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ABSTRACT
The Lippmann-Schwinger type equation for Bruckner’s reaction operator is analysed
with respect to its convergence properties for the case of small deviations from the
fixed point. It is found that the eigenvalues of the Jacobian of the iterative equation
predict the convergence to a good approximation.
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1. Introduction

The basic equation of molecular physics, the time-independent Schrödinger equation,
being an eigenproblem of a linear Hamiltonian Ĥ, ĤΨ = EΨ, is a linear equation.
Linear equations are often easy to solve. However, due to the complexity of molecular
Hamiltonians, and, in matrix representations, the extreme size of Hamiltonian matri-
ces, the solution requires iterative techniques in most cases. This holds both for huge
eigenproblems and for perturbative considerations. Moreover, approximate methods
or models are often nonlinear, necessitating iterative solutions, self-consistent prob-
lems or coupled cluster techniques providing good examples. For this reason, analysis
of iterative techniques are of principal importance. The necessary mathematical tools
are well elaborated.

One important operator in molecular physics, connected to a generalized formalism
of perturbation theory, is Bruckner’s reaction operator t̂, having the property

E = E0 + 〈ϕ|t̂|ϕ〉 (1)

where E0 is the zero order energy in some

Ĥ = Ĥ0 + Ŵ (2)

partitioning of the Hamiltonian, ϕ is the corresponding zero order wave function,
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i.e., H0ϕ = E0ϕ and E0 = 〈ϕ|H0|ϕ〉. Reaction operator t̂ is known to satisfy the
Lippmann-Schwinger equation

t̂ = Ŵ + Ŵ Q̂t̂, (3)

where operator Q̂ is the reduced resolvent of Ĥ0:

Q̂ =
P̂

E − Ĥ0
(4)

with

P̂ = 1− |ϕ〉〈ϕ| (5)

Eq. (4) is written in a somewhat symbolic notation. For mathematically correct defi-
nition of reduced resolvents (inverse in subspaces) see the works by Löwdin[1, 2].

Eq. (3), through operators Q̂ and t̂, depend on the energy E. As shown in Sect.2,

Eq. (3) should be taken at an exact energy E, i.e., at one of the eigenvalues of Ĥ.
Eq. (3) suggests a formal iteration sequence

t̂(n+1) = Ŵ + Ŵ Q̂t̂(n). (6)

with superscript n enumerating iteration steps.
Starting the iteration with t̂(0) = 0, one recovers the Brillouin-Wigner perturbation

series[3, 4]

t̂ = Ŵ + Ŵ Q̂Ŵ + Ŵ Q̂ŴQŴ + · · · (7)

the convergence issues of which are eo ipso interesting to analyse.
In this short paper we shall use the iterative scheme exhibited in Eq.(6) to deter-

mine t̂ for model Hamiltonians, and analyse the mathematical characteristics of these
iterations assuming t̂(n) being close to a fixed point of (6).

By means of this analysis one can distinguish between convergence and divergence,
and, as we shall see, one may introduce techniques to ensure convergence in originally
divergent cases. Before reporting the results, we review the derivation of (3) and the
theory of stability analysis of iteration schemes for completeness.

It is apparent from Eqs.(6) and (7) that the operator product Q̂Ŵ plays an impor-
tant role in this theory. We remark in this connection that the minimization of the
norm of this operator was proposed in Refs[5, 6] to improve convergence properties
of Rayleigh-Schrödinger perturbation theory. The same operator product was utilized
also by Mazziotti[7].

2. Compact derivation of the Lippmann-Schwinger equation

While the Lippmann-Schwinger equation appeared in the physical literature in form of
an integral equation topical in quantum scattering theory[8], a distilled formulation for
general use was presented by Löwdin in his ”Studies in Perturbation Theory” series[1].
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The essence, relevant to the present formulation begins with the Dyson equation

R̂ = Q̂+ Q̂Ŵ R̂, (8)

connecting the reduced resolvent of the Hamiltonian Ĥ,

R̂ =
P̂

E − Ĥ
. (9)

and the reduced resolvent Q̂ of the zero-order Hamiltonian Ĥ0, Eq. (4). Equation (8) is
a direct consequence of the partitioning introcuded in (2), and is valid at any value of
parameter E. At this point we make use of the expression for E, as an exact eigenvalue
of Ĥ, stemming from the partitioning technique

E = 〈ϕ|Ĥ + ĤR̂Ĥ|ϕ〉
= E0 + 〈ϕ|Ŵ + Ŵ R̂Ŵ |ϕ〉. (10)

Comparing this result to definition (1), one recovers the reaction operator in the form

t̂ = Ŵ + Ŵ R̂Ŵ . (11)

The most explicit definition of the reaction operator is provided by Eq.(11) above.
Its implicit definition in Eq.(1) reflects that in the present context only its action on
the zero order wavefunction, ϕ is relevant.

The resolvent R̂ satisfies Eq. (8), which, upon substituting in Eq. (11), results

t̂ = Ŵ + Ŵ Q̂t̂,

the Lippmann-Schwinger equation.
Note the more recent works by Hubač and coworkers[9–12] on quantum chemical

applications of the Lippmann-Schwinger equation.
It is interesting to observe that the Dyson equation (8) and the Lippmann-Schwinger

equation (3) exhibit similar mathematical structures. This analogy is deceptive, how-
ever. Eq. (8) is valid at any values E. For our present purpose, t̂ is to be evaluated
at an exact eigenvalue for Eq.(1) to be satisfied. A further difference is that Eq. (8) is

reduced to the P̂ -space, while operator t̂ in (3) acts on the reference function ϕ (cf.

Eq. 5). This is reflected by the fact that operator Q̂Ŵ stands in the second term of

the right hand side of (8), while Ŵ Q̂ is seen in (3).

3. Stability analysis of the Lippmann-Schwinger equation

Let us denote a fixed point of Eq. (3) for some state by t̂∗. That is, it satisfies

t̂∗ = Ŵ + Ŵ Q̂t̂∗. (12)
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With the aim of studying the properties of this fixed point, the reaction operator is
written in the form

t̂ = t̂∗ + τ̂ , (13)

where operator τ̂ is assumed to be small in some sense. Substituting this form into
Eq. (6) and using (12), one gets

τ̂ (n+1) = Ŵ Q̂τ̂ (n). (14)

Here superscript n enumerates iteration steps.
Eq. (14) is seemingly linear in τ̂ , but in fact, the reduced resolvent Q̂ also depends

on τ̂ implicitly through its energy-dependence. To form the Jacobian of the mapping,
we intend to linearise this equation wrt τ̂ . This is equivalent to neglecting the τ̂ -
dependence of Q̂, so that operator

Ĵ = Ŵ Q̂. (15)

serves as the Jacobian. Assuming exponential convergence feature to an attractive
fixed point represented by τ̂ (n) → 0 for n→∞, and similarly, exponential divergence
if the fixed point is repulsive, we may try to substitute the Ansatz

τ̂ (n) = eλn τ̂0 (16)

into Eq.(14) to get

Ĵ τ̂0 = eλτ̂0. (17)

This result tells us that mode τ̂0 appears as an eigenoperator of the Jacobian Ĵ
corresponding to the eigenvalue j = eλ, thus λ plays the role of a Ljapunov-type
exponent[13]. The sign of the latter will decide between convergence (for λ < 0) of
divergence (for λ > 0) of the iteration. Alternatively, separation between convergent
and divergent cases can be done by checking whether j ≷ 1.

Since the Jacobian is not hermitian, it may possess complex eigenvalues. In that
case the iteration pattern will not be monotonic (cf. the discussion in ref.[14]).

Similar studies of stability conditions have been carried out on the coupled cluster
equations formerly in our laboratory[14–16] and by other authors[17–20].

4. Numerical illustration

The method outlined above is a tool of understanding and analysis. Considering that
the eigenvalue problem of the nonsymmetric Jacobian Ĵ is more costly than that of Ĥ,
the stability analysis does not provide a practical computational scheme. This section
illustrates the connection between the absolutely maximal eigenvalue of the Jacobian
and the convergence features of the Lippmann-Schwinger equation for two simple
quantum chemical systems, for which the exact solutions are also easily available. The
model molecules are LiH and HF diatomics, treated in a polarized triple-zeta (TZP)
type basis set[21] at the configuration interaction with singles and doubles (CISD)
level. The Lippmann-Schwinger equation is solved, and the Jacobian is constructed, in
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Table 1. Correlation energies (Ecorr) in a.u., number of iterations (Nit) to achieve 10−8 a.u. energy accuracy

of the Lippmann Schwinger equation, and maximal absolute value of the eigenvalue |j| of the Jacobian for the

LiH molecule at various inter-atomic distances R [Å]. *: 10−5 accuracy

R Nit Ecorr max |j|
1.0 21 -0.0501842 0.593
2.0 25 -0.0456292 0.633
3.0 44 -0.0540327 0.771
4.0 55 -0.0742359 0.852
5.0 56 -0.0979742 0.862
7.0 80∗ -0.1284498 0.878

matrix representation using the Hartree-Fock determinant and excited spin-adapted
configurations built up by canonical molecular orbitals.

4.1. The LiH molecule

The closed-shell singlet ground state of LiH treated at the CISD level generates a spin
adapted CI Hamiltonian (Ĥ) of dimension 1035. This Hamiltonian was diagonalized

at various Li H bond distances. Diagonals of Ĥ define the zero-order Hamiltonian
(Epstein–Nesbet partitioning[22, 23]).

Table 1. presents the correlation energies and the maxima of the converged Jacobian
eigenvalues (absolute values) for some selected bond lengths. The number of iterations
necessary to get the Lippmann-Schwinger equation for the reaction operator t are also
indicated.

It is well illustrated by Table 1. that the number of iterations grow with increas-
ing bond length, which is a consequence of the gradually deteriorating character of
the single determinant Hartree-Fock reference state. This is also illustrated by the in-
creasing value of the correlation energies. The Lippmann-Schwinger iterations for the
reaction operator remain convergent for all R. This is well reflected by the fact that
all eigenvalues of J are smaller than 1 in absolute values. Though the values max |j|
increase with increasing R, they tend to saturate and remain below 1.0 even for large
distances.

Since the Jacobian in Eq.(15) depends on the iterations through the energy-
dependence of the resolvent Q, it is interesting to check how max |j| values evolve
during the iteration. This is depicted in Fig.1. for R=4.0 Å.

The figure shows that initial estimations of the max |j| value is quite bad: the first
estimate is above the critical value of 1, thus it would predict divergence. However, the
maximal eigenvalue decreases below 1.0 at n=2, and soon approximates its converged
value around 0.85.

Even if all converged max |j| values are below 1.0 according to Table 1, their actual
values carry a message. This is illustrated by Fig. 2. comparing the energy convergence
patterns at R = 1.0, 5.0 and 7.0 Å. The convergence is fast at equilibrium and becomes
slower with increasing R, in parallel with the increase of the maximum eigenvalue
exhibited in Table 1.

We finally note that, just for the sake of analysis, one may eliminate the energy-
dependence of the Jacobian by inserting the exact converged energy from the very
beginning. Without plotting these results, we mention that this leads to significantly
faster convergence.
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Figure 1. Convergence of the energy and the maximal absolute eigenvalue of the Jacobian during the

iteration of the Lippmann-Schwinger equation for the LiH molecule at RLiH=4.0 Å.
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Figure 2. Convergence of the relative correlation energies En−E ( 0 being the converged value) during the

iteration of the Lippmann-Schwinger equation for the LiH molecule at various bond distances.

−0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 5  10  15  20

R=1.0

R=5.0

R=7.0

re
la

tiv
e 

en
er

gy
 [a

.u
.]

iteration step, n

6



Table 2. The number of iterations (Nit) to achieve 10−8 a.u. energy accuracy of the Lippmann Schwinger

equation, and maximal absolute value of the eigenvalue |j| of the Jacobian for the HF molecule at various

inter-atomic distances R [Å]. Symbol ∞ indicates divergence.

R [ Å] No. of iterations max |j|
1.0 21 0.64
1.5 39 0.84
2.0 88 1.01
2.5 326 1.10
3.0 ∞ 1.42

4.2. The HF molecule

The case of the HF molecule is different because at larger distances the Lippmann-
Schwinger equation becomes divergent. The CISD model calculations were obtained
with frozen F core and using 19 virtual orbitals (the top four was left frozen), resulting
a CI Hamiltonian of dimension 1891.

Our conclusions are collected in Table 2. showing that the rapidly convergent cases
(R=1.0 and 1.5) are characterized by Jacobian exponent well below 1.0, and the clear
divergence (R=3.0) is indicated by max |j|=1.42. However, at the borderline of con-
vergence and divergence we see two, seemingly convergent cases corresponding to max
|j| values slightly above 1.00. This could be either a consequence of the approximations
of the stability analysis, or a divergence occurring after an apparent convergence to
the prescribed numerical accuracy.

Once divergence appears, one may wonder how the iteration could be converted to a
convergent one. The calculation for R =3.0 Å was repeated by the a posteriori analysis
with fixed reduced resolvent, in which the precomputed exact energy was inserted. This
resulted a convergent iteration where the 10−8 a.u. energy accuracy was achieved in
198 steps. This emphasizes that the simple Brillouin-Wigner type iteration, where the
energy denominators are updated, could perhaps be improved by appropriate level
shifts. Such ideas were found to be successful in previous studies in connection with
Rayleigh-Schrödinger perturbation theory[5, 6].

To study the effect of level shifts, we modify the partitioniong (2) to write

Ĥ = Ĥ0 + ηP̂︸ ︷︷ ︸
Ĥ0′

+ Ŵ − ηP̂︸ ︷︷ ︸
Ŵ ′

, (18)

where P is the projector defined in Eq. (5).
Fig. 3. depicts the dependence of the number of required iterations and that of the

maximal absolute Jacobian eigenvalue on parameter η for the divergent case of the
HF molecule at 3.0 Å. It shows that using level shifts η ≥ 0.05 results in a convergent
iteration and pushes max |j| below one. The number of iterations reaches its minimum
at around η = 0.2. From this point, max |j| values start to grow again, and the no.
of iterations increases, too. However, the minimal value of max |j| at η = 0.1 does
not coincide exactly with the minimal no. of iterations. The points when iterations
converge generally correspond to those where max |j| < 1.0 with the exception of
η = 0.025 where the iteration is quite slow but converges within 345 steps, while
j = 1.05.
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Figure 3. The number of iteration steps to achieve 10−7 a.u. accuracy in energy when iterating the
Lippmann-Schwinger equation for the HF molecule at R = 3.0A, as a function of the level shift parameter

η. The maximal absolute valjue of Jacobian eigenvalues are also shown.
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5. Conclusions

The stability analysis of the quasi-linear Lippman Schwinger equation for the energy-
dependent reaction operator was performed on simplified models representd by elec-
tronic Hamiltonian matrices having a few thousands dimensions. Some of the Hamil-
tonians (those which correspond to much prolongated bond lengths in diatomics)
described strongly correlated systems. The convergence of the iterations was set in
parallel with the absolutely largest eigenvalue of the Jacobian of the iteration formula.
It was found that the the criterion max |j| < 1.0 matches the convergence with a
few exceptional points at the borderline. Appropriate level shift parameters may cure
occurring divergences effectively, and parallels their influence on max |j| values.
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Dordrecht, 2003), Chap. Brillouin-Wigner expansions in quantum chemistry: Bloch-like
and Lippmann-Schwinger-like equations, p. 71.

[13] Granino A. Korn and Thresa M. Korn, Mathematical Handbook for Scientists and Engi-
neers (McGraw Hill, New York, 1968).
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