijδkl(1− δij)± Fklδij(1− δkl), ) . (14)

where the sign ± for both terms is chosen so that it is + if the labels of the Fockian in that term are

occupied, and – if they are virtuals.

Discussion

As shown above, if the integrals are dressed via Eq. (14), the Fockian F becomes diagonal even if

the MOs are not canonical as of F . If the dressing (14) is carried out before an MBPT procedure,

then a standard canonical MPn program can deal with the noncanonical orbitals ϕi without any

need to consider one-electron perturbations (localization diagrams). This offers an automatic way

to calculate MBPT corrections in terms of localized orbitals. Since integral dressing by Eq.(14)

simply reproduces the results obtained by localization diagrams, there is no reason to perform any

numerical assessment in this study.

One may mention two further important points.

First, mainly localized orbitals were discussed throughout this paper. However, the formulae

presented above are equally valid for any set of noncanonical orbitals, including the optimally

balanced orbitals of Subotnik and Head-Gordon,14 or the "maximum delocalized" MOs by Pipek,20

to any order of MBPT.

Second, while off-diagonal elements of matrix A are defined above in a unique manner, diago-

nal elements remained arbitrary. These elements were set to zero in the equations above. However,

changing the one-electron energies that enter PT denominators also changes the partitioning, and

as was shown before,21 their "optimization" may improve MBPT corrections. Whether such an

approach is useful in connection with the A-matrix technique, requires further studies.

Finally we mention that to our knowledge (F. Bogár, private communication) the higher order

localization corrections presented in Ref.13 for Davidson-Kapuy partitioning, were also obtained

by some kind of effective integrals constructed from diagrammatic considerations.
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(21) Surján, P. R.; Kőhalmi, D.; Szabados, Á. Optimized quasiparticle energies in many-body

perturbation theory. Collect. Czech. Chem. Commun. 2003, 68, 331–339.

10



TOC Graphic

[ik|jl] = [ik|jl]
−
(
± Fij δkl (1− δij)

± Fkl δij (1− δkl)
)

— integral dressing —
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