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The partitioning introduced recently by Knowles (J. Chem. Phys., 156:011101, 2022) is analyzed and its
connections with the Adams partitioning and the Davidson-Kapuy partitioning are discussed. Davidson’s
partitioning is reformulated using second quantized formalism. A relation is pointed out between Knowles’
condition for the MBPT zero order Hamiltonian and the CEPA0 equations.

I. INTRODUCTION

Perturbation theory (PT) is a standard and useful
method in many-body theory1,2. In the most often used
partitioning, i.e., the separation of the total Hamiltonian
Ĥ = Ĥ0 + Ŵ of many-body PT (MBPT), one chooses
the Fockian as the zero order Hamiltonian Ĥ0 = F̂
making the two-electron part of Ĥ as the perturbation
(Møller-Plesset partitioning3, MP). For a review on sev-
eral other types of partitioning, see e.g. Ref.4

Application of PT may be plagued by convergence
problems. Especially prone to this phenomenon are
chemical systems far from their equilibrium structure
and for those treated in large basis sets5. Olsen and
coworkers have undertaken a series of studies6–8 ex-
haustively documenting divergences and explaining their
mathematical backgrounds. A similar sound study has
recently been published by Marie et al.9.

An important tool for improving the convergence
properties of PT is to change the partitioning. The aim of
this Note is to discuss the relation of a recently reported
new type of partitioning to two earlier technics.

II. PERTURBATION-ADAPTED PT10

Very recently, an interesting paper was published in
this Journal by Peter Knowles10. He observed that leav-
ing the MP partitioning, superior convergence properties
of the perturbation series can be obtained. He introduced
a new zero-order Hamiltonian Λ̂ containing a set of pa-
rameters that are determined by a set of auxiliary con-
ditions aiming to get Λ̂ as close to Ĥ as possible, with-
out destroying the solubility of the zero-order problem.
The approach based on the new partitioning was termed
perturbation-adapted PT (PAPT).

The general formula from which operator Λ̂ emerges
is a momentum-like condition

〈0|Θ̂†p(Λ̂− Ĥ)|1〉 = 0, (1)
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where |i〉 is the i-th order wave function obtained from
the original ("root") partitioning, Θ̂p-s form a set of suit-
able operators, depending on the problem in question.
We note that this formula shows some formal analogy to
the single-reference CEPA0 equations11 formulated for
the first-order wave function4,12

〈φpqab|Ĥ −H00|1〉 = 0, (2)

where φpqab is a doubly excited determinant.
Two examples for determining the partitioning are

treated in Ref10: an anharmonic oscillator and the MBPT
for electronic systems, showing the success of Eq.(1).

III. ADAMS PARTITIONING

Another standard partitioning is that of Epstein13 and
Nesbet14 (EN). In the EN partitioning the zero order
Hamiltonian matrix consists of the diagonal elements of
Ĥ . Adams15 has generalized this idea to assign larger
blocks of Ĥ to Ĥ0, in operator notations:

Ĥ
(0)
Adams = P̂ ĤP̂ + ÔĤÔ, (3)

where Ô and P̂ are two appropriately chosen comple-
mentary projectors with Ô + P̂ = 1.

In the Adams partitioning, the zero order problem is
not diagonal, thus equations have to be solved in course
of evaluating the perturbation. A similar task occurs in
MBPT if one keeps the MP partitioning but works with
localized molecular orbitals, as advocated by Pulay16,17.

The zero order Hamiltonian according to Eq.(5) from
Ref.10 for the anharmonic oscillator,

Λ̂ = P̂ Ĥ
(0)
rootP̂ + ÔĤÔ, (4)

clearly matches Eq.(2) above when

P̂ Ĥ
(0)
rootP̂ = P̂ ĤP̂

where Ĥ(0)
root corresponds to the partitioning we depart

from. Though P̂ Ĥ(0)
rootP̂ is not P̂ ĤP̂ in Ref.10, devia-

tion of the two quantities affects only the zero and first
order energies leaving their sum, as well as higher order
corrections invariant, as P̂ is one-dimensional.
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IV. DAVIDSON-KAPUY PARTITIONING

After an early initiative by Amos and Musher18, but
independently from it, Davidson elaborated a powerful
theory19, the essence of which is to repartition the total
Hamiltonian by adding and subtracting an arbitrary one-
body operator Â, and absorbing the subtracted Â into the
two-body part by an appropriate transformation. Here
we reformulate Davidson’s transformation using second
quantized notations.

Let i, j, k, l denote molecular spinorbitals, and i+, i−

creation/annihilation operators. Then, in the spirit of
Davidson19, the Hamiltonian is transformed as

Ĥ =
∑
ij

hiji
+j− +

1

2

∑
ikjl

[ik|jl]i+k+l−j− (5)

≡
∑
ij

(hij +Aij)i
+j−

+
1

2

∑
ikjl

[ik|jl]i+k+l−j−

−
∑
ij

Aiji
+j−︸ ︷︷ ︸

−
∑
ijkl

Aijδkl

N−1 i
+k+l−j−

=
∑
ij

hiji
+j− +

1

2

∑
ikjl

[ik|jl]i+k+l−j−

where

hij = hij +Aij (6)

and

[ik|jl] = [ik|jl]−
(
Aijδkl +Aklδij

N − 1

)
. (7)

Here we diluted the second occurrence of the one-
electron operator Â to get a two-electron shape, and sym-
metrized it to exhibit the symmetry of two-electron inte-
grals explicitly (this way of transforming a one-electron
operator to a two-electron one was extensively used by
Valdemoro and coworkers20,21).

It is worth noting here that transformation (7) is spe-
cific to an N -electron Hilbert space. Once it is intro-
duced, one no longer has a common second quantized
Fock operator in all sectors of Fock space.

Although the entire Hamiltonian remains intact, their
associated Fockians

Fij = hij +

occ∑
k

[ik||jk] (8)

and

F ij = hij +

occ∑
k

[ik||jk] (9)

are different. (The double bar || indicates antisym-
metrized integrals.)

While the Fockian F is diagonal in terms of canonical
orbitals, F has nonzero occupied-occupied and virtual-
virtual blocks. Its occ-virt interaction block remains zero
maintaining the Brillouin theorem.

Davidson used this transformation to account for the
effects of orbitals different from canonical ones, say
some types of localized orbitals. This feature was uti-
lized by Kapuy22–26 when performing PT in terms of lo-
calized orbitals, hence the name "Davidson-Kapuy par-
titioning". More recently, Head-Gordon emphasized its
advantages and applied this partitioning up to the second
order27. Knowles, when applying PAPT to the many-
electron problem, approached the problem of repartition-
ing from the reverse side. His equation (7) in Ref.10,
apart from a constant, can be written as

Λ̂ =
∑
ab

Λab a
+b− +

∑
ij

Λij i
+j− (10)

in terms of occupied (i,j) and virtual (a,b) spinorbitals.
This indicates that the applied one-electron zero order
Hamiltonian Λ̂ has off-diagonal occ-occ and virt-virt ma-
trix elements, just like the Fockian in a non-canonical
basis. Accordingly, the partitioning he introduced cor-
responds to changing the molecular orbitals by a uni-
tary transformation without any occ-virt mixing. A smart
idea in paper10 is to determine the off-diagonal matrix el-
ements of Λ̂ (i.e., that of the Fockian) by the momentum-
like formula (1) using a special contraction of the terms
of the first order PT wave function, e.g.:

|Θij〉 ∼
∑
abk

cikab a
+b+k−j−|0〉 (11)

and an analogous formula for virtuals (cf. Eq.s (10-11)
in Ref.10). Thereby, the number of unknowns (matrix
elements of Λ̂) is the same as that of the equations. The
full CEPA0 type conditions (see Eqs. (1) and (2) ) are
thus simplified, leading to an economical computational
procedure. Applications of the resulting partitioning on
the CH2 radical and the Ne atom are impressive, even if
divergences are not completely eliminated for Ne.

Since a choice for parameters Λab,Λij can be uniquely
related to a choice of Aij , the partition introduced by
Knowles10 in MBPT can be originated from David-
son’s A-matrix technique, with the successful CEPA0-
like condition (1) and (11) for obtaining the free param-
eters. Note, however, that the method of Ref.10 can be
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formulated without referring to this connection, since all
that matters there is that operator Λ̂ does not couple the
Hartree-Fock occupied and virtual orbitals.

The alternative of optimizing the energy levels of
many-electron eigenstates of the zero order Hamiltonian
deserves mention here. Parameters introduced this way
are generally more numerous then those in Davidson’s
A. When optimized by a Feenberg28,29 type condition,
i.e. setting E(3) = 0, the method becomes equivalent
to CEPA0 (see Ref12). This was termed as "optimal par-
titioning" in our laboratory12,30–32. Due to their equiv-
alence, the cost of this method is the same as that of
CEPA0, which is determined by solving a linear equa-
tion in the first-order interacting subspace12.

The analogy of Eq. (1) (the condition used by
Knowles) and Eq. (2) (the CEPA0 equation) deserves
a remark at this point. While the two expressions par-
allel, differences are also noteworthy. There figures a
zero order Hamiltonian in Eq. (1) that seems to have
has no counterpart in Eq. (2). The purpose of the two
equations can be thought to be different in the sense, that
Eq. (1) determines matrix elements of Λ while Eq. (2)
is used for finding |1〉, the wavefunction correct up to
first order. The relation is however more complex than
that. There do exists a perturbational standpoint leading
to the CEPA0 equation. This is the level shift optimiza-
tion technique, alluded to above. In this view, Eq. (2) can
be recast in a form exhibiting the level shift parameters
to be set12 (see also Ref.2), hence it implies a determina-
tion of zero-order Hamiltonian. The second order energy
of the resulting partitioning matches the CEPA0 energy
and the associated wavefunction is recovered at first or-
der of this PT scheme. The form of Eq. (2) reflects this
latter point. Thus, Eqs.(1) and (2) share a common motif,
while they are by no means equivalent.

A much cheaper alternative is to optimize only the di-
agonals of the Fockian entering the PT denominators33.
This works also fine for small systems, but since the
number of parameters is too few, it does not lead to ap-
preciable corrections for larger molecules.

We have investigated formerly a quite different condi-
tion for determining the elements of Davidson’s matrix
A, the minimization of the square norm of residual

|r〉 = (Ĥ − E)|1〉. (12)

where E = 〈1|Ĥ|1〉. Since performance was not found
to justify the increase in numerical cost, this work re-
mained unpublished34. Owing to its relevance to the
present question, we quote some result in Table I. from
Ref.34. One has to realize that minimizing the square
norm of Eq.(12) can only be considered as an interest-
ing theoretical study, but does not lead to any viable
quantum chemical method. Evaluation of the residual
leads to lengthy equations (not even presented in Ref.34),

TABLE I. Total energies in a.u. for some small systems ob-
tained in various perturbational methods. "OPTn" stands for
the n-th order result with optimized A matrix elements, taken
from Ref.34

system H2 HeH2 H2O
basis set pVTZ 3-21G STO-6G

MP2 –1.16464 –3.82031 –75.71484
MP3 –1.17026 –3.82865 –75.72462
OPT2 –1.17209 –3.83037 –75.72513
OPT3 –1.17290 –3.83238 –73.72830
FCI –1.17233 –3.83224 –75.72913

and minimization through numerical gradients and hes-
sian elements by the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) procedure35 is time-consuming. Apart from its
cost, an A-matrix optimized this way may lead to viola-
tion of the extensivity condition. On the contrary, con-
ditions (1) and (11) used by Knowles10, in our opinion,
offer a powerful shortcut in defining the partitioning.

V. CONCLUSION

Of many possible partitionings in MBPT, those by
Adams and by Davidson are recollected. We point out
that Knowles in his recent paper10 has given a unified for-
mulation, which reduces to the previous ones by choos-
ing operator Λ̂ appropriately. We think that the success
of Knowles’ procedure is connected to the fact that the
condition he used for determining elements of Λ̂ is re-
lated to a compactified form the the CEPA0 equations.
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