kvantumkémia

modern

modszerel

Irta: Pongor Gabor, c. egyetemi docens
EoOtves Lorand Tudomanyegyetem, Kémiai
Intézet, Budapest

Lektoralta: Dr. Tari Laszlo, egyetemi tanar
Eotvos Lorand Tudomanyegyetem, Kémiai
Intézet, Budapest

G. Pongor: A Compendium of Modern Quantum Chemistry



G. Pongor: A Compendium of Modern Quantum Chemistry



"...tunc iusti fulgebunt sicut sol in regno Pagmum..."
(Mt 13,43).

This work has been dedicated to the memory of
Prof. Ede Kapuy (*1928 - 11999)

G. Pongor: A Compendium of Modern Quantum Chemistry



G. Pongor: A Compendium of Modern Quantum Chemistry



Compendium
of Modern
Quantum

Chemistry

(Theoretical Methods in Structural
Chemistry)

The oldest version was prepared for
the lectures held in Jaén, 19-24 June,
2000.,
in the framework of the teaching staff
mobility subprogram of the
ERASMUS program

Dr. Gabor Pongor
Eotvos Lorand University, Budapest
2018.

G. Pongor: A Compendium of Modern Quantum Chemistry



Vi

Peer reviewed by Dr. Laszl6 Turi
EGtvos Lorand University, Budapest
2018.

G. Pongor: A Compendium of Modern Quantum Chemistry



Vi

G. Pongor: A Compendium of Modern Quantum Chemistry



Vi

This work was written with considerable
help of the lectures of Prof. Péter Pulay
(Fayetteville, AR, USA)

G. Pongor: A Compendium of Modern Quantum Chemistry



IX

Contents:

Postulates of the Classical and the Non-RelativistiQuantum Mechanics

INTRODUCTION

The advantages of the theory
The disadvantages of the theory
History of Quantum Chemistry

ATOMIC UNITS

1. THE HARTREE-FOCK METHOD
Orbital-approximation
Separation of the eigenvalue problem i, space
Antisymmetry Postulate, Pauli-principle, exclusionprinciple
Slater-determinant
Energy expression for spinorbitals
Core integrals
Coulomb integrals
Exchange integrals
Unrestricted Hartree-Fock (UHF) method
Restricted Hartree-Fock (RHF) method
Orbital energies
Numerical solution for atoms
LCAO-approximation
Requirements for the basis set
Types of basis sets
Slater-type basis (STO)
Boys-type basis (GTO)
Contracted basis sets
Minimal basis set
STO-3G
4-31G
6-31G*
6-31G**
Determination of the LCAO coefficients (Roothaan-H#)
One-electron integrals
Two-electron integrals
Special feature of the GTOs
Method of the Lagrange-multipliers
Overlap matrix
Fock-matrix
Roothaan-Hall LCAO-SCF equation
Unitary transformations
Canonical orbitals
Hartree's Self-Consistent Field (SCF) method
Organization of a simple quantum chemical program
Valuation, scaling
Method of shared exponents
Direct SCF method (Almlof)
Semi-direct SCF method (Ahlrichs)

Multiplicative Integral Approximation, MIA (von Als enoy, Pulay)

G. Pongor: A Compendium of Modern Quantum Chemistry

X1l

2
3
3

4



2. DERIVATIVES
Potential surface
External perturbations
Notations
Calculation of the derivatives
The advances of the analytical method
The drawbacks of the analytical methods
Summary of the different derivatives
Calculation of the derivatives
1.8. Variational deduction without constraints
2.8. Variational deduction with constraints
3.8. Non-variational deduction
4.8. First derivative of the Hartree-Fock energy
Popular/notable ab initio program systems
Gaussian (Pople's group)
PQS (Pulay)
CADPAC (Handy)
TurboMol (Ahlrichs)
Spartan (Hehre)
Acesl| (Bartlett & Stanton)
Determination of the geometry
Example: cyclo-oktatetraene
Jahn-Teller principle
Standard examples for the Jahn-Teller effect
Estimation of the Hessian
Coordinates: Cartesians and internals
The character of stationary point
Saddle points
Second derivatives
Reaction paths
Nonorthogonal (nonunitary) transformations
Solutions for the lack of uniqueness of reaction
Example: The HF-based SQM Force Field method
Yeljasevich-Wilson vibrational equation
SCALE3 program
A priori SQM Force Fields
Natural Internal Coordinates (NICs)
INTC program
Recommended Internal Coordinate System (pre-NICs)
Sample output of the INTC program
Internal coordinates and orthogonality

3. POST-HARTREE-FOCK METHODS
Disadvantages of the Hartree-Fock method

Full Configurational Interaction (Full CI)
Perturbation Theory

Mgller-Plesset (MP) partition of the Hamiltonian
First-order correction

Second-order correction

Slater-rules

G. Pongor: A Compendium of Modern Quantum Chemistry

31
31
31
32
33
33
34
34
35
36
39
39
40
41
41
41
41
42
42
42
42
44
45
47
47
47
48
48
49
50
51
53
54
54
55
56
57
60
61
62
63

66
66
67
68
69
69
69
70



Xl

Brillouin-theorem 71
Many Body Perturbation Theory 72
MP2 73
Coupled Cluster (CC) methods 73
Variational (truncated) Cl method 74
Size-consistency (size-extensivity) 75
Computational requirements 76
Scaling of different post-HF methods 77
Categories of the electron correlation (Sinanoglu) 77
Dynamic correlation 77
Nondynamic correlation 78
Example: ethylene 78
When the nondynamic correlation is important? B
Example: Dissociation of B 80
RHF determinant 81
Heitler & London (Valence Bond VB) 82
Multiconfigurational Hartree-Fock (MC-SCF) 83
Doubly occupied, active (fractionally occupied), noccupied orbitals 85
Complete Active Space (CAS-SCF) 85
Generalized Valence Bond (GVB) method 86
Projected UHF 88
First-order reduced density matrix 89
Second-order reduced density matrix 89
Natural spinorbitals (L6wdin) 90
First-order reduced spinless density matrix 90
Natural orbitals (L6wdin) 90
UHF start orbitals for CAS-SCF 92
Rule for fractionally occupied (active) orbitals 93
Linnett's theory (double quartet) 95
UNO-CAS method (Pulay) 96
Problematic features of the MC-SCF method 97
4. DENSITY FUNCTIONAL METHODS 99
New partition of the Hamiltonian 100
Hohenberg-Kohn I. theorem 101
Consequences 102
Holographic electron density theorem (Mezey) jeY)
Hohenberg-Kohn Il. theorem 103
Kohn-Sham method 105
Xo-method (Slater) 109
Scattered Wave X,-method (Johnson) 110
Valuation 110
Hartree-Fock-Slater (HFS) method 111
Basis sets in DFT 111
Gauss, Slater, Augmented Plane Waves 112
Fitted density 113
Exchange-correlation (XC) energy 113
Becke's procedure 114

G. Pongor: A Compendium of Modern Quantum Chemistry



Xl

Non-local functional approximations
Becke
Lee-Yang-Parr (LYP) correlation functional
B-LYP
B3-LYP
Problems of DFT methods
Example: DFT-Based SQM Force Field method for BO,4

Natural Internal Coordinates and Scale Factors foN,04

Primitive valence coordinates for NO4

Theoretical and experimental structural parametes for N,O4
Calculated and experimental vibrational spectradr N,O4

5. MAGNETIC PROPERTIES; NMR CHEMICAL SHIFTS
Electric field, magnetic induction, vector potentid
External fields
Homogeneous magnetic field
Nuclei: magnetic dipoles
Implementation into the Hamiltonian
Chemical shift (shielding)

Isotropic and anisotropic parts
Gauge-invariance
Gauge Invariant Atomic Orbitals (GIAO, London)
GIAO-GTO basis set (Pulay)
Individual Gauge for Localised Orbitals (IGLO, Kutz elnigg)
Localised Orbital Local Origin (LORG)

EPILOGUE
Problems in the future
Suggested reading

ACKNOWLEDGMENT

APPENDIX |
The Born-Oppenheimer approximation

APPENDIX Il
GDIIS - Geometry Optimization by Direct Inversion in the
Iterative Subspace

APPENDIX I
Avoided crossing, conical intersection

APPENDIX IV
A brief description of the independent particle (Hatree-Fock) model

ERRATUM
To the Born-Oppenheimer approximation

G. Pongor: A Compendium of Modern Quantum Chemistry

115
115
115
116
116
116
117
119
120
121
122

123
124
124
124
125
125
127
127
127
129
129
130
130

131
131
132
133

134
134

155

143

163

173

179



Xl

POSTULATES OF THE CLASSICAL M_ECHANICS (CM):

I. Physical observables:

Two different sets of the physical observables arelistinguished: dynamical
variables and parameters. Dynamical variables are apresented by continuous
and differentiable functions which are real functions of real variables. In CM

each dynamical variable can be expressed by the Qasian r; = ry(t), ro =

ro(1),..., Iy = In(E) position vectors and_ = py(t), Ry = Po(t),..., by = bBn(t) linear

momentum vectors (att point in time) of the mq, my, ..., my masses of points of

mass constructing a system\ is the number of the points of mass):
A=A, L2 INy D1 B2vee NG )

Notes: 1. The mass and the time are not dynamical vesiaather parameters. 2. Even if the time does
not appear in the expression of a dynamical variable iexaticit mode, it can be considered as the
function of the time implicitly (via the position and lineabmentum vectors). 3. In principle, infinite
number of dynamical variables can be defined. 4. Thyssgstem of units can be defined by fixing the
units of 1 pand t (or, of any three independent observables, like iIC@&® system). 5. The position
vectors can be called as trajectories, or orbital-funstioThe later name is in an antagonistic
relationship with the quantum mechanical/chemical “or$ital 6. Introducing the concept of the
electric charge (as a new parameter, in the electicstaand giving the form of the attraction between
the charged points of mass (i.e., the Coulomb-law), thithuse of the corresponding potential function
(Coulomb-potential) we could apply the CM (i.e., it does matter where the potential function was
originated). Due to the introduction of the electric charge ube of a new physical substantial
observable could be necessary.

Examples (for simplicity, the N = 1 case is given):

Dynamical variable: Notation: Function:

Position r 1(t) = x()ep+y(ter+z(tes
Linear momentum: _p B = pe(ter +py(ter +py(tes
Velocity: v V(t) = (L/m)g(t)

Although \(t) can be expressed as
the first derivative of the position

vector, has to be considered as
independent dynamical variable:
a function and its derivative are

linearly independent.

Force: E Here we confine ourselves to the so-
callednservative force fields: in this
case fbece is the only function of the
position [E HKr)], moreover, a V
potentiahction exists whose negative
gradiestthe force [F= -00V]. Such a
systesrcalled as conservative system.

Potential energy: \% V = V(r) (see above)

Angular momentum: 1 I=rxp

Momentum of force: N N=rxF

Kinetic energy: T T =2m

Total energy: H H= f2m + V()

In the case of a conservative system
H is time-independent)
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II. The physical state:
The physical state of a conservative system is cohafely characterized by giving
the Cartesian 1y, I»,..., Iy position vectors and_g, p,,..., B\ linear momentum

vectors (at at point in time).

Notes: 1. The physical state of a system can be represexttad point of time) by a point of the

hypothetical 6l-dimensional ‘phase space’ constructed by tNeCartesian position coordinates and
3N linear momentum coordinates. 2. In case of a probabilitgriggtion of the physical state of a
system, at a certainpoint of time a solely point of the phase space could ppssesn-zero (1.000)

value (confidence).

lll. The measurement:

In case of an ideally accurate measurement, at t@apoint in time the observed
values of the dynamical variables are the values tfie functions which represent
them. In principle, the measurement can be carrieadut with arbitrary accuracy,
even simultaneously for any number of the dynamicalariables if needed.

IV. Equation of motion:
The description of the behavior of a system in timé.e., the change of its physical
state) can be described by the Newtonian equation$ motion:

Fo=mif;, (i=12,.N),
| I =1

where F; is the force vector acting on theth point of mass, andi’; is the second
derivative (according the time) of the position vetor of the ith point of mass.

Notes: 1. We have to solve 3 second order differential mou&tr each point of mass, totallyN3
second order differential equations, with completélyp@rameters which fix the initial physical state of
the system. 2. The subsequent physical state of thensgsn be computed unambiguously (causality,
what is more, determinism). 3. There is no distinguishetesy of coordinates (only useful, or less
useful); in the axioms I-IV the Cartesian coordinateesyshas been applied. Instead of that we could
choose arbitrary curvilineagy,ds,...,0f (so-called generalized) coordinates gm¢by,...ps generalized
linear momenta (herkis the degree of mechanical freedom; if the numbenefestrictions imposed to
the system isn, thanf=3N-m). In this case the Newtonian equations of motion araggwto the so-
called Hamiltonian ones. In the latter equations the H gqH4,....0:P1.P2,...p; 1)  Hamiltonian
function of the system plays a central role. The Hamidto function of a conservative system is time-
independent and it is equal to the total mechanical energheokystem. 4. The aforementioned
equations of motion are time-reversal; i.e., changing trextitn of time (substituted its value to —
they yield the same results.

THE AXIOMATIC SUMMARY OF THE N_ON-RELATIVISTIC Q_UANTUM
MECHANICS (NRQM):

In the NRQM the particles are considered to be pointdikd of infinite lifetime. The postulates
mentioned below are redundant due to didactical reaseesRastulate IIl). Also due to didactical
reasons, not the most general form of the postulates is,givenwill apply the coordinate
representation in 4 within the frame of the so-called Schrddinger pict\ve. use the interpretation of
the Coppenhagen School (CS) as the most generally accegted

I. Physical observables:

In the NRQM the parameters are interpreted as in te CM; however, each A
dynamical variable is represented by a (linear andyelf-adjoint operator whose
form is chosen in a Cartesian coordinate system amaling to the fulfillment of
the following substitutions in the expression of te corresponding dynamical
variable used in CM:
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ri—fi=Xje +yie, +ziez=r; [,(i.e., X =xj [;etc.)
p. — P, =Px; & +Dy, & +Pz e3=-inl; D(i.e., Py, E'iho%;etc"
5 =1.05458871034J9

SO we get:
A=Al My, T Py Porees By t) .
Notes: 1. Heré: is the so-called Dirac-constant; its value is éqoidhe Planck-constanti22. In the

aforementioned expression of the A operator expliepending of time can be thought only (so-called
Schrodinger-picture). 3. By means of the Hamiltmperator of the NRQM corresponding to the
Hamiltonian function of CM, a relationship can benstructed between the analogs of a system
described in the NRQM and CM, respectively: if #ystem’s Hamilton-operator is time-independent,
we call it to be conservative in the NRQM as welll the operators of any important dynamical
variables of a conservative system (e.g., atomsnaolécules) are time-independent. 4. In case of the
construction of the operators of dynamical varialiiet known in CM the aforementioned procedure
can not be carried out (in these cases we havedadurial-and-error method). In the NRQM such a
dynamical variable is the spin (see Postulate liauge

Examples (for simplicity, the N = 1 case is given):
Dynamical variable: Operator:

Angularmomentum I=rxp=lye +lye, +1,e3,

I=>
-_

0z oy
Tyz—ih[z 9 —xaj,
ox 0z
A . V74 17,
I, =-in| X -y —
z [ ay yo”x}

then [i,.1, |=inl, (andeyclically): [iz,iu}:b u=2xy).

52 2 2 2 2 2
p_htﬁa 0 +d}_hm

2m__% dxz dyz 022 __Zm
2

Kineticenergy. T=

Totalmechanicaénergy: H= T+V=- Z
m

LA+ V(r)
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IA. The spin:

In the NRQM beyond its mass and charge, each partie is characterized by a
new dynamical variable, the spin (inner angular morentum) that can not be
deduced from the expression of position- and lineamomentum vectors (evident
that it is unknown in CM). For the characterization of the spin the § vector
operator is employed; for its components and squarghe same commutable
conditions have to be valid as for thel angular momentum operator were
deduced (hereafter the latter will be called as oribal angular momentum):

[éx,éy]zihéz (andcyclicall”;l@z,ézlz(§2,§XJEl$2,éyJE)Eb.

With the help of the aforementioned commutators theeigenvalues of the
52 ands, operators can be deduced:

2 eigenvalues - K =s(s+1)h2;

s
S, eigenvalues —» én =+sh,(s-1)h,(s-2)h,..., -Sh,

where thes spin quantum number is characteristic for the quaity of the particle,
whilst the & spincoordinate (or, spin-component quantum number)raises the
particle’s degrees of mechanical freedom frori= 3 tof = 4.

Notes: 1. In case of the electron the value ofsji@ quantum number s= %. 2. The raise of the
degrees of mechanical freedom can be interpretetleaslectron can be considered in a given (X,y,z)
position of the space ly= +1/2 or€ = —1/2 spincoordinate: (x,y®, 3. Naturally, the aforementioned
comments correspond to the chbe 1 particle. In a many-particle system, the cgpoading resultant
vectors have to be computed obviously whose eideesare characteristic for the physical statédef t
system (see Postulate 11). 4. According to the nlad®ns the electron spin hass¢?,0023 (so-called
Landé-factor) times greater magnetic dipole monaeanthe orbital angular momentum does. This can
be deduced from the Dirac-equation of the Relate/i@uantum Mechanics (RQM).

Il. The physical state:

In the NRQM the physical state of a system can benambiguously characterized
by the normalized ¥ function of the L, space; the¥ function is depending on the
all coordinates of the all particles:W =W(rq, &1, I, &2,.... Iny &N 1), where 1 and
&; are the position vector and the spincoordinate ahe ith particle, respectively.

Notes: 1. The possible values of thepincoordinate are the eigenvalues of $hgespin-component
operator (see Postulate IA). In case of an eledhese are +1/2 and -1/2 . 2. The name offthe
function is state vector/function or wave functi@n.The¥ state vector does not mean “charge cloud”
or “matter wave”; his meaning is nearer to “proligbivave”. The state vector has no direct meaning
for fermions (see below) like, i.e., the electross, it is evident that it can not be measured eithe
However, the meaning a2 is probability-density; the probability to findethL. particle around the
ry point in a d\f volume with&, spincoordinate, the 2. particle around theoint in a d\5 volume
with &, spincoordinate, ..., and thidth particle around theyr point in a d\{ volume with &y
spincoordinate is given by:

DW(ry, &1, T, Ep1eens I & D2 AV 080 VoA VR |
where the role of§-s are symbolic only (in fact summation and noggnation). 4. Used notations:

dxdydz = dVj; dV,d§; = dr;; dV,dV,0dVy = dV; diqdrolldty = di. 5. The¥ state vector is not
dimensionless: sinc&|W¥) = 1, e.g., forN = 1 particle the dimension & is L-3/2 where L is the
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dimension of the length. 6. The, Ispace mentioned before in the Postulate Il diffeos that of the
‘L 5 linear vector space of the one-variable functiprether being the space of functions with (®r,
together with the spincoordinateblvariables. The generalization is simple: an aabjt m-variable
function can always be written as the linear comatim of products of one-variable functions:

(A0 0m) = ZZMX Gjj_ bi(0l) 9;(0p) MGy,
where the first summation goes aldnghe 2% one along, ..., them-th summation along; thed(q))
functions (k = 1, 2’"'an , Where(xqI is the dimension of the space of functiongjofariable) form

the complete orthonormal (basis) set in thespace of, variable, the ¢ g constants are the linear
coefficients. Alternatively, we can use a much caegtpnotation, as thejlLspace of many-variable
functions is the direct product of the one-variabjespaces: b 0 L, O L, 0...0 Lo. 7. In case of
NRQM it can be easily shown that the dimensionhef phase space is onli{3or, together with the
spincoordinates isM). However, due to the probability description b& tquantum mechanics, the
physical state of the system at a certgiwint in time is represented by a function andmot single
point as in the CM.

I1l. The measurement:

In the NRQM the observation of an A dynamical varidble on a system
characterized by a state vecto™® results any one of the eigenvalues of the A
operator representing the A dynamical variable (incase of idealistically accurate
measurement), whilst theW state function of the system goes ‘instantaneousip
the eigenfunction of the A operator (correspondingto the just measured
eigenvalue). We distinguish two different cases:
1.) If the state vector of the system, preceded ¢h time the point in time of the
measurement, is equal to an eigenfunction of the dperator, certainly we get the
corresponding eigenvalue as the result of the measment:
AW =ay.
[In the 1.) case the value of A is ‘sharply’ define (i.e.,dA = 0, deviationless) on
the system; with other words, being carried out ‘vey much’ number of
measurements (precisely, if the number of the measements goes to infinity) the
A mean value of the measurements i& = a, i.e., certainly an eigenvalue (the
new concepts will be detailed below)].
2.) If the state vector of the system, preceded @ time the point in time of the
measurement, does not equal to any eigenfunction tife A operator, we can not
predict surely the result of a single measuremengnly

a) the A mean value (or, the quantum mechanical expectatiomalue) in
case where the number of the individual measuremesigoes to infinity:

_ (Y]AY
A = % (this is not necessarily equal of any eigenvalueand the dA
deviation:

A= (A- )22

B) or rather the [c;J¢ probability of the measurement of an eigenvalue:
2 2 ~
ci|” =[(#i |#)|” . (where Ag; =a;¢; , andW =T c;4; ).
|

[In the 2.) case the value of A is not sharply defed on the system (i.e., the value
is not deviationless according to the interpretatio of the CS].
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Notes: 1. In the @) case we have supposed tfais normalized, so, naturall¥, |c; [2=1. 2. Note that
according to the concept of CS in the 2.) case“¢lact” value of the dynamical variable A is not
“accurately” defined at all within théA deviation. Thus, thedA deviation does not limit the
recognition, because there no anything which camnolerstand better. 3. We have to note the soecalle
Heisenberg-type uncertainty relations as well. €hascording to the CS, do not limit the recognitio
and never will be a loophole against them. Accadmthat, at the simultaneous measurement of two
dynamical variable (let say A and B) on a systentf state, their deviations are not always independent
of each others one as follows:

(¥[A- &]v)

<W|l+’> . According to this dynamical variables represenitydnon-

JAEléBZ%EI

commutable operators bother the measurement of etedr (they have no common eigenvector-
system), so they can be measured on the systensepfrately. In the opposite case there is no such

bothering. In a special case when A = x and B, = we getdx[dp, > /2. Thus it is assorted with the

theory that the electron can be particle-lite £ 0) or wave-like §p, = 0) physical state, although the
NRQM does not predicate any “duality”: between #ferementioned two extreme cases there are
infinite number of intermediatphysical states as well. The electron is a point-like particleNRQM

henceforward. It has to be emphasized that 3B&AT > 7/2 Heisenberg-Bohr-type energy-time

“blurriness-relation” has no relation to the afoetioned uncertainty relations (within the framehef
NRQM). Here a formal similarity can be mentionedcéause the time has no operator, thus it has not

any deviation either. Th&EIAT = 7/2 relationship can be deduced by the CSMCO (skavipetogether

with the so-called quantum mechanical time-denrgatiithin the frame of the NRQM. 4. The system
could be brought into a “pure” (i.e., quantum megbtally unequivocally determined) physical state
e.g., by observation. A system possess$idggree of freedom could be brought into such diptthe
simultaneous measurement of dynamical variables represented&pyAz,..., Af self-adjoint and
mutually commutable operators (Complete Set of MiljuCommutable Operators, CSMCO): such a
measurement is called as complete measuremenCINELCO can be picked up (fixed) in many ways;
for our gals the most profitable CSMCO containsagisvthe Hamiltonian operator of the system. It is
not always necessary to make a complete measurémertter to get a pure state of the system. le cas
of chemical systems (atom, molecules) the grouatk s often non-degenerated. In such cases it is
enough to measure the energy and this yield agiate.

[ll. Equation of motion:

In the NRQM the time dependence of thé state vector is determined by the so-
called time-dependent Schrédinger-eqution, as folles:

where H is the Hamiltonian operator of the system.

Notes: 1. In the time-dependent Schrodinger equatie roles of the coordinates and the time is not
“symmetrical”; this is not erroneous because oaptkj is non-relativistic. 2. In the possess ofittital
physical state, the physical state of the systembeacomputed for any point in time later (caugglit
however, due to the probability description theee rio determinism. 3. The aforementioned
Schrédinger-equation is time-reversal as well, beeahe square of the absolute value offthetate
vector has only a physical meaning for fermionsTHe measurement can not be described by the help
of the time-dependent Schrddinger equation causitier: all the previous trials (among them those
which included the interaction between the systaththe measurement apparatus), had fault.

V. Antisymmetry and symmetry:
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In the NRQM the particles characterized by identicd inner state attributors
(mass, charge, spin, etc.) have to be consideredidentical particles. The state
vector of the fermions (electron, proton, neutrongtc.) of half-spin (s = 1/2, 3/2,
...) is antisymmetric for the exchange of the allspace and spin) coordinates of
the identical particles:

Y (11,612,620, &L 6 s ENGEND =

_qj([l!Ell[Z!Ez r--y[j:fjs---:[i 1&5"-|[N 1EN)
(i.e., theith and jth particles are identical fermions).

The state vector of bosons (photom-meson, etc.) of integer-spin (s =0, 1, 2, ...) is
symmetric for the exchange of the all coordinatesfahe identical particles:

b4 ([1’ El’ [2’ 62""’ £|1 EI 1""_rj ' {J ""!_rN 1{N ) =

Lp(l‘l! 611 12! 621"'1 _rJ ] fj l"'l_ri 1£| !"'l_rN 1{N )
(i.e., theith and jth particles are identical bosons).

Notes: 1. The resultant of the aforementioned wamitisetry postulate is the so-called Pauli-principle
(within the one-particle approximation!). 2. Sinttee NRQM does not know trajectories, particles
possessing the same set of inner state attribcéorsiot be distinguished by their outer statelattions
(trajectories) either. Even if we have isolated idhentical particles at the start of the time bgamn-
permeable wall, after a small amount of time thebpbility function of the particles will overlap én
can not be used as outer state attributors. 3. Wehhelp of a simple rule we can decide whether a
particle composed by elementary particles are fammior bosons. In case of odd number of fermions
the composite particle is fermion, on the otherdhasomposite particles containing even number of
fermions play the role of bosons. In case of n¢ati@ms the sum of the atomic number and the atomic
weight is crucial: even (boson), odd (fermion).A.the description of the ideal gases consisting of
fermions or bosons we have to use different skegistn the CM (Postulate V is not known) the
Maxwell-Boltzmann statistics is used, in case ef BHRQM the Fermi-Dirac statistics has to be applied
for fermions, and the Bose-Einstein statisticsssdufor bosons. The Fermi-Dirac statistics is irtguar

in the metal and semiconductor physics, the Bosstg&in statistics is important in case of atoms or
molecules at low temperatures (rarely) only. In diemistry the use of the Maxwell-Boltzmann
statistics is convenient generally.

VI. Irreducibility:

The eigenfunctions of theH operator are the basis functions of the irreducit
representations of the symmetry group of the system(that is, all the
eigenfunctions of the Hamiltonian operator lie in he subspaces belonging to
various irreducible representations of the system’symmetry group.

Notes: 1. The spatial symmetry groups of the Hamiéin operator of atoms and molecules are called
as point groups (due to the fact that any of thersgtry operations allows invariantly at least onep
(the center-of-mass of the nuclear frame) of thetesy. 2. The obligate degeneracy is caused always b
the symmetry; however, we know the so-called actaelegeneracy as well: the latter usually occurs
at special external circumstances, e.g., at cevilire of special field strength), or at speciaate of

a structural parameter (e.g., bond length). 3. Huamiltonian operator of molecules can be
“decoupled” for the sum of electron structural,reitional and rotational Hamiltonians in the adiabat
Born-approximation, the group theory can be appliedeach topic separately at the quantum
mechanical description. 4. At the use of the retstd Hartree-Fock (H-F) procedure the aforementione
Postulate is valid for the eigenfunctions of thecloperator (i.e., for the one-electron functioos,
guantum mechanical “orbitals”). 5. With the help tfe Postulate VI the Postulate V can be
reformulated: the state vector of particles of getespin make a basis for the totally symmetrical
irreducibilic representation of the! order § ‘symmetrical group’, whilst the state vector offkspin
particles transforms as the one-dimensional antisgtric irreducibilic representation of the same
group. 6. The character table of a point group doeissay anything about the spin degeneracy
(multiplicity) of a state: this has to be investiggh separately.
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INTRODUCTION

...The number of the organic compounds
(C,H,N,O,S) whose molecular weight is less thafb0
g/mol, has been estimated th0290.,

USA National Research Council, 1995.

...Chemistry: originally and traditionally an
empirical science.

"Every attempt to employ mathematical methods
in the study of chemical questions must be consater
profoundly irrational and contrary to the spirit of
chemistry. If mathematical analysis should ever Hoh
prominent place in chemistry - an aberration whiadb
happily almost impossible - it would occasion a rap
and widespread degeneration of that science."

A. Comte, 1830.

"The underlying physical laws necessary for the
mathematical theory of a large part of physics atitke
whole of chemistry are thus completely known, arhe t
difficulty is only that the exact application of #se laws
leads to equations much too complicated to be stdub

P.A.M. Dirac, 1929.

Appearance of the computers
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"In the past quantum chemists believed that their
foremost duty was to develop approximate methodk wi
which one could reproduce physical quantities thedn
be measured accurately. Obviously, it will always b
necessary to check new theoretical methods but the
principal duty is becoming more and more the
computation of (in principle measurable) physical
guantities which are not or not easily amenable to
experiments (e.g., properties of short-lived spstidt is
increasingly the cost which determines whether one
computes a given physical quantity or decides to
measure it..."

E. Kapuy, 1969.

In our days the theory started to play a
commensurable role with the experiments in the
chemistry. Computational results are often publishd
even in preparative/experimental papers.

The advantages of the theory

1.) There are NO qualitative problems (like
identification);

2.) Stable molecules as well as transient species
can be treated equivalently;

3.) The results are independent from any random
noise.

4.) "Easy", safe, rapid method.

The disadvantages of the theory

1.) To reach the experimental accuracy is very
expensive and difficult;

2.) For complex systems (many degrees of
freedom) can not be applied (thermodynamical
averages);
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3.) In many cases the calculations mean
"numerical experiments”, they do not help to
understand the situation...

History of quantum chemistry (Q.C.):

l.) The ancient times of Q.C.1927-1950

The fundamental bases:

Quantum Mechanics:

A.) W. Heisenberg, Zeitschrift fir Physik 1925,
33, 879;

B.) E. Schrédinger,Annalen der Physik 1926,79,
361, 489.

First paper in Q.C.:
W. Heitler & F. London, Zeitschrift fir Physik
1927,44, 455 (H,);

The first three books on Q.C.:

1) H. Hellmann: EinfGhrung flr die
QuantenchemieFranz Deuticke, Leipzig, 1937,

2.) Pal Gombas: Bevezetés az atomfizikai
tobbtestprobléma  kvantummechanikai elméletgbe
Kolozsvar, 1943 (today: Cluj, Romania);

3.) H. Eyring, J. Walter & G.E. Kimball:
Quantum ChemistryJohn Wiley & Sons, 1944.

The computational speed~101 Flops

II.) The middle age of Q.C: 1950-1980

expensive "big" computers
The computational speed~100 MFlops

Computational efficiency: 1® - 10° $/MFlops
NB: MFlops = Million Floating Point Operations per Second
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I1l.) The modern times of Q.C. 1980-today

"cheap", very effective workstations
Computational efficiency: <100 $/MFlops

IVV.) The future of Q.C.: (just started!)

parallel computational systems
The computational speed> GFlops
have reached the TFlops, (T=tera=16)
Blue Gene Project (USA): 280 TFlops
(2005, LLNL, 216 nodes)

The grow of the computational efficiency is quite
even, by about a factor 2/year.

The key of the development of Q.C.

The computers (which also stimulated the
development of theoretical methods). Since 1970 the
computational speed increasedby 6 orders of
magnitude, and, approximately, in this growing abot
3-4 orders of magnitude is the developing of the
computers and 2-3 orders of magnitude is the
perfecting of the procedures and programs

Today:
treating of large molecules; molecular graphics is

included into the big program systems. Not only the
specialists but also the preparative chemists applye
computational results - a big break-through of the
guantum chemistry.
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ATOM C UNI TS:

Action % =h/2r = 1.05457266(63)0°* Js

Mass m, = 9.1093897(54)03! kg
Charge el = 1.60217733(420°C
Length a, = 5.29177249(24 0 m

("Quantities, Units and Symbols in Physical
Chemistry", 2nd ed., IUPAC, Physical Chemistry
Division, Blackwell Science, Oxford, 1993.)

energy & = 4.3597482(26)08 J
time  t, = 2.4188843341(29)01' s

1. THE HARTREE-FOCK METHOD

n electrons are moving in the field of the fixed nclei
(Born-Oppenheimer approximation—see Appendix I)

The non- relativistic electronic Hamiltonian:

N 7 nn1 N N7z_7
A=-34-3 % B4y Yo+ Y 38D
2z j=1a=1fa 1=i< j lij 1=a<b Rab

this term
IS constant

for fixed

nuclei

The H-F method corresponds for the ground state
(but can be generalized also for excited states...)
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The electronic Schroédinger Equation:

HLIJ| (Ql’(_jz,---,gn )= ELIJ| (_q_ ,_C& ,...,_C|l1 )
whered; =X, i, z;, &;
(spatial andspin coordinates:
0 <X, ¥j, <0G =2Y2).

discrete —— chemistry
E, <

continous —— physics

naturally, |W, 2 is the probability density:

HQU| (d1, gz,...,gn)zd r1dr, [1.Ldr, =1 (normalization)
4

In the absence of ext. magnetic field:
real functions.

Orbital-approximation :

A two-variable function F(xq,X,) is usually more
complicated than the product of two single-variable
functions [f(X4)g(X))]

It is evident that the expression ot (d,d>,...,d,)

using one-electron functions (orbitals)s of essential
importance, but it is only approximately true...
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1 N Z4 nq1 n. n n1q
H= Z[- Aj- X ]+ZZ— Xhi+ X >—
i=1 2 a=1lia 1=i< j i =1 Fi< | fij
...because of
this term
(repulsior)
Let it be
ACxy) = AB(x) + Al2)(y) and let they be

(1)( x)f. @ )( x) = ai(l) Dfi(l)( X)

AP(y)gly) = al? ld y)

(A AW and A2 are self-adjoint operators!]
then the eigenproblem ofA(x,y) can be exactly
expressed as

Ay HD00ePy) =188 + a2 1B x)gly)

(c.f. also size-consistency...)

Accordingly we suppose:
W(dy,dy,...,dn) = ¢1(d1) [¢o(d)L..I¢n (d)
"Hartree-product”
where the_one-electron functionsre the
so-called spin-orbitals
Ck (i) = € (XK Yk Zk €k ) = G (Tk 1€ )
Unfortunately, the Hartree-product does NOT satisfy
the Antisymmetry Postulate of the quantum
mechanics, thus it is NOT a reqular approximate
wave function (= trial function , "Ansatz", ¥).
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Antisymmetry Postulate:
for electrons (identical fermions):

LP(Q]_;QZ!;QU;QJ!;Q[‘]) =
~W(dy, dg, .. by yed oh )

The Pauli-principle (exclusion principle) is a direct
consequence of the Antisymmetry Principle for the
case of the orbital approximation. The Antisymmetry
Principle (or, the Pauli-principle) is essential fo the
description of the shell structure; without it we would
not be able to give even a first-order approximatio.

The simplest trial function is the_Slater-determinant:

¢1(1) ¢2 @) ...¢n(D)
®(2) ©2(2) ... on(2

LTJ = CP(Q]_!QZi;Qﬂ )= N

@(n) @2(n) ... er(N)
[where we have used the short notation
¢k (di) = Gk (Xk: YKo Zk:€k) = Gk (K) ]

The Hamiltonian is not separable for the electron
coordinates, but we can average the repulsion

How to find the spin-orbitals?
Variational Theorem — minimization:
(W]AY)
\P[®)
whereW is the expectation value of the

energy, H is the ex~actnon-relativistic
Hamiltonian, and W is the trial function.

W = - min
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Many terms,... "ltis only a book-keeping problen."
(Pulay)

We can use the following constraint (without lossf
the generality):

(al@) =14 (d)g (@)dr =4
orthonorméty (ON) of thespin- orbitals
(using, i.e., Schmidt-orthogonalization)

Nota bene the spin-orbitals are not uniquely
determined! The idea of "spin-orbital" exists rather
in our mind than in the Nature. The "cut-up" of the
many-electron wave function into spin-orbitals is ot
unambiguous.

Consequence: we can "mix" the spin-orbitals, and
can get even "better" set than the "original" one..

After much manipulations ... we get:

n nn nn
W= Yhy +>> g -2 > Ky
k=1 K | K |

(for ON spin-orbitals)

[wherek,| are indices of the spin-orbitals,
e = (| Naa ) = [ @ (d) g (d)d 7

kineticenergy+ skeleton(attract.)
(core integrals)

The electron coordinates are not distinguished
because the value of the integral is the same fdram.

2 = (1 = X2)2 + (Y1~ ¥2)2 + (21 - 2)?
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Jui = <¢k(d1)¢r(d2) ¢k(d1)¢r(d2)>

Ifo (dp)® E(@(Qz) 2drydry

(coulomb integrals: clear meaning,
repulsion of the electron "clouds", always
real and positive)

Kkl = <¢k(d1)¢r(d2) ¢k(d2)¢r(d1)>

i a(d)gr (Qz)E%(sz (dy)drd7

(exchange integrals: less clear, comes from
the determinant directly since the electrons
are keeping out of each other; always real
and positive, thus reduces the energy com-
paring it to the Hartree-product...)]

E | with interaction
(Hartree )
i

with interaction
(Slater )

without interaction
(Hartree = Slater)

Further approximation:

In d-s the spatial and spin coordinates are treated
together.
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Spin coordinates are much simpler than spatial ones
— only two possible values

On the other hand, Hamiltonian does NOT contain

the spin in the non-relativistic theory (spin-orbital

coupling is more important for inner shells of heavy

atoms)

—We can separate formally the spatial and spin parts

of the spin-orbitals:

¢(d) = ¢(x,y,z,&) = u(r)n(g) ,
whereu(r) spatial function (AO or MO)

a(s)
£(S)

and the spin-functionn(f){

1~!~ X X 1

& |

| L L 1
2 2

2 2

o(8) BE©)

[the most generam(&) function cq-0(&) + c&B(E) would
be something like this
1~!~ X

X

|

]
1|
2

!
i
2
¢ oUE) + C2 B(E)

Unrestricted Hartree-Fock (UHF):
for the o. and B cases differentu®(r) and ub(r)
functions (determined by the Variational Principle)
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Problem: S,,$%and H are commuting operators

(because the Hamiltonian does not contain the spin!
Unfortunately, due to the Orbital-Approximation, the

UHF W trial function is not an eigenfunction of&?
generally (excepting for singlet and high-spin
multiplets, it is only that of S, and H): S(S+1)
eigenvalues,
S =0 singlet,
= 1/2doublet,
=1 triplet, etc., ...)

Restricted Hartree-Fock (RHF):

It is NOT appropriate for S# 0 cases.
In the singletcase § = ( the solutions_could be
"coincided" for "usual" molecules (closed shell e.g.,
H-,0)
Condition (not suff.): evennumber of the electrons
W(r) = ub(r)
The spin-functions are orthonormalized (ON):

(@(@)|a(§)=]a @)a(é)dé =

(B(&)| &) =18 (HBE)IE =1

(@(®)|B(&)=]a (OB =
=(BO|a(@) =18 (Ha(&)dé =0

Let the u,(r) functions also ON:{uy (ry)|u (ry)) = Oy
(without loss of generality)

RHF, 1@ singlet trial function (eigenfunction of §2
and S,), minimizing W according to the Variational
Principle ...
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e = (@ (d) | g (dp) ) = [uic (rp) A (r)dV O
17k (&)°dé = Juk (rphu, (r1)dv

Ju = <¢¥<(d1)¢?(d2)

1¢k(d1)¢f (d2)> =separable
2

”Uk(rl)zr112UI (r 2)|2dVAdVs Ty (E0)/%d & T (£2)%d &

S % (d2)g (d1)> =separable

Kk :<¢k(d1)¢f(d2) -~

[fug(ruy (rz)rllzuk(rz)ul (r)dVadVs O (E)m (&) D
0 ()7 (E2)dé>
using appropriate factors, utilizing 3 = Ky,

simple form:
n/2 n/2n/2

W=2%h + 3 2(2) — Ky)
k=1 k |

(for ON spatial orbitals)

[...Definition of one-electron orbital energies:
n/2

ek = hp + 2 (23 — Ky)

|
Total electronic energy., (€x + hyg) =
=22 ek ~ 2k 21 (2 ~ Ki)

A rule of thumb:

ESCF: 0.67[Zi€i
(wrote about it a lot, qualitatively it is goodif the
Aufbau-principle is valid but not too interesting).

]
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Possibilities of solution
1.) Numerical:
Using a grid, numerically calculate theu, (r)

functions, interpolation, fitting by a "smooth"
function...
For atoms uy (1) =R(r)Y,"(8,9)
r,0,¢ : spherical polar-coordinates
YIm (3,¢) spherical harmonics
(polinoms on a spherical surface)

Charlotte Froese Fischer:

"The Hartree-Fock method for Atoms"

John Wiley&Sons, New York, 1977.
2He -... -86Rn;  (RHF and UHF)

For molecules it seemed 20-25 years ago to be im-
possible. At present the situation is changeable;
main problem: the atoms are_sphericglthe grids
are guadratic ("quadrature of the circle" Pulay).
The density is very uneven: at the nuclei large,
at another places small... so we have to use:

2.) Basis set:
Using a finite basis set (LCAO-approximation):

U (1) = 22 Xp(r)Cpk
p=1

"atomic orbitals"
more correctly: basis functions
MOQOs are similar to atomic orbitals in the nearby

of nuclei —centrally symmetrical — x,(r) centered
on the nuclei.
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The basis set is a crucial point of the calculatian
It is necessary but not sufficient condition that aileast
for atoms they must give good results - in this case
still possible that for moleculeshey give bad results..|

Test for the basis setaugmenting the basis set by new
functions...

Size of the basis sein> g :
m < 2 impossible (can not mix ON functions using less
b. functions); m = g IS not appropriate either, not

flexible). Good: m = (L5- 15 x g .
Requirements for the basis set

1.)m2E
2

2.) good description (comparison with other
calculations)

3.) Make the calculations easier.

4.) Must give relatively "independent" descrip-
tion on different parts of the system
("floating" b.f. between atoms - not good)

Types of basis sets
[Remember!

H-atom: Wom(r,8,4) =Ry (NY," (9.0)
whereR,(r) contains exponential form
Y,"'(9,¢) the spherical harmonics]
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Slater-type basis (STO):
X5 C(r9,0)=Nr"e(=2n Y™ (9.0)
e’ good description,_cuspat the nuclei,

exponential decayat larger ...

Problematic: 3.) point (see above)- numerical
difficulties...

Boys-type basis (Gaussian, GTO):
GTO, . _ INE(=Cr2)Y (S, 4)
Xp ~(0)= TRAVARYY 2
NXTy"z"e(—=¢r ")
[herex"yYz" polinoms - "cubic harmonics"]

difficulties: has NO cusps, NOT exponential
decay

cancel of these: lin. combination (e.g.
3 terms)

y large C

_medium¢
small {

r

advantages: very easy to get integrals...
Contracted basis sets

fixed lin. combination of several Gaussians;

idea: to approximate STOs

Pople's basis sets: most popular ones

For example:

STO-3G: 3 contracted Gaussian primitives
rather bad, but the "true" STO is
also...

Minimal basis set

basis set size: occupied AOs in free atomic states
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STO-3G minimal basis:

HZO: 019 029 O2px’02py’02pz’HlsA’H1SB
gives ~10%for the bond angle
gualitative mol. geometry
not used for publications anymore

4-31G:
H: 1s 1<'
—~ —~
3 Gauss 1 Gauss

B-Ne: 1s 2S,2px,2py,2pz 2s',2px’,2py’,2pz'

4 Gauss 3 Gaus 1 Gaus

Comments: H 1s more compact, important for
the description of the cusp;
H 1s" more diffuse, less important for the energy
heavy atoms: 1sore, practically does not change
for formation of molecules [except hyperfine
splitting]
heavy atoms: 2s,2px,2py,2pmore compact
heavy atoms: 2s',2px’,2py',2pzmore diffuse
effect: electron cloud can "breath",
electrons can go to more diffuse part

6-31G*
1s-6 Gauss: Much better description for 1s core,
but it is not so important — relative energies are
essential.
31: similar as above...
*:. d-orbitals for the C atom (e.g.)

6-31G**: d-orbitals for the C atom,

p-orbitals for the H atom

In the ground state of free C and H, there are
NOT occupied d (or p) orbitals.
However, makes the description of the polari-
zation possible
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D00 — G

polarization

|

can NOT describe
using s-orbitals only
(but can by p, d, f, etc.)

Nota bene orbitals whose angular momentum
higher than f (I=3) are not important from a chemial
point of view. But f-orbitals can influent even themol.
geometry!l!

Determination of the Cpx LCAO-lin. coefficients:
(the shape of the MOs)
by the Variational Principle (minimization...)

for ON spatial orbitals we got:

n/2 n/2n/2
W=2>h+ D 2 (23 — Ky )+ nucl repulsion
k=1 k |

T

we can NOT abandon,
we add it finally

m
Substituting uy (r) = 2 Xp(r)Cpk into W, we get
p=1
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ke = (Ui | e ) = | Uk (r)uy (r)adV =

m m
=¥ ¥ Ckaqk< > > ¥ Ckaqkhpq
p=1g=1 p=1g=1

T

(one-electron integral)
can be calculated for knowryp-s;

2 1 2
I =[]k (ry)) r12u' (r2)“dwvdV, =

mmmm
ZZZZCkaqurI CsI<Xp(r1)/Yr (r2)

Xq(rl)Xs(r2)> =
pgr s

2
mmmm

=¥ 3% 3 CpkCakCri Csi(pdrs)
pgr s

K\ =? Two possibilities: the sam¢ pqrs) integral

with different C coefficients, or the same coefficients
with different integral ... We choose the second ea:

Kid = TUk (DU (F2) Uk (r2)u () dVhlVs =

2
mmmm
=¥ 333 CpkCqkCri Csi(pdra)
pgr s

Here the (pq\rs) integrals are two-electron integrals;

(pdrs)= <xp(r1)xr(rz) Xq(rl))(s(rz)>
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Nota bene the product of two Gaussian is alsojfl
Gaussian (similar to the center of mass - reducéd
mass problem...):

E.g., let two Gaussian primitives with exponents{
and C, at two centers

R, and Ry, then:

_ Gl (R{~R)?
o~ (rR1)? g5 L2(-R 2)° _ =e L U+2 [
ry (Zl"'ZZ)(r'R) ’
where _GR1+(oR,
(1 +(o

Pulay's proof?: no another function with this charect.

...It is reasonable to use the "density matrix":
n/2

Dpg = sz: C pk Cak
(obviously,D =2 ggT, [here D and C matriceg| the

special case of the general density mx introduced/b
Wigner and others...). Thus

W =

mm mmmm

>> hpDpg * - ZZZZquDrs[Z(DCWS) (psra)]
Pq p qgrs

N
(due to2-s in D matrix...)

Note thatW is a quartic function of the lin. coeffs—
now these are the variablel

Minimization: deriv.=0 (necessary but not suffic.)
Do Not Forget!!! W is valid ONLY for ON orbitals!!!
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Conditional minimization by Lagrange-method

Method of the Lagrange-multipliers:
if we have to solv. f(x,y,...,Z) - min
by the conditiong(x,y,...,z)=0 , we have to solve
L =f-Ag - min (accordingto x,y,...,zand ).
Derivation byA and ...= 0, the g condition is sadigf
How it works? Even the mathematicians are

thinking...

Our condition(s): (uk (r)|y (r)) = juii (Nu (r)dV =9y
for eachk,| we have 1-1 condition, we introduce

for them 1-1; multiplier, thus
n/2n/2

-2% ZI:}\Ik(<uk Uj) =)

here-2 only for a convention...
[Introducing the Soverlap matrix:

Spa = {(Xp®)|Xq(1)) = [ Xp(xg(D)dV]

mm 4
LCAO expans.: (Ug|u) =X ¥ CpkCqiSpq = (cTsC)y
g

5 r 2O

Now:
n/2n/2

/~=W-2% zll)\lk(<ukul>_6kl)=

n/2n/2 m m

= W'ZE %Mk(ZZC;qulqu = Q)
p g

Derivation of £ according toCy; (we need a coeff.

which does NOT take play above...)
Simplification: be all orbitals real!:
[Trick : for CpCqx enough for one of them to

derive, then multiply by 2;
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for CpkCqykCriCg also, then multiply by 4 .. ]
Thus:

oL m mmm n/2
0=-""=&3>NhCqi + XXX Cqi XCyCqyl2talrs)-
2o q gr s I

mn/2
~(tsra)] -2 IZSthqv‘n

q

It is reasonable to write this in matrix notation:
mm 1

Gq = > [(tqlrs) _E(tirCI)] Drs

s

SO we get:

mn/2

g(ﬂ + G)iq Cgi = 2 % Sq G
q q

Introducing the new (Fock) matrix F=h + G we get
the following matrix equation finally:

FC=SCA
where ...
1 m 1 N2 1 m 1. n2 1 p/
1 1 1 1 1
A
F C = S C | ne
m m m m
Comments:

1.) not a standard eigenvalue equationAX = XA,
where A is diagonal)

2.) A symmetrical matrix (comes from ON
conditions), but it is not obvious that it is diagmal?
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3.) TheS matrix appears because the basis setis NOT
ON!!!

4.) The definition of F containsG, and in G there isD,
thus, obviously,F depends orC... How to solve?

We will manipulate with the equation, and change &
form to an eigenvalue equation:

We know that the MOs are not uniquely defined
(determinants, vide supra), we can mix them freelpy
unitary transformations...: C = CU

Unitary transformation
u' cosa -sing\( u _

e.g.:( .1]=( _ j( 1) rotation by o
uo Siha Cosaxr )\ Uo

For unitary transformations/operators: QT = g‘l

[Why unitary transformations? Becauselet(U )=1, so
dei(C) = deil(C")dei(U), does not changeV at all...]
Now:

Fcu=scua /'’ right

sinceU optional unitary (or orthogonal) matrix,
canbechoseras

L=J41L=JJr =& (where ¢ diagonalmx)

Let us define the self-adjoint matrice@'l/ 2 and §1/ 2
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(where(S2)? = st and (S22 = 5)
FC'=scuau’ 1Y 2 eft

S 1/2FS v2gl2ce g 1%;2
%/_J
| Sl/2
sV2pg 2 gt 2g = (S”Qs

denotedV = Sl/ZC we get

standard eigenvalue equation!
C'= §'1/ 2\=/ the so-called "canonical orbitals"...

Above we have used a finite basis set. Can be also
done generally, thenF Fock-operator ...

"Description of one electron in the field of the
nuclei and in the averaged field of all the other
orbitals occupied by electrons”

(kinetic + nucl. attraction + averaged electr.
repulsion + exchange)

Solution of the FC=SCe equation: SCF method

(Hartree). Older method than the Hartree-Fock
procedure itself,

C(O) F(O) C(l) F(l) ...— convergence (?)
in case of divergence it can be forced to converdboy,
e.g., DIIS, Pulay)

Test of convergence: better orE than on C (in the
case of degeneration orbitals can mix freely...)
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Remember!!! It is not sure that the result will bg
minimum (can be any stationary point, evel

maximum...).

—

Method: C.C.J. Roothaan & G.G. Hall
(independently)

University of Chicago, Roothaan, memorial table:

"At this place mankind has activated the first self

sustaining molecular SCF calculation, initiating tre
uncontrolled release of marginal publications."

Organization of a simple quantum chemical program:

iﬁ» Nuclear coordinates
and charges '
l g D=2CCh < disk
nput . G, F=(h+G)
> Basis set (m) FC=SCe
no !
—=—| convergence test
Integral calc.
Spg and hpq yes
m(m+1)/2 y Y
l calc. of E=W
dipole moment
(pars) calcul. disk Y |expectation values
save ondisk ——— print of MOs
Y electron density
gener. of SCF coeffs. k population analysis
P ,
Notes:

a.) nuclear coordinates - using mol. graphics
b.) basis set "menus" (e.g., 6-31G**, or own...)
c.) two-electron integrals (4, external storage)
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d.)
Drs — Gpq

Dpg ~ Grs
(pgrs)x 1 , altogether 6 cases

e "> aaa

\

e.) the representative of thaP is C.

Today the Hartree-Fock method has not too much
future, still more than 90 % of the calcs. are maddy
it.

f.) First-order magnitudes (geometry, dipole
moments) are good; second-order ones (force
constants, polarizability) are quite good.

But!!l: F 5, NO, NO,, OF,, O3, and generally the
explosive agents» molecules of "jam-packed"
electronic structure — bad results by Hartree-
Fock method.

g.) technical problems: calc. of pqrs) integrals

number of them roughly ~m#

for real functions, the interchange ofp - q (or,
I » S)does not change its value» divisor by
2x2; also, interchange ofpg - rs..— divisor by
2— finally, m#/8 which is also quite large.

contraction of the basis set also does not
diminish the integral calc.: the integrals between
the Gaussian primitives have to be calculated,
only the storage reduced (for contractions!!!)
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For example 7-circulene (GgH14)

not planar, C, symmetry

4-31G basis set, 280 contracted functions,

12 million integrals (?)

Method of shared exponents

(Pople's group) the samé€ is used for s and p
orbitals: "shell" integral; 4 x4x4x4=256 integral
can be calculated together

h.) Basis sets and large molecules:

p g small overlap if large
distance... the distance between pg and rs is not
interesting - slow decay (1/>,)
but between p and g (and r and s) asymptotic...
m2(log m)2 above a small threshold value

(smaller thanm3)
works only for molecules large enough...

HF: Possibilities today:

Molecs: ~ several 18 atoms, nx 10000 basis functions
Disks: earlier 100 MB was "big" for serious big
computers, now TB-s can be used for PCs !
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J. AImlof: in the 80s years: "direct SCF" method
the integrals are not stored at all; if necessary
they will be calculated again. Much calc.s but
the size is unlimited. (E.g., SCF converg. in 12
cycles, thus 1 has to calc. again...gradient:
equivalent to a few SCF cycles)
SinceF = h+ G(D), recursive generation of the
Fock matrix:
F=F'+G0-0"
(F': i index is the iteration step) up to 10 steps
are good (due to the accumulation of the
numerical errors).
If an integral is small, and theAD = D' -D' is
also small, it can be abandoned: the magnitude
of an integral can be estimated in advance, so if

we estimate the biggest one of a shell-integral
and the max.AD and if their product is < 10°/

the shell-integral will not be calculated.
Schlegel up to a certain size the direct method is

faster than the traditional one.

if G, we need withe (e.g.= 108) acc. and

AD,d <, the integral is important in F, only if

£
rs) >~
(pars) n

Take care! The differences converge to 0 accordirtg
the SCF iteration, and the acceleration techniquesan
exaggerate the errors near the end...
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R. Ahlrichs: "semi-direct" method
"the 75 % of the computational work is caused
by the 25 % of the integrals”
e.g. for a"long" contr. function (like 1s in 6-31G)
the 1s-1s overlap is much more expensive than
for a not-contracted ones— only the expensive
integrals will be stored, others by direct method.
Van Alsenoy (started the work with Pulay in 1981):
"Multiplicative Integral Approximation (MIA)"
in case of compact and diffuse functions:

X2

X1

(diffuse functions are important e.g. in anions)
X1(DX2(r) ~ X2(R1)  [Xa(r)
%K_J

at the centrum
(constant)

Example:
diketo-piperazine (Van Alsenoy & Pulay)

(1+12 = 13 molecs, 186 atoms, 1012 basis f,
crystal lattice was simulated by charges;
without any symmetry;

@)

HN

© geom. opt. for the crystal on a

small personal computer...
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2. DERIVATIVES

Energy: in the chemistry only the_relative energyis
important at the energy minimum. Thus,
obviously, for the chemists it is not sufficient
one energy value.

Potential surface(hypersurface) is only a model (not
the reality): function of the molecular energy in £rms
of nuclear coordinates.

Variables Function
1 curve
2 surface
3 hypersurface

Equilibrium geometry: can be determined effectively
if we know the derivativesof the energy (at least the
first derivative) according to the nucl. coordinates.

External perturbations (like F, H ) are similar to the
change of the nuclear coordinates. Difference: ifhe
nuclei are moving, we have to move the basis
functions, too (except if the space is "jam-packedby
functions...). In the case of external fields therés no
such "moving": the electronic cloud will be deformed,
but mostly the outer part. There is no need to move
the basis set because the coulombic attraction has
deep minimum at the nuclei...
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Used notations:
R - nuclearcoordinate(Cartesiasorinternals)

of course3N Cartesians3N -6 intern.coords.
Rp - equilibrium geometry
AR - R-Rp
R; — thea-th nuclearcoordinate
derivation - in superscript :

Ea:(ﬁEj
IRa g,

F andH electricandmagnetidields (a = x,Y,z)
C; thei-thparameteof thewavefunction

We are NOT able to describe the whole pot. energ
hypersurface completely— we need its Taylor-
expansion.

The Taylor-expansion of the mol. energy around the
R equilibrium:

E(R) = E(Ry)+Y EaA_I%+%ZZb', E°A RA R+...
a a

The expansion is useful in the vicinity oR . Here
Eab — dZE
IR3IRy
Rg

If we would knew E& Eab Eabc _ (and not only E), we
would have much more information. Of course, the
number of the derivatives is very big: e.qg., if the
degree of freedom isl2 , there are 12 first derivs.,

12x13/2 second derivs., etc.
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In the aforementioned case we could get a lot of
information. The first derivs. give (with minus sign)
the forces acting on the nuclei (geometry), the sead
derivs. are the force constants (vibrational fregsin
harmonic approximation, vibr. amplitudes), the third
derivs. are the vibr. anharmonicities, the fourth
derivs. have similar importance as the third ones..

Calculation of the derivatives

1 1
Numerical Analytical
Numerical: difficult (using energy-points)

The advantagesf the analytical method:
1.) More information from 1 calculation
Of course, this might require too much
effort; fortunately, this is not so, the ratio of the
information/effort is growing!!!
2.) Numerical derivation of a function is difficult:

o
Va

A

two points - first derivative,
three points- second derivs.,...

The formula error can be negligible for neighboring
points but the numerical error (due to the limited
accuracy of the computer) will be larger in this cae..
The analytical calc. is more accurate.

A ~1

The bigger the molecule, the larger the importancef
the argument outlined above.
The drawbacksof the analytical method:
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1.) complicated programs

2.) larger comp. time
(10x1 hour is easier thanl1x10...Today this
is decreasingly...

Perturbations: Topics:

O0E/0R, forces on nuclei; equilibrium
geometry; geom. of transition
states

0°E / 0R-0R, force constants; fundamental
fregs., shapes, vibr. amplits.

63E/0Raa R0 R anharm. of mol. vibr. (cubic

o*E/ 0R,0R,0R.0 Ry and quartic constants are
~ equiv. important)

OE / 0F, dip.mom.

0°E/ 0RO, polarizability

o°E/ 0F 030 K, hyperpolarizabilities [today
d%E/.... have great importance: "non-

linear optical matters":
matters of non-linear polariz-
ability — conversion of the
freq. of the light 2%, 3x) by
optical converters...]
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Mixed terms

0°E/ 0R,0F, dip.mom. derivs (IR intensity,
dominant term)

0°E/ OR,0F,0 Iy polariz. derivs (Raman int.s)

mixed terms of

higher order intensities of non-fundamental
fregs

0E/0H, magnetic dip.mom. (zero for
most molecules)

0°E/ 0Hq0Hp magnetic susceptibility (deter-
minates para- or diamagnetic
character)

O°E/ 0F0Hz0 Ry important in IR circular

dichroism & optical rotational
dispersion [peptide-structure]

Calculation of the derivatives: (general treatment)
W is the energy

nuclear coordinates/the comps. of electric or magiie
fields

!
W(C R)

1

parameters of the wave function

[at a certain R at any C the W can be calculated]
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|.8. Variational deduction without constraints
Variational energy and wave function:
a—W = WI =0
0C;
necessary but not sufficient conditions
+ side-conditions for orthonormality
(not important: even H-F can be formulated
without side-conditions ...)
...~ resulted C,in = C(R)

Thus

E=ER=WAR. R

(The same observable considering in terms of
different variables, is not the same functiob)

Be careful!! From here R can be nucl. coords
comps. of electric/magnetic field... Nucl. coordsare
the most difficult ones: in this case the basis furtions
also have to "move"...

OE _ oW 9C; , oW

= =w2+ Y .w'cd
R, z'ac 0R; O0R, z\;ﬁ;

at _the minimum
W'=0 - zero

It is a very important facility that we do not needCf-
s. The C-s are coming from the SCF procedure, at
first it is not obvious how to derive them...

Thus: OE _ w2

a
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0°E  _dWA(C(R),R) _ >, WACD 4w

cannot be
neglected

it is not sure that W@ =0, thus we neecCib...

The use of the second derivative is useful but

does not give as big increase of information as the
first derivative, and it needs much more work!!! The
third, and, generally, the odd derivatives have mae
importance; there are fourth-derivative programs (M.

Handy), too.
Calculation of Cib:
since =0 /% andW =W (C(R),R)
oRy

iWi (Q(B),_R)zzwu P+ wWP=0
Ry, J J

For a given point W and also C is given
(minimization). WY andw™ is known (i.,e., can be
calculated easily), Cib are unknown, so can be

determined from a very big system of lin. equations
(Pople):

Wwileb — _ywyib
ZJW Cj W

For example,

naphtalene, 4-31G basis setn = 106 no. of electrons
= 68; occupied orbs.= n/2 = 34 Coefficient matrix:
106x34 but these are not independent!); we have to
subtract the ON conditions: virtual orbs. = 106 -
34=72
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Now occx virt = 34x72= 250Q that is

w' 2500x 2500

Solution: traditional (by inversion) here is not
possible!

Now: iterative solution of the syst. of lin. equations
(...DIIS, Pulay).

"In principle, near the end of an SCF iteration sud
equations are solved, also iteratively. For a longgme |
did not understand this..." (Pulay)

First deriv. needs more time than SCF but it is
commensurable. Moreover, in case of direct methods
need less computer time

For example: 100 nuclear coordinates;
Numerical gradient: 100 points- 100 SCF
calculations.
Analytical gradient: about 3 SCF calculations
about 30k factor of acceleration.
Second analytical derivative: not such big increasef
information - for each b we have to determine the

Cjb-s, approximately it is equivalent by the multiple

(repeated) solution of the SCF equations; this gige
for bigger molecules only (2-3% acceleration
comparing to the first analytical, second numerical
derivation (Pulay's "force" method, Mol. Phys,
1969.).

ZjWij Cjb = -wP “response” equations: the
"answer" of the wave function to the perturbation...
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In case of dipole moment derivatives [both nuclear
coordinates R;) and electric field [Ry)], naturally, b
will be the field (only 3 components).

Alternative expression: _ _
Eat =yt +zizjw'lcfcjb +Y WP+ \/\/E‘Jc:O
> cﬁ[zﬁv”cﬁuwib]
If we minimize this (stationary point), we get the
"response" equation.

2.8. Variational deduction with constraints:
Modification in case of side-conditions:
gk (C,R) =0 (constraints),

In this case:

E=L(C(R),A(R),R)

E2=/2+ Zi L'C+ Zkz,k)\i =/2
both are zel

second derivative:

gab _ ,ab +y LaiCib _zk/]ﬁgg

5 LIty gl A+ £ =0

I ~b b _
2 g||<Ci +g, =0
3.8. Non-variational deduction:
In case of non-variational energy formula
E?=w2+y;, W' Ccf
—

nowit is

not zero
The C-s (the parameters of the wave function) are
usually determined in the following manner:
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fCR)=0 -~ G(R)

Jd . j~a 4 fa
@/. zjficj +fi =0
we would have to solve this for each perturbation,
thus we could loose the "profit"...

The tric_:k of Handy (& Schaefer): let us note

f,! =(h); and f# =b? then

an — _ba ’andga — _Q—lba

But the inverse ofh is can not be treated (too large...),
o)

E? =W - W e (b B =
WA - 3z (™ WH b
letusnote}; (Q_l)ijwi =Z; ,i.e.,(Q'l)TVl'zz,

thus QT Z =W'(onlyoncehastosolve!!)

4.8. First derivative of the Hartree-Fock energy:

(See also 2.8.)
Presently an important amount of the computer

time in quantum chemistry is due to the first deriv of

the SCF energy.
Specially, the derivative of the SCF energy:

L=W- 2tfg(ctsc-1)

theconstravinsin some
whatmodifiedform

1
L8 =¥.5%qDpghpg + 5 p g Zr ZsPpqPrs[2(pairs)” -
A4 ]
Ry

_ ay_ Teaer 7
(psra)?) - 2r[e(CTS°C- 1)+ 2154
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SinceD density matrix is known, we have to calculate
the derivatives of the integrals:

N a ~ A A
a0 o) = (3 ka) + (xp G + x5 )
(palrs)? = (pPairs)+ (pa®irs)+ (palr 2s)+ (pars?)

Due to "orbital-following", the terms are not
zero only if the appropriate i function is on the given
nucleusa.

The derivative of an s-type function is a p-type
function, and so on..., thus, functions with higher
quantum numbers of the angular momentum
appear...

In the practical calcs. the aforementioned
expression is not effective enough: we are not ggn
through the nuclei, rather we consider one given
integral, take into consideration on which nuclear

coordinates it depends altogether and calculate its
contribution to many derivatives...

Although (paqrs) 4x3 coordinates— 12 deriva-

tives, the comput. work is not 12 times as much, mg
common terms — (2-3)x SCF time (lessthan direct
SCF if it is well programmed).

Popular/notable ab initio program systems

Gaussian, Inc. (originally J.A. Pople Pittsburgh)
more than 90% of the calcs. made by it...
"Quantum Chemistry Software Uproar -
-Gaussian says license policies are needed to
protect code, but some chemists say restric-
tions go too far", Chemical & Engineering
News, July 12, 1999, pp. 27-30;
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PQS (TEXAS, TX90)_P. PulayFayetteville;
CADPAC Handy, Cambridge;
TurboMol Ahlrichs , Karlsruhe;

Spartan Hehre (it is connected with a modeling
program).
Acesl| Bartlett & Stanton, Gainesville.

Of course, the mentioned programs can calculate
not only the SCF gradient... All of them have
advantages and disadvantages.

Determination of the geometry:
The use of the first derivative (gradient).

Let us suppose that molecular energy is a smooth
function of the nuclear coordinates (not always, g.
the crossing of excited states is funnel-shaped, taihis

is rare, we will not discuss this...):

E(R=ER)+Y,FAR+ %zazb ébA_aA_%+...

(i) the linear function is an incline, it has no
minimum;

(i) the function which has minimum, is at least
guadratic, so we need thaeat term;

(i) neglect of the cubic, quartic, etc. terms isnot
always justified but in the vicinity of the minimum.
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E(R) =Eg —1T4£+%4£T54£+ ..higher tems

negTected
where
— a . — ak
(f )a=-E® ; ( F  )xp=E
force vector force constant (or

Hessian) matrix

All the minimization procedures go back to this
guadratic expression. If we use the mentioned
guadratic approximation (not exact!), we can get tk
minimum in a closed expression.

Truncated expression of the energy, deriv.:

ES e = ~fat (FAR) ;=0 (at the minimum)

thatis FAR=f - from this we get: AR= Elj
only if the surface is quadratic indeed (we are que
near to the minimum...

For example, along one coordinateAR=%lj, it is

necessary to step into the direction of the forcequt
"how far" < it depends on the force constant.

We do not need the force constant matrix accurately
The hypersurface is not accurately quadratic either
One step is never the solution: iteration.

Our hope: the guadratic model goes to the minimurm

closer and closer.

Calculation of F: quite big work, questionable, it is

worthwhile or not... If yes, usually even in that ase
are not able to get the solution in one step.
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All the mentioned program systems have analytical
first derivative for the wave functions at _many
different level of the approximation, but, usually, F

can be calculated only for the simpler wave functias.

Example: cyclo-octatetraene (COT, antiaromat. mol.)
[Wenthold et al., Science, 199&72, 1456-1459.]
1A, 4 ground state:

\: minimum; tub-form; D 54

transition (1A;4 and 1B;y) / excited fA;)
state(s):

D.h Dgh D4h

In planar conformation the double bonds can be
rearranged easily (~3-4 kcal/mol), whilst the ring
inversion has an activation energy of 10-11 kcal/nho
(dynamic NMR measurements on COT-derivatives).
The planar structure of antiaromatic character
(Huckel 4n+2 rule) has_high symmetry(Dgy,). Since
the molecule belongs to the Alternant Hydrocarbons
(AH), the simple geometricalgeneration of the pe
MOs is valid:

Obviously, the 8telectrons will
occupy the lower five MOs, of which
the degenerate g, HOMOs are
partially occupied. In principle, there
are 6 independent states:

Degeneration

(0]
@

@

@
@
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{(r V)ab {01 Dpd {(ratp)h {tatp)h {1atph {vatph
From these we can construct 3 singlet and one trigl
eigenstates of thé, % and §, operators. From the
Dgp, character table [G. Herzberg: "Molecular
spectra and molecular structure”, D. Van Nostrand,
Princeton, 1966.] we know that,, U By, = Ajg
Aoy U Byg U Bog . Using the Pauli-principle, we can
determine the possible state functions’A,,, , 1By,
1A14, 1B2g - According to the Hund's rule the3A,,,
triplet state has to be the lowest, but (accordintp
qualitative theory of biradicals with disjoint NBMO s,
where the two degenerate NBMOs can be chosen so
that they have no atoms in commonhere the Hund's
rule is violated one of the singletsJ(Blg) is below the
triplet state (verifications: calculations & PES
experiment).

According to the Jahn-Teller principle [Jahn &
Teller, Proc. Roy. Soc(London) 1937 ,A161, 220] in
the case of spatial degeneratioof a non-linear
molecule of higher symmetry the nuclei move
spontaneously into a structure of lower symmetry so
as to remove the degeneracy (first-order Jahn-Telfte
instability: acting force). The effect can be undestood
by the perturbation theory, using an unusual
partition (q means small change of some distortion
coordinate):

H@=H@+pa D +p20@ 4 =

N 2 N
H© (O)+[d—H] q+£d I;] q2 +...
2 0 28 0
(Herzberg-Teller expansion)

Thus the Ej electronic energy for the|0) ground state:
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Eo(Q) =Eg” (0)+ E§ (@) + E¢7 (@) +...=

_ =0 dﬁ>
Q) ++0 7 o)g+
0 © <on ;

_ e
9°H <00ti J> 2
+<0 FO>—ZJ(¢O) Ej(O)—EO(O) g +...

! 1
The first-order term is the (Hellmann-Feynman)
gradient, the second-orderone is the force constant
If none of the ground and excited states belong tavo-
dimensional irr. reps., they will not show the firg-
order, but can show the_second-ordedahn-Teller
effect (saddle-poinj. The 1Alg (Dg4p) structure results
from second-order Jahn-Teller distortion in COT
(starting at the 1B, (Dgy,) ground state = saddle-
point) which splits the g, orbitals into b, and by,
orbitals. Both of these structures [};, are also saddle
points: along the ring torsion coordinate we can ge
the D,y minima. The schematic potential energy
surface:

E 4 3A2u (x: bond-
alternation coordi-
nate; z: ring

D8h 1a1g INversion coordi-

nate, dashed line)

7. Dah Obviously, the

/ \ potential  surface
\ /

— — can not be

b2d bD2d described by a

single  quadratic

function  (which

D4h

\
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has only one minimum).

Standard examples for the Jahn-Teller effect
A.) first-order torsion: [Cu !l (H,0)g]2*SO, : blue,
salted by NaCl : green. C{ : 3d1%sl »Cu2*: 3d% in
an octahedral (Q,) case the electr.conf. is £ (°Eg
state)}-torsion: four short and two long Cu-O bonds
—unstable complex, the ligands can be substituted by
four Cl-ions, maximally.
B.) second-order instability: NO degenerate stateX!
E.g., NHg is pyramidal: simple orbital mixing of the
HOMO and LUMO orbitals in planar ammonia (i.e.,
an out-of-plane bending motion from the 1A;
electronic ground state to thelA" first excited state).

The procedure outlined above is planned for
continuos functions. The finer details are in that,

1.) how we can estimate th& matrix...
problematic case, not quadratic surface at
all: if we step into the direction of the force,
and it grows (!). Fletcher's book is a good
guide to the minimization...

2.) the use of suitable set of coordinates:
Cartesian simple, but estimate off is
difficult.
internal: it is easy to estimate thé= matrix.
(It would be also possible to calculate it by
semiempirical methods, but it is not so
important...)

If the forces acting on the nuclei vanish, the poincan
be saddle point or maximum beyond minimum.
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The character of a stationary point

E*=0 ,or f=0
if we choose Eg asthezeroenergy,

E=T/RFR

en B
Let theeigenequadnof F be: FU =U A /QT
F=uau’

1

E=_/R'UAU'AR
if we rotate the systenof coordinatsinto thedirection

of the eigenvectos of F: AR'= uTar , then

E= %(AR‘)TQAR' = %Za/la(A_R')g

if all the A, are positive— minimum;
If t of the A;-s are negative>(t-order) saddle point;
if all the A are negative— maximum.

First-order saddle points If the average energy of the
molecules reaches the energy of the saddle poirttget
reaction goes quickly into the _directionwith negative
eigenvalue.

Higher-order saddle points their chemical
importance is relatively small; usually the reactio
coordinate has only oneof the directionswith
negative eigenvalue, along the other one(s) (which
is/are orthogonalto the former one) the reaction will
be avoided...

G. Pongor: A Compendium of Modern Quantum Chemistry



49

Global minimum: there is NO method to find it. In
case of N degree of freedom, it is an Nth-order
wandering-problem: this is exponentially scaled by\.

5.8. Second derivatives of the Hartree-Fock energy
gat — sak | 5. Z,'aClb -3 gﬁ)\tla(

Here 1t the integrals have to be substituted with their
second derivatives. E.g., two-electron integral -21
nuclear coordinates - : 3 can be left (the "centeof-
mass" of the coordinate: if all go into one direcin,
the value of the integral does not change; the
“rotation” of the integral would be similar in this
context but nobody could solve it). The second deri
of an s-function is a d-type function, at least ialso has
such a component. The saving is not problematic
here.

L simple, only third-order (cubic) function (of the
Cij-s). The term of constraints (last term) is simple,
not problematic either. The Cib-s (param.s of the SCF

wave function) mean the main problem, they can be

determined from the HF-equations:
with the derivation of FG _SC

F'C+EC'=S'G+ SCt+_se”

this equation has to be solved for each nuclear ceo
dinate: how it is scaled with the mol. size?
HF-method roughly by m* (wherem is the size of the
basis set; for large molecs will be less tham3)

The last equation (iterative solution;N is the number
of the nucl. coords):m*N ~ o(nP) formally; for large
molecs will be less tham? ). Conclusively, the calc. of
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the second derivative can be much more expensive
than that of the first one.

Second deriv. can be calculated by post-HF methods,
too.

3rd and 4th derivatives: only Handy calculates them
the program is overcomplicated. The calc. of the 8

deriv. is not more expensive than the 2nd one. The

importance of the odd derivatives is larger.

(The CC third derivative is in progress in 2006).
Molecular anharmonicities: calc. in Cartesians, but in
this system the estimate of the small terms is more
difficult. E.g., for benzene more 10000 4th derivates,
but due to the high symmetry, in internal coords oty
1400 independent, non-zero element.

Reaction paths

It is often required to fix the values of some
coordinate(s) during a geometry optimization. Thigs
called constrained geometry optimizationlIt can be
performed by using an infinitely large diagonal force
constant for the fixed coordinate(s) [or, alternatvely,
we have to use zeros in the appropriate rows and
columns (corresponding to the constrained

coordinates) of theE1 matrix]. The method of the

constrained geometry optimization is often used dhe
generation of adiabatic reaction pathsin these cases
the value of a single coordinate (the so-called
reaction-coordinate) is fixed at several selected values,
and all the other coordinates are optimized at thes
points:
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Transition state

\ -

Minimum structures
Reaction coordinate

The nomenclature of the Pople's group is used fohe
notation of the chosen level of the quantum
mechanical approximation:

level of energy points // level of constr. geomgtopt.

(e.g., MP2/6-31G* // RHF/6-31G*)

A reaction path usually connects two energy minima.
It must be emphasized that the reaction paths are
NOT physically defined Consequently, they are NOT
invariant with respect to the choice of the reactio
coordinate. If we change the definition of the redon
coordinate, we may get a discontinuityof the reaction
path (or, alternatively, if the change was made &
saddle point, of its derivative). The analogy betwan a
mountain and a potential energy hypersurface is
erroneous because the mountain exists in the phyalic
reality and the hypersurface is only a mathematical
construction. This construction depends upon the
coordinate system used.

Only the stationary points of a hypersurface are
invariant with respect to the coordinate system.

The most_general coordinate transformationsare
nonorthogonal (nonunitary; e.g., Cartesians to
internal coordinates). The figures below show the
hypothetical potential energy surface of a simple
nonlinear ABC system at a special value of the bond
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angle using two different sets of coordinate systesn
(let say x and y) connected by a nonorthogonal

transformation S (the ordinate and the abscissa are
the AB and BC bond lengths):

The figure on the left shows a "steepest descent"
reaction path. Although the figure on the right shavs
the same path (at least wants to show the same path
Iithis is a joke!!!) obtained by a nonorthogonal
transformation, it is NOT a steepest descent path
anymore.

The mathematical treatment is the following: let us
start at the point Py, and in the x coordinate system
let us denote its coordinate vector byg , the value of
the potential energy at B by V4 (Xg) , and the

gradient vector at R, by g, - Letus make a small step

along the gradient to a point P whose coordinate
vector is X , and the value of the potential energy is
Vx(X) . In this case:x — xo = €g, Whereg is a small

scalar, and, naturally,
Vy (X) =Vx(Xg) = gi(x—xo) +.... In another y

coordinate systenthe analogous symbols will bgo :
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Vy (Xo) ,gy .Y , and Vy (y) .Obviously, the potential

energy can NOT be changed if we use the y system
instead of the original x system, i.e., the relatio
Vi (X) =Vx(X0) =Vy ) -Vyl o) is valid. We will

show, however, that the analogous expression
Y ~Yo=¢€9, iIs NOT always valid. Indeed, let the

transformation be between the two systems bg= Sx
where S is nonsingular. In this case

Vx (%) =Vx(x0) :QI((X—Xo) +"'=9;(X_XO) +..=
=gl S(x-x0) +..=(8Tg,)T(x-x0) +...

this meanghat g, = §Tgy

Thus we get:
—v_ = _ — — T
Y=Yy =S(x-Xo) =5£9, =£(SS)g,

In the y coordinate system the point P will be stgxeest
descent (i.e., along 1:hgy gradient) if and only if Sis

an orthogonal (unitary) transformation. Q.E.D.
Solutions for the lack of unigueness of reaction gh:
(i) use of a "standard" coordinate system: mass-
weighted Cartesian coordinates/m; I; ;

(i) dynamic way: to choose the classical mechanica
trajectory of lowest possible energy which passes
through the transition state (bob-sleigh effect).

(i) however, the choice of the reaction coordinat is
often quite unambiguous due to chemical intuitionln
the molecules frequently exists a much less rigid
direction comparing to the others (the natural wayof
selection of a reaction coordinate). If this is tre, the
reaction path is almostinvariant with respect to the
selection of the reaction coordinate (e.g., most tie
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internal rotations). In this case we can make a Bor
type separation of the "slow motion" along the
reaction coordinate from the "fast motions". This
slow motion will occur on an effective potential
energy curve and this curve can be approximated by
the adiabatic reaction path. In case when the secdn
derivatives of the surface (around the rigid direcions)
are changing significantly along the soft directior{i.e.,
along the reaction coordinate), we can get a better
result adding the Zero Point Energy (ZPE) of the
rigid modes to the potential energy of the reaction
path.

Example: The HF-based SQM Force Field method:
P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A.
Vargha, JACS, 1983,105, 7037.

(SQM = Scaled Quantum Mechanical)
Harmonic force fields are important:

vibrational fundamentals

IR/Raman intensities

finer details of UV/VIS and PES spectra

start for an anharmonic analysis

Yeljasevich-Wilson vibrational equation:

quadratic force constant matrix, L the matrix of the
eigenvectors, and the diagonah matrix contains the
frequencies.
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The SQM procedure means the reliable combination of
the theoretical (ab initio Q.C.) and experimental
information:

A.) Theoretical (ab initio Q. Chemical information):

F. = dZE = d(fj
RGN

where E is the total molecular energy (electronic +
nuclear repulsion energy) andy; is the nuclear
coordinate.

Level of the Q.M. approximation:

Hartree-Fock, 4-21G basis set (Pulay et al.);
Reference geometry: empirically corrected theoretial;
Earlier : Pulay's force (or, gradient) method,;
nuclear coordinates: "natural internal coordinates"
(NICs).

B.) Experimental information:

Fitting the calculated force field to the
experimental fundamentalsby empirical parameters
("standard" scale factors)

pscaled - 1T Er  whereT - diag(x 2)

X; scalegfactors: 0.7 -0.9 usually
Fitting: SCALE,...,SCALE3 program (G.P.)

L=3Yw (vica'c— \)iex'c)2 -~ min  (Gauss- Newton)

where w; are the weighting factors (usually V)
Input:
theoretical force constant matrix/ces
experimental fundamentals
start values of the scale factors

definition of the internal coordinates
dipole moment derivatives
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Output:
scaled force constant matrix/ces
optimized scale factors
scaled vibrational fundamentals
absolute IR intensities
mean-square vibrational amplitudes

Scale factors: standard and/or "extra"
"Extra" scaling (for aromatic or polyene systems):
scale( _ extre (—.
R = XA

A
where xix”f -s are the extra scale factors (due to the

strong effect of correlation).
Values: fixed or optimized

Glyoxal, acrolein, butadiene, ethylene, formaldehyel
light and perdeuterated isomers

mean deviation: 12.3 cmt in-plane
6.7 cmt out-of-plane
max. individual deviation: < 20 cm?l

A priori SOM Force Fields
transferring scale factors from one system to anotr

First example: from benzene to pyridine...

G. Pongor, P. Pulay, G. Fogarasi, J.E. Bogg3ACS,
1984,106, 2765.

G. Pongor, G. Fogarasi, J.E. Boggs, P. Pulay, Molec.
Spectroscopy, 1985,114, 445.
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Benzene Hartree-Fock/4-21G (from P. Pulay, G.
Fogarasi, J.E. Boggs). Chem. Phys. 1981,74, 3999.)
Table VIII., Set .

Description Scale factor
CH stretch 0.863
CC stretch 0.911
CH in-plane bend 0.797
ring planar deform. 0.808
CH wagg 0.739
ring tors 0.768

Extra scale factors
CC stretch/CC stretch 0.774
ortho 0.645
meta/para
CC stretch/Eygring def  0.72

benzene;:
mean deviation: 6.0 cmt
max. individual deviation: 13.0 cm?

transferring these to pyridine:
pyridine;
mean deviation: 5.7 cmt
max. individual deviation: 15.0 cm?

Natural Internal Coordinates (NIC):

G. Fogarasi, X. Zhou, W. Taylor, P. Pulay,

JACS, 1992,114, 8191.

Optimization:
BFGS (Broyden-Fletcher-Goldfarb-Shanno),
Berny (Schlegel),
GDIIS (Pulay & P. Csaszar}y»see Appendix Il.
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Because of the high cost of Q. Chemical calculatienit
IS reasonable to develop optimization algorithms wikbh
need as few steps as possible. However, analyticaesd
derivatives seem to be too expensive than to be
worthwhile to implement them into the procedure. If
one uses only the gradient information, the convesnce
of the geom. optimization can be significantly
accelerated by the use of a carefully selected st
internal coordinates.

Improvement of optimization:
use lower level force constant matrix
"clever" choice of internal coordinates

Two sets of proper (complete and nonredundant)
coordinates, connected by a lineatransformation, are
naturally equivalent. Thus the only difference carbe in
that an approximate Hessian can be easier given one
set of valence-type internal coordinates

Cartesians less effective (even with a good estimate
of the "start" Hessian) because of the anharmonic
couplings. Far from the equilibrium these couplingsare
very important.

Curvilinear internals : came from the theory of
molecular vibrations; also were used in geom.
optimizations by the first gradient program of Pulay.
Two types: (a)_ Z-matrix, (b) spectroscopic

Tunsatisfactory for ring systems

System of NICs
They minimize the couplings, on both harmonic
and anharmonic levels. They are fixed lin. combinabns
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of primitive valence-coordinates(stretchings, bendings,
torsions, see e.g., E.B. Wilson, J.C. Decius, PQross,
Molecular Vibrations, McGraw-Hill, New York, 1955.
New edition: Dover, New York, 1980):

STRE r @)\

NVR L @ oo (D }D
®
@@/@ @{ TORS 34@ q
- ,C///
ouT \@

LIN1, LIN2 ﬁ)
@b

Complete and nonredundant set of internal coords.:
(coming from vibrational spectroscopy)

(i) Individual stretching coordinates (even for rings)
low couplings on quadratic level, compact
description of anharmonicity...

(i) Local pseudo-symmetry coordinates for angle
deformations: easy to treat the redundancy, also
good for couplings

X Y
N/ c
NN CAAT T

s X1
/\"\JJ\[\/\_/ C<X2 C3V

X3

...etc.
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Normalization for composite bending
coordinates (AND ring-torsions): (2. ci2

(i) Ring deform.: idealized highest symmetry
A

~1/2
)

~ Dsh
Cov EPVANIPN
n-membered ring: idealized symmetry B,
3n-6 degrees of freedom: n individual stretch-
Ings, N-3 symmetrized bendings, n-3 symmet-
rized torsions.
(iv) Torsions ZiTi (with special 1/n normalization for

NON-ring coordinates only!!!)
(v) Polycyclic systems: special treatment for the
relative motion of the rings

INTC program (Fogarasi, Pulay): automated search
for the NICs. It has been included into the TX90 ad
PQS programs, later into the Acesll, too;
independently, a similar program has been written®
TURBOMOLE.

On the next pages:
A.) Recommended Internal Coordinates (pre-NICs)
B.) example output of the INTC program.
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Table IH. Recommended Internal Coordinate System«

. bond stretchings: individual coordinates rather than combinations. possible exceptions: methyl and methylene groups
where symmetrized combinations of the CH stretchings may be used
XmA-BY, and X,,A=BY, torsions and twistings: the sum of all possible dihedral angles X;ABY,
methyl: symdef = ay +ar + a3 = 3y~ 32—- 6
asvm def = 20y = ax =z ’
asym def” = w2 —
rocking = 28| — 3: — 3:
rocking’ = 82 — 3:
methylene (sp*): CHa scissoring = e + ¥
CXY scissoring = o« + 3%
CHa:rocking = =31+ 3= A
CHjwagging = g1 + 3: = 3: — 3,
CHitwisting = 8y = 32 = 33 + 34
. methylene (sp?): symdef = 2a — 3y — 31
rocking = 81 — B2
wagging = X out of CH: plane
. methine (sp3): CH rocking = 3 — 3=
XCY def = 200 ~ 3, = 3~

[

=

e

(=2

CH wagging = H out of XCY plane
. methine (sp’): CH rocking = 261 — 3 — 33
CH rocking’ = 82 — 33
XCY def = daxcy + axcz + aycz
XCZ and YCZ deformations are analogously defined
8. amino: scissoring = 2a — 31 — 31
rocking = 8 ~ 832
wagging = X out of NH: plane

~

9. imino (sp?): NH rocking = 34 — 3
XNY def = 2 — By — 3
wagging = H out of XNY piane
10. four-ring: ringdef =y —az: + a3 — as
puckering =1y — T2+ T3 — 74
1 1. five-ring: ring def = oty + a(oz + as) + b(az + @)

ring def’ = (a = d)(az — as) + (| —a)la; ~ o)
torsion = b{t; + T5) +alrs+ 1) + 73
torsion’ = (@ = b)(1y = 72) + (1 —a)(7s = T1)
where a = cos 144°. b = cos 72°

12. six-ring: trigonal def = oy — > + a3 —as + as — ag
asymdef = 2a; ~ a2 — a3 + 2oy —as — @
asymdel =y — a3 +as— o
puckering=r1| — T2+ 73— 7Ta+T5—Tg
asym torsion = 7, — T3+ 74— T
asym torsion’ = —~7y + 272 — T3~ T4+ 275~ T¢

@ See Figure | for the definition of bond angles. In the rings, aa is, e.g.. the angle 1-2-3 and 7; is the dihedral angle 1-2-3-4. Note that
the coordinates are still subject to some arbitrariness owing to the freedom in the numbering of the atoms for degenerate coordinates. Also,
the sign of the out-of-plane coordinates must be specified in each case. Normalization constants are not given here. For definiteness, they are
chosen as V = (Z¢;2)=1/2, where the ¢; are the coefficients of the individual valence coordinates. In some cases, ¢.g.. for compounds containing
divalent oxygen, the definition of coordinates is obvious and is not given. Note the possibility of using nonstandard valence coordinates: the
inverse bond length coordinate, or the coordinate replacing the out-of-plane angle, (e;) X (e-e3), where e, e, and e; are unit vectors directed

N AAY

™
di1oHg AT oONGS.

X—=—C-.. c. 12
1
A\ W
Lt a./'l
LA e
X—=t=C o
\/ x/‘% >\Y

X ~*
G

X oc>\Y

Figure 1. Definition of internal coordinates in methyl, methylene (sp®),
methylene (sp?), methine (sp?), methine (sp?), amino, and imino
groups.
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ql -q18:individual bond stretchings

Descr.  Coeff. Type Atoms Descr.  Coeff. [LiEeE e
ql19 1. bend 2, 4, 3 q24 5877853 tors 8, 9, 5 6
4-ring -1. , 1, 4 S-ring  -9510565 9, 5 6 7
in-pl, L. 42,1 out-pl. 9510565 5 6 7.8
def. -1. 1, 3, 2 def. 5877853 6, 7, 8, .9
q20 1. tors 2, -3, 4, 1 q25 1. tors 4, 1, 2, 5
4-ring -l 3, 4 1, 2 butterfly -1. -5 1, 2, 3
out-pl. 1. 4 1, 2, 3
def. -1. L 2 3, 4 q26 1. bend 1, 6, 5
ring-ring 1. 2, 6 5
q21 LOO0O0OOD bend 5, 7, 6 wagg: =k 595
5ring  -8090170 6 8 17 -1. 2, 9, 5
in-pl. 3090170 7.9, 8
def.. 3090170 8 5 9
-.8090170 9, 6, 5
q27 1 bend 1, 6, 5
q22 5877853 bend 6, 8, 7 ring-ring -1 2, 6 5
5ting  -9510565 7, 9, 8 rock. 1 1, 9, 5
in-pi, 29510565 8 5 -9 -1 2, 9 5
def. -.5877853 9, 6 5
) q28 1. bend 1, 6, 5
q23 . 10000000 tors 7, 8, 9, 5 ring-ring  -1. 2, 6 5
Sring  -8090170 ~ 8,79, ‘5, 6 twist. -1, L 9 5
out-pl. ..3090170 9, 5 6 17 L. 209 5
def. 3090170 5 6 7, 8
-.8090170 6,, 7.8, -9
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Internal coordinates and orthonormality:

Instead of the usual Cartesians we can also apply a
complete and nonredundant set of the internal
coordinates.

In order to understand the use of them, let us comnder a
molecular system consisting of N nuclei; in its
equilibrium geometry let the position vectors of tle

nuclei be Bf,Bg,...,_Rﬁl In the usual 3-dimensional
manifold E4. Equivalently, we can use instead of this a
single point F_20 of a hypothetical 3N-dimensional

manifold Rgy , that is, R® ORgy . Let us denote an
orthonormal (Cartesian) basis set of theR,y manifold

by {g}2" , for which the well-known equations hold:
(ex|@)=08  , (k]=12,..,3N)

(that is, the Gram-matrix of the e, unit vectors is the
unit matrix.) Naturally,

o N
R™ = > Ry &
Kk

Let us construct another manifold in order to detemine
the nuclear configuration of the molecule (without the
center-of-mass and the rotations). This manifold Wi be

denoted byRgy.¢ and its basis set by{o; ;" © . Let us
denote the vector of the given nuclear configuratio at

the equilibrium geometry by SO : i.e.,SO O0R3n.6 @and we

can write
o 3N-6 _
S"'= > Sg; (here theS-s are the so-called internal
i

coordinates). The g; unit vectors of Ran.g are
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constructed as fixed linear combinations of the pmitive
curvilinear valence coordinates (bond lengths, bond
angles, out-of-plane and dihedral angles), similayl to
the contracted Gaussian basis sets in Quantum
Chemistry. [Of course, there is a significant diffeence
between the unit vectors of the "internal manifold"
Ran.6 @nd the Cartesian unit vectors (or the Gaussian
primitives): each of the latter corresponds to (is
centered on) a single nucleus.] Let us express tboe unit
vectors of Ran.g by a simple linear transformation
around the molecular equilibrium (linear
approximation, see later):

3N
=2 eAy - (Here the role of the A linear
k

coefficients is not known yet. Let us collect ther unit
vectors of Rp.g @and the g unit vectors of Ry into the

super-row vectors (o) and (g) , respectively. Now we
can write the following expression, obviously:

(0)=(e)A

Also, let us consider the following equation:

from where it is obvious that AB=E , and on the other
hand S=BR , where theB matrix is the well-known one

of Wilson and Yelyasevich. Thus, the matrixA is the
generalized inverse of the matrixXB as follows:
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A=8*BB*]" )

3N
Moreover, one can write gj = X gA\j (vide supra), so
I

we get for a typical<c_ri ‘c_rj> element of the Gram-matrix
of the g; unit vectors:

3N
CIAREEN

3N 3N 3N
Yan =3 > A (aca) -

3N 3N

3N
= % IZAkiA\j5kl = % Adi Ay
as can be seen the{o;};" ° basis set is NOT

orthonormal in the R5p.g Mmanifold. However, there are
such applications when one can postulate the unit
vectors of Ran.g @s orthonormal vectors. Indeed, this is
usually not very far from the real case consideringhe
fact that the B matrix is frequently a "sparse matrix"

(as, for example, in case of the choice of the Na#l Internal
Coordinates).
Note that S=BR is valid only in linear

approximation, thus the (g)=(e)A equation is true in
the same approximation as well.
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3. POST-HF METHODS

The disadvantagesf the Hartree-Fock method:

(1) electron correlation this error can not be
eliminated within the HF method because it comes &m
the simple determinantal approximation of the trial
function.

(2) error of MOs: due to the finite basis set - we can
reduce this using larger and larger basis sets...

Generally, the Slater-determinant is not a bad tria
function, let us start with that:
Cl-expansion Not normalized!!! (intermediate...)

— ana L nak —
W= tZ‘ZAaCi ® +zizjzazbcﬁ‘ O+ =
=(1+C1 +Cy + G+ )
where @ is the HF-determinant, and BE CARE-
FUL, Cia and Cﬁ‘t are NOT derivatives anymore, rather

the coefficients of the "excited" (substituted) degrmi-
nants (CD;"‘ . the i-th occupied spinorbital is substituted

by the a-th virtual one, etc.),i is the identity operator,
and Cp produces the p-fold "excited" configurations.

no = number of the occupied orbitals;

nv = number of the virtual orbitals.
Singly subst. configurations:i - a: noxny;
Doubly subst. configurations:ij — ab: (noxnv)?2 roughly
Finite number of substitutions, at most n electrons can
be "excited"! Using a finite basis sethe expansion is
also finite!!!
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"excited" name comes from the physicists, pedag-
ogically bad name...not real physical excitation!
~_ Incase a.) itis possible that (even in
T the HF-determinant) one of the
fffff "virtuals" is occupied in the ground
o o State (see periodic table...4s orbital of
—0- xo the K atom). But in case b.) it is sure
% that the lower three orbitals are

a) by Occupied...

The expansion grows rapidly, for 20 electrons theres
~(noxnv)20 terms of 20-times substitution.

Full Configurational Interaction (more accurately:
"superposition”): In supercomputers few times 100
million terms, for bigger molecules. In a good pemnal
computer 15-20 million terms..._Its importance chem
ically not too big, but for estimate the neglect oVarious
"excitations" - important. We can hope that, e.g., the
dominant terms will not be the 20-times substitutias,
these have high energy, thus their relative weighs
small. The dominant terms will be the small (singly
doubly, triply ... ) substitutions. We can check this using
the perturbation theory...
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Perturbation Theory:

In a physical sense there are 2 kinds of perturbains
(mathematically only one case):

l l
"changeable" "non-changeable"
e.g., ext. magnetic the strength of the pert.
field,... IS not changeable

Let it I3IO the (non-physical) operator whose exact

eigenfunction would be the HF (SCF) solution:
Ho=XiF()=%[h()+  G() ]
—— ——
core averrepulsion
of theother

electrons+
exchange

(i for each electrons;F op. would be different for
each orbitals; F contains also the non-physical repul-
sion with its own charge density but the "self-excange"
term cancel it... Without the el-el. repulsion the
electronic structure of the molecule would be more
compact - the shell structure would be characterist in
this case too, because of the Pauli-principle...)

It is not necessary, but let us use the canonicgjin-
orbitals in the following expressions:

I:IOCDO = (81 +Eo+...+E )CDO = EOCDO

Take card!! The @ is the exact eigenfunction o,

but Eq 2 Escp (F contains the twice of the el-el. interac-
tion).
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N a a — 2
Ho®j =(ep+eot.. . Feqt.. +En )7 = Bot+ea — € )P,
N nab — —e.—¢.\pAP
Ho®j = (Eg+eatEp =€~ €)P;

As can be seen, the eigenfunctions Bff are the HF-
determinant and its substituted configurations.
Obviously,

H=Hp+H ,  whered'=H-Hy is"small"
"Muoller-Plesset (MP) partition of the Hamiltonian"
(we can use hypothetically & parameter, changing

continuously from O to 1, and putA = 1.)

Using a power expansion irA, the

first-order energy correction:

EW = (| H'dg) = (dg|HD ) - (@ JA gD g

T T
Escr Eo

The total energy with the first-order correction:

1) _ _
Eo+ED = B + Bscr — B = Bcr
The energy up to first order is the SCF energy.

The
second-order enerqgy correction
R 2
o g [0l
E| - Ep

where the summation goes over the all eigenfunctions
of Hp, the | is not orbitalput configurational index
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All the ®,-s are the eigenfunctions oH (in form of N-

electronic determinants, e.g.®q , @7, CDEIt ) which can

be constructed by the canonical spinorbitalsiccording
to the all possible ways...

(It is more convenient to think about_spinorbitalsthan
closed-shell spatial MOs here...)

When <CDO‘I3I'CD| > is not zero?

Two component®f H "H and ¢ ;
Hg is the sum of one - electronic operators,
H is the sum of one - and twelectronic operato

Using orthogonal orbitals, due to the ‘Slater-rules
(a) Zero-electronic operators (nuclear repulsion)
can have non-zero matrix elements between Slater-
determinants which do not differ even in one spin-
orbital.
(b) One-electronic operators can only have non-
zero matrix elements between Slater-determinants
which differ at most in one spin-orbital.
(c) Two-electronic operators can only have non-
zero matrix elements between Slater-determinants
which differ at most in two spin-orbitals.

Conclusively, using the exact non-relativistic
Hamiltonian, the ®,-s will contain singly and doubly

substitutions only, the summations have to make for
these dominant terms only.

Moreover: the singly substitutions are not too impaant
either because of the...
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Brillouin-theorem:
the matrix elements between the HF-determinan®

and the single substitutionsﬂ)ia will be zero:
" ARaA\ —
(@[ o2} =0

Proof: if it would not have been zero, we could
construct a determinant with lower energy than the HF-
determinant ("reductio ad absurdum"):

H'=H-H

<cbo‘ﬂoq>f‘3 = <H0cbo‘cb?> = E0<CDO‘CD?> =0

zero!!
Let us suppose tha(d)o‘lildbia> £ 0,

and let pay attention to the following (not normalkzed)
lin. combination:
® = g + NP’
We have to keep in mind thathe sum of two
determinants (differing in one row/colulmn)can be
written as a single determinant. Indeed,® can be written
as a single determinant if we substitute the i-th
spinorbital in ®g by ¢; - ¢ + NG, .
Obviously, this change can not improve the HF-orbdls
since they were optimized previously... Now:
() <q> |3|q>> ) <<DOI3I<DO> + 2r]<d3 0 I3I¢f‘> + n2<d3f‘ FI(D?> )
(P[®) (@g|tg) +2n(®0 OF) + 10T )
~ ESCF+ 2r]<d>0 |:|Cbla> + r‘|2<CD?‘ |:|CD?'

L2 =Escr+ 2f]<¢o |:|¢?>
n

If n is small enoughn? can be neglected (see above). If
the sign ofn is the opposite to that ol<CDO‘I3ICDf‘> , we
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would have energy lowering comparing to the HF case
for a one-determinantal trial function ...
"Credo quia absurdum”, Tertullianus, St. Augustinus?

Thus, the most important termsin the second orderof
the CI expansion are theCDﬁlt doubly substituted confi-

gurations of the SCF determinant. Physicallycbﬁ‘t ex-

press the "collision of two electrons which go toiggher
orbitals..."

Many Body Perturbation Theory (MBPT):

In higher order the terms are more and more
complicated. Up to the 4th order it is possible ttreat
the formulas algebraically, over this order the
perturbation theory is not too important from a
chemical point of view.

In QED (= quantum electrodynamics) the higher
orders (> 4) are important. Here the diagram techni
gues (originate from Feynman) can help.

MBPT: it is not well defined by itself, the partition
of the Hamiltonian is important.

Problematic casesopen-shell species, or, if the HF
IS not a good approximation it is not a unique metad
for the selection ofH .
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Usual casesclosed shell species, where HF is a
good approximation (many times...):

Ho = X F(i)
MBPT with the M cller-Plesset (MP) partition (1934).

MP2 (Pople, GaussiaR): second order MP,_the
simplest correlation method based on the
configurational expansion Gives very good results if the
correlation is not too strong: 85-95 % of the corrétion
energy obtainable in a given basis set.

We could think MP3 or MP4 is even better, but this
IS not the case generally. MP3 is worse, and MP4
improves roughly to the same level as MP2 gave. The
final convergence of the MBPT is not as good aswas
hoped. Generally, if MP3 and MP4 give about the saen
result, the MP2 results are reliable.

Coupled Cluster (CC) methods similar to MBPT but
some substitutions are treated at infinite order

Cizek & Paldus (1966-1971): "exponential Ansatz"
1 1

§CC eTCDo = (AI +T+212 +—-A|_3+...)CDO
A 2 3! breaks down at n
T=Ty+Ty +Tg+...+T,

where @ is the Hartree-Fock determinant and theT

"cluster operator"” (previously used in nuclear physcs)
produces the p-fold "excited" configurations.
Appearance of "disconnected term$in the expansion:

even CCD introduces quadruple excitationSDﬁ‘lzC( and

ScDabcde'

hextuples excitation Kimy "

., up to all n-tuples as

can be easily seen:
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7yCCD _ (7 .+ , 122 _
P =(1+T5, +§T2+. )P0 =

ab ab a cd abcd
CDO+Zt”CDJ D3 bt MR
|<J<k<|
a<b a<b<xd

naturally, in this case the coefficients of the higer
excitations are simple products of the samlg?t

coefficients...

Main features: (i) determination of the wave functon
coefficients are more complicated (exponential!!!)(ii)
converges more rapidly than CI; (iii) size-consistet (see
below), contrary to the Cl method; (iv) very accurae:
with a large one-electron basis set CC results sotmaes
are considered more accurate than experimental data
[e.qg., features of CCSD(T) (see below): bond length
~(2-3)x 0.001 A, fundamental frequencies ~few crh
dipole moments < 0.1 DJ; (v) EOM-CC method is
capable for determination of the excited states
(excitation energies correct to within ca. 0.2 eVpy

diagonalization of the effectivee™ ' He' Hamiltonian
within a specified determinantal space; (vi) It iINOT
variational method.

Variational Cl method:

In the config. expansion we can stop at the
important doubly substituted configurations, and the
values of the coefficients will be determined by
variational method. The singly substitutedconfigs. are
also important, even if we would not hope this onhie
basis of the perturbation theory (see above). Althagh
their contribution to the energy is not considerabé, but
it is very important for the calc. of the other praperties.
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For the excited stateshe variational Cl method
still has advantages which can not reach with the
perturbation theory. Interestingly, the early hopesfor
the calculations of the_ground stateare not fulfilled
with the variational Cl method: it is NOT size-
consistent(this means that the energy is NOT _extensive
accurately, contrary to the thermodynamics; only tre
full-Cl is consistent, the truncated one is NOT).

Size consistencye.g., 2 He atoms at a large distance,;
their energy must be accurately twice as big as thaf
one of the atoms (c.f., the separation of the eigeaiue
problem in £, space...):

H(AB)=H(A)+HB) ; (A and B are very far...)
W(AB) = W(A) ¥(B)

E(AB) =E(A) + E(B)

The Hartree-Fock level is size-consistent, so the dMer-
Plessetperturbation theory (at any order) is... But NOT
the variational Cl method: if, e.g., doubly "excited"
configurations are taken into consideration maximély
for each of the He atoms, the product wave function
contains quadruply "excited" configurations, too:

qJCID(A)CIJCID(B) _

=[[(A)+C2(A)]Po(A) D' B) +C »(B)]® oB) =
=[I(A) +Co (Al B) +C 2(B)I P ((AB) =

= [[(A)| B )jf ACH(AX 2(5)]?0(AB) £
#[1(AB) +C,(AB)]®o(AB) = ¥-P(aB)
The CC method (at anyT ) gives:
PCC(A)PCEB) =e T Aay(A)eBay(B) =
thus the CC method is size-consistent.
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The CCSD(T) method is also size-consistent
(CCSD+perturbative T...).

Computational requirements.

[ frogs)”
E\) = zzzz
MP i jabfatEp~EiTE]
+ if the summation is without constraints.
(With a computer not in this way, the sum of the
contributions will be calcd. ... Moreover,

— Fak —
E, —Eij =Egteatep—€i—¢j )

(2) (ial jb)”
Thus we get: Eyyp = - ZZZZ
47 jabfatép & &

where (ia] jb) = (ia jb) - (ib| ja) and (iajjb) are defined for
the spinorbitals similarly as earlier for the Xp basis

functions:

(ia|jb) = Jma)qpaa)écoj @ (2)drdr,

rea
(can not be calculated itself directly, may be on
a grid...???, but using an LCAO-expansion:

(p,:ZpCpixp , etc, we get

(ialjb) =X )3 ¥\ ZsCpiCqaC rCsH(Palrs)
{transformation performed in the following way:
like the DO loops at matrix multiplication in Fortr an

(ia/jb) == ,Cpil = qCoal = rCrj [ZsCspPal sl }
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m = number of the basis functions;
n = number of the electrons

For basis functions: o(m?) integrals (SCF)
MP2: o(m“n), formally 5th order
(N = the size of the molecule, in any units...)

HF (SCF): o(N%)
MP2: o(N2)
MP3, CISD, CC-SD: o(NY)
MP4, CC-SD(T): o(N7)
MP5, CISDT, CCSDT o(N8)
MP6 o(N9)
MP7, CISDTQ o(N19)

Nota bene o(N*) shows the increase only but not in

an absolute sense (they can be multiplied by a srhal
number...).

In terms of accuracy with a medium sized basis set
the following order is often observed for single-
reference methods:
HF<<MP2<CISD<MP4(SDQ)~CC-SD<MP4<CC-SD(T)

Categories of the electron correlation(Sinanaglu):

1.) dynamic correlation: weak; accounts for the
instantaneous repulsion of the electrons; means auige
significant correction (to HF) which is typically the sum
of many small contributions, less depending on the
geometry, but strongly depends on _spir(for bigger S
states it is lowering: it is reasonable because the
electrons with parallel spin keep out of each other
"Single-reference" case,C; < 0.1,
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2.) nondynamic (also: static = symmetry required,
guasi-degenerated) correlation: accounts for the
existence of near-degeneracy of low-lying electrani
configurations; here the HF is not good even
qualitatively; significant correction that is the sum of a
few, large contributions. It strongly depends on
geometry (due to low-lying virtual orbitals).
"Multi-reference case, Cpj > 0.2".

In the Ilimit when all possible configurations are
included in the CI expansion then dynamical correlon
completely describes the nondynamic component.
However, when we use truncated expansions, proper
description of nondynamic effects becomes important

Example: ethene (ethylene):

rotation of the methylene groups comparing to
each other. During the rotation the bonding orbitalwill
have less bonding character, the antibonding orbitawill
have less antibonding character:
bonding antibonding
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The kinetic energy will be larger (due to the nodal
plane) so the bonding character of the BO lowers...
The orbital energies €):
The difference between the orbital
AB " energies will be small: here the HF
BDQ method is not good, it is not
enough one determinant even in
the zeroth order.
The total energies (E) of the states
using more than one determinant,
the unrealistic cusp disappears

and the lines will be continuos
(c.f., Appendix Ill, pp.163-171).

T
0 90 18C

excited

ground

When the nondynamic correlation

IS important?

always if the MOs around the Fermi-leve(HOMO,
LUMO) are not fully occupied (see ethene around 90°
(above)—can be 4 electrons but there are only 2).

That is, important

A.) In transition states (chemical reactions), at the
formation or cleavages of covalent bonddespecially, in
reactions which are forbidden by the Woodward-
Hoffmann rules].

Nota bene: the rotation of the_methylgroup is NOT
such a case: in that there are not forming or ruptung
bonds...

B.) in compounds of highly electronegative
elements e.g., B, O3, NO, NO,, N,O4, F,0,, etc.
Example I F, : dissociation energy is very low, the
structure is pushed from F-F into the direction ofF--F
biradical. There is a bond but the antibonding levés are
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also occupied. Due to the large electronegativityhé
antibonding levels fall down (near to the bonding NDs).
Example 2 Ogj : biradical character. Acyclic, it is NOT
similar to cyclo-propane (cyclic structure also exists but
it is rather unstable).

Example 3 NO, NO,, N,Oy4, F,05 :

e.g., KO, the SCF fails completely (not stable):

the accurate structure is (in Angstroms units)

F Va
\Oﬁd’,l.‘ls
, contrary to the usual chemical
viewpoint. The O-O bond length is so small that its
similar to the O=0 bond:

F
. y

\\ ,I
O=O

The structure of N,Oy :

O © 1194
134>N£356_NA.191 N43'9

i N N

0) o O

O

weakly bound character of a dimer!

(comparison: N-N bond length in hydrazine 1.447 A.)
Example 4 compounds of transition metals. There are
not enough electrons for the complete occupancy bér.
Interestingly the first row (Cr, Mn, Fe, Co, Ni) is more
difficult to treat theoretically than the second ore (Mo,
..., Pd) which are heavier...

Example 5 Dissociation of H,:

Here the transition state is actually at the infinty. The
rupture of the chemical bond — important the
nondynamic correlation.
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RHF

\\OﬁAﬁ
0 W R

H2—" H.+ .H

The RHF bond length is only slightly smaller, the rain
problem is the Incorrect dissociation: the RHF
overestimates the barrier at the rupture of a covant
bond.

The strange behavior of the RHF is (using a minimal
basis of two s-functions):

/@ﬁB
X X

A B
now the bonding and antibonding MOs:
1 :
Up = \/ZTZS(lsA +1x) bonding
Ug = \/21728 (Isp — 1sg) antibonding

(where S is the overlap integral)
The RHF-determinant:
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Pgcp=|uu P =|ugl =
_ 1 lup@a® up(DB(D|_
J2 Ub(2)0((2) up(2B(2

-Ub(rl)ub(fz)[[a(l)B(Z) a(JB(I] =

Spatialpart spin part@ (1,2)
K) 1 +
= »1s( 9

1SA(r1)1SA(f2) + 155( Wis( Ir2)] E<B(l 3

H™+H* H* +H SW”
At large R distances the result is two H-atom in th
reality (can be H" and H- also at a much higher energy),
so the relative weights of the ionic forms are totarge in
the RHF wave function!!! Obviously, the RHF wave
function is physically bad; the reason is that ifR —o ,
the orbital energies of the bonding and antibonding
orbitals will be close to each other, the occupancy
around the Fermi-level is not complete...
Heitler & London (1927): FEirst Paper in_Quantum
Chemistry : Good dissociation !!!
Valence Bond (VB) trial function: the last two ionc
terms are omitted in the expression given above.
[Generalization of the VB method (GVB; N! of
determinants made of N non-orthogonal orbitals; of
course, this is only 2 at H ) is very difficult for
polyatomic molecs. It is NOT equivalent in a strictsense
with the MO method, see later.]
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Multiconfigurational Hartree-Fock (MC-SCF):

(alternative solution for the H, dissociation problem...)
We put 2 elecs from the bonding (b) to antibondinda)
MO:

OR8 = uau|= (15 (m)156( 1) + 15 ) 1% D) -

—Isa (r1)1sa (2) —1g (L§) 18 (p)] Uspin part
(the covalent and ionic structures have oppositeis)
Now the sum B

¥ = Ajdgcp+A 008

electron configuration P 2
(whereAf +A§ =1; A<O0
if R =00 then S —0 and ionic terms will be fallen out
right dissociation !!! B
also, ifR = Ry then A << A the weight of @~ is small

and here the RHF is good.

a

Obviously, the MC-SCEF trial function can be regardel
as an interpolation between the RHF and VB trial
functions.

This was only a very simple case (using only twc&kand
a2 configurations for H,). In the case of more complex
systems: other configs. (singly, doubly, triply, et
"excited" configurations) are also involved in the
expansion.
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Two trends can be distinguished

A.) full CI B.) MC-SCF
the "complete"” correlation the correlation must be
has to be calculated (that is calculated for the
very difficult for large iImportant orbitals only
systems)

MC-SCF: typically a linear combination of MANY

determinants (can be several® ) which are made of a
common, orthogonal sebf the MOs.

Both the Cj-s (lin.coeffs within the MOs) and theA;-s
(lin. coeffs within the Cl-expansion) will be optimzed
variationally.

Nota bene: (i) If we would take all the orbitals, their

optimization is NOT important (Cl-method)

(i) If only a small set of the orbitals is
considered, their optimization IS important (MC-SCF
method).

MC-SCF is not as well-defined procedure as Hartree-
Fock. Due to many technical/definitional problemstidid
not become to a black-box method like RHF...
Goal: one could find a method which is comparable Iin
accuracy with the HF method but for strongly-
correlated systems.
Difficulties:

(i) technical: convergence problems (it is solved
now);

(i) definition (MAIN!!): a.) which MOs will be
partially occupied?; b.) which configurations will be
used?

G. Pongor: A Compendium of Modern Quantum Chemistry



85
a.) Three classes of the MOs

l. MOs (with large negativee orbital energies)
which are occupied in each substitutions: doubly
occupied orbitals

lI. MOs (with intermediate € orbital energies)
playing an active role in the substitutions (i.e., in one are
occupied, and in another are unoccupied): fractiondy
occupied "active" orbitals;

lll. MOs (with high € orbital energies) which are
unoccupied in any of the substitutions; unoccupied
orbitals.

b.) Configurations:

because it is impossible to predict which configvill
be important (this would influence the resulted
hypersurface...),

Ruedenberg, Roos and Taylor suggested that ALL the
configurations (=complete) must apply which originge
from the arrangements of the electrons on the actes
orbitals (with correct spatial and spin symmetry!):
CAS-SCF (Complete Active Space) = essentially a "full-
CI" limited to a special part (nq) of the active electrons
and to a special part (,) of the active orbitals with
variational optimization of both the MOs and the
lin.coeffs of the configurations.n;xn, CAS (typically nq
= n, but not always).

E.g., 4x4 CAS - half-occupied active space.

E.g., 120 half-occupied active orbitals> 1/2 million
configs.

In the optimization = not always unambiguous results
= we have to estimate the orbitals at the beginning.
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CAS-SCF is the most frequently used1C-SCF method.
Another popular MC-SCF method is the..—

Generalized Valence Bond (GVB) method

(W. Goddard) VB-type determinantsare considered
only in a rationally selected subspacef the CAS.

(c.f., the aforementioned description of the disstation
of H, where the subspace had two configs. only, these
do expand the whole CAS space, naturally).

Sometimes gives quite good results like in the caska
bond rupture/formation.

Transforming the occupied orbitals to localized orlitals,
the corresponding antibonding orbitals can be
guessed/invented. Still the GVB is a "manual-methdd
and the choice of the CAS can not be automated

Pulay's procedure ("...our own method...", P.P.) is
based on the UHF (Unrestricted Hartree-Fock) method

"different orbitals for different spins" ( u® uB)...

E H2 =2H.

RHF
1 UHF H.+H.

L/Z — R [Angstroms]
exact
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approximately at 1 A the RHF becomes triplet-unstale,
from here the electrons go into different two orbials.
It is difficult to understand: why there is no sepaation
of the alpha-beta orbitals at shorter R distances??
Independently from the electron-electron repulsion,
both electrons would prefer the "optimal" MO. If th ere
are TWO orbitals, none of them is "optimum". Which is
the stronger effect: interaction or optimum?

Starting from singlet H, the problem is that in case of
the UHF method the wave function will not be a "pue”

eigenfunction of the§? operator (i.e., will not be a pure
singlet state):

52 = 8)2( + % + % =

(5, *+35, F+ (5, +75, 5+ 5+°s 9

that is, theS, , Sy , S, operators are not one-electron
operators due to the mixed $Xls(2-type) terms (!1).

As it is well-known, the eigenvalues & are S(S+1)in
atomic units. Starting from the singlet ground stae of

H, , at larger distances the UHF solutions are:+. , or,
alternatively, { +1 (the correct ¥ would be the mixture

of these). Indeed, none of them are good completely
each of them is constructed by a lin. combinationfa
singlet and a triplet states. Energetically theyy(+{ and

L +1) have the same energy (during the observation they
are not able to "go through", tunneling is also slav,
conclusively they can be considered as stationary
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states). The involvement of the excited triplet sta at
the problematic distances (> 1 A which is still noto)
resulted in higher energy than the exact value...

YuHF = ‘UA UB‘
at large R distancesu, and ug are AOs, at smaller R

distances not the AOs (but also one electron is @y the
other is on B).

Projected UHF: the re-establishment of the pure
spin state:

Wpyunr = N(uaug|=|up ug)
(actually t++1 and { +1 are the lin. combinations of two
states). It gave a good idea that, and ug are not

orthogonal orbitals spatially, at intermediate R
distances:

@ S) andcj\) @

A B B
Ua Ug
Evident that spinorbitals are orthogonal to each dter
due to spin but (as we have seen) their spatial pas
NOT orthogonal. However, we can introduce spatially
orthogonalized orbitals (these correspond roughlyd the
bonding and antibonding orbitals):
U2 = (24 20)2[up * U]

t due to symmetry, and\ is
the spatial overlap ( =(ua |ug)) here (\ < 1).
If A =1thenup =ug (RHF): in this case there is nai,
solution. Substituting this into Wp;14p We get
PpurE = Aquzug| = Aglunuy|
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(Where Aq, = (L A)(2+ 22)" "2,
This trial function is built of two configurations, its
form is similar to the MC-SCF trial function, but here
neither the u, , orbitals, nor the A, , coefficients are
fully optimized, these originate from the UHF method.
The PUHF method gives two orbitals= logical that
these give good starting orbitals to the MC-SCF mabd.
Generalization for n electrons...
First a few new ideas... More general density maixi
(whose special case is the one met at the HF method

First-order reduced (spatial-spin) density matrix
pAL) = (¥ @2,..N%¥ 12,...n)drydrs 0.7,

where 1' and 1 mean four-four coordinates of an
electron (e.g..1 = X4, Y1, Z3, &1)- Actually it is a function
that is similar to a matrix (with continuos indices. Its
diagonal elements arel'= 1

P(L1) =p(x,y,z¢&) =p(r,<)

this gives the _probability (density) that we can find an
electron with a given spin in a volume of 1 bohtaround
a givenr point.

Now the density can be expressed in terms of the $ia
functions:

p(1,1) = Zqu quXp(I)Xq (D

(where theD is our "old friend", it is the matrix repre-
sentation ofp first-order reduced density matrix).
Second-order reduced density matrix: has 4 variabe
(1',1,2',3. It can be show that ALL we can calculate in

the nonrelativistic guantum mechanics from the wave
function, is determined by the second-order reduced
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density matrix (i.e., contains all the information) = two-
electron operators only in the Hamiltonian!!!

Many efforts have been wasted for the direct deriviagon
of the second-order reduced density matrix, for ndting

The first-order reduced density matrix prescribes he
values of all the one-electron quantities, among le¢rs
the electron density.

Lowdin: how p can be represented in the most simple
form? = diagonalization of the infinite, continuous
matrix:

p(1',1) = 0.0, (1)d; ()
where g is the diagonalized form of theD matrix on the

basis of the¢; "natural spinorbitals " (NSOs). Theg;-s
are the spatial-spin occupation numbers.

First-order reduced spatial (or, charge-, or spinless)
density matrix (it is even more important than the
spatial-spin density matrix mentioned before):
oAry.rq)=]p(11dérdé =sumof 4 termdor all the

alpha- betaspins= ¥ giu; (ry Wi(r1)  (Lowdin)

t another o;: spatial occupation
number of the u; natural (spatial) orbitals (NOs).
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Aforementioned diagonal representations:
¢; natural spinorbitals (NSOs): spatial+spin
u; natural orbitals (NOs): spatial

E.g.,

HF (SCF): the spatial-spin occupation numbers of
all the NSOs arel and 0;

RHF: at any orthogonal set the spatial occupation
numbers of the NOs are2 and 0;

UHF: the spatial occ. numbers aré<c;<2 . For a
two-electron model (i.e., in case of two
electron) just theu, , bonding/antibonding
orthogonal orbitals (vide supra) will be the
NOs, their spatial occ. numbers are

— A2 _pA2.
o, =A] and o, =Aj%; (because

qJPUHF = Al‘ulal‘ - AZ‘UZDZ‘)' COﬂClUSively,
the NOs of UHF and PUHF are the SAME!!!

It is NOT natural, quite strange, Harriman
proved it (Harriman theorem).

Thus the PUHF can be written in the form of MC-SCF.
From here came Pulay's idea that the active orbital of
the CAS-SCF have to be deduced from the UHF NOs,
regarding to the occ. numbers.

If spatial o; ~2, big force keeps the electrons on the
same spatial orbital, they can not separate. If spial o;
~0, the electrons do not want to go to those orbitsl If
o; ~1 ,these orbitals are the active ones.
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In the first approximation the ~2 occ. orbitals are the
doubly occupied CAS-SCF orbitals; the fractionallyO<<
0;<<2. occupied UHF orbitals are the active CAS-SCF
orbitals, and finally, the vacant UHF orbitals do NOT
play any role in the CAS-SCF configurations
(unoccupied orbitals).

Fortunately, the UHF has quite unambiguous solution
and these natural orbitals give a very good first
approximation for the CAS-SCF method.

Example I H,0O spatial occ. numbers versus symmetric
stretching (R), i.e., the two bonds will be stretobd
simultaneously. Physically it is not too interestig but it
IS from a theoretical point of view: bond rupture!!!
sigme

1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ﬁ%ﬁ

0
1.3 R [Angstroms

They tend to unity... To about ~1.35 A, the RHF is
suitable for the description of the process. Onlydur
orbitals have been drawn, but the others are zeror@®.
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Example 2 -NO radical:

sigme
2 _sigma
pi
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,
pi* sigma*
0

1.1F R [Angstroms

If the UHF and RHF starts to differ (at any
intermediate values of R) here appear the fractiondy
occupied orbitals:

0.02<0<1.98 (Pulay)

Strict proof exists for the 2-electron case only: wen the
UHF starts to differ from the RHF ("triplet instabi li-
ty"), the 2 electron x 2 orbital CAS-SCF trial function
will be determined:

P = Al‘ulul‘ - Az‘uz uz‘

if |A,>0.23, thatisA5>0Q05 |, then

the RHF solution is triplet unstable, andE;yg will be
lower than Eqye . Here appears the strong correlation
in the wave function.

Example 1 phenoxy-radical

O—
3B, ground state (on thertorbital

there is one unpaired electron).
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If an unpaired electron is near to an unsaturated bnd,
there is a large resonance, the result will be a stoidal
structure:

(e

Orbitals 1-21: 0; > 1.998 _occupied

Orbitals 22-28: o; : 1.97,1.87, 1.86
1.0,
0.14, 0.13, 0.03 active
symmetry can be observed; it is
not necessary since the electrons
go from one orbital to another

Orbitals 29-...: 0; < 0.002

If the system is not planar, it is not possible tassign the

Ttorbital; still the method retains that 7 orbitals form

the CAS...

Example 2 allyl-radical ("propene - H")

/\ in the reality:

3 active orbitals
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Example 3 N,O, : 6 orbitals in CAS
The "functioning"(working) of the UHF trial functio nis
difficult to understand but if we localize them itis
possible. Denoted by + and o the maxima of the alph
and the beta electron densities, respectively:

X X
OXo o0
x- O y O X

0
xo 0
o) X
N x o N
X
X o

) X )
x O X O «x
) 0

) X

X o)

UHF does not shows the symmetry (its pair an UHF in
which the NO, group is rotated), this error disappears
in CAS-SCF.

Linnett's theory: octet-principle is incorrect, in the
reality is double quartet.

Example 4 O5: itis a very strongly correlated system,
it is NOT possible to describe without correlation.

o] X

Linnett's quartets are actually localized UHF MOs.lIf
the UHF and RHF does NOT differ, results in the oat-
rule. But the theory of Linnett is more than the otet-
principle. Its main problem was that Linnett did NOT
gave any theoretical explanation to his theory.
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The CAS-SCF is quite expensive, needs approximately
as many times more computational time than RHF as
the number of the active orbitals. Also, its convagence
Is worse (it can be repaired by quadratically conveging
methods but it causes even larger comp. time).

Hitherto : from the UHF NOs we have got the active
space of MC-SCF, the starting orbitals were deternmed
only.

Now: one more step:

The UHF NOs (= UNOSs) are so good approximations to
the MC-SCF orbitals that there is no need to optinae
them, it is enough to optimize the coeffs. of the
determinants = UNO-CAS method (Pulay).
l.e., it is enough to perform CI in CAS!!!

This modification lowers the computational time byone
order of magnitude comparing to the MC-SCF.

Example 5 O3 geometry calculation (DZP basis set)

Method R(0-0) [A] o [deg.]
SCF 1.207 119
2x2 CAS=GVB 1.257 115
UHF 1.301 110
UNO-CAS 1.259 115
+GMP2 (Dynamic

corr.)* 1.279* 117*
EXp. 1.271 117

* The perturbation is added to the UNO-CAS
result (Pulay's GMP2 method).
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The problematic features of the MC-SCF method

() it is still not quantitative method. Its error often
contrary to the RHF method (for the barriery due to the
following:

H

2

E

RHF

" 2x2 CAS=GVB

W [Angstrom]

exac

As can be seen the GVB method describes the
dissociation well (at infinite R describes well the
correlation because there is NO dynamic correlation
But at smaller Rs the dynamic corr. exists and it is not
described, thus the barrier will be too small (contary to
the RHF theory that exaggerates it). Dynamic
correlation changes stronglywith the multiplicity
(reverse ratio, see above...). Fragments (H. + .ldje
dublets, the H, is singlet. Evident that the_fragments are
better describedthan the molecule with the CAS-SCF
method. Of course, the dynamic correlation is not
considered here, so we make an error that changes
during the dissociation= the barrier will be too small.
If we add the dynamic correlation to the CAS-SCF
result, the situation will be better (but never wil be
smooth enough due to the two parts). Different
possibilities:
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(IA) Correlation calculated for the all orbitals. It
can NOT be done for large systems.

(IB) Correlation calculated for a few, strongly
correlated orbitals only. Problematic if (during the
change of the geometry) one orbital "changes its
character" and goes into another class of MOs (e.g.
active = virtual).

(IC) Cl method: MC-CI. This means for us the sum
of MC-SCF + MC-CI methods. Size consistency
problem. Very expensive. If we neglect some confighe
surface will be uneven, gradients will be BAD...

(ID) Perturbation theory: second-order PT for
MC-SCF: would be very good model for chemical
reactions (e.g., for orbital crossing etc. ) but tase
methods are still not quantitative. The partition is
difficult, Pulay's procedure is the GMP2 (Generalizd
2nd order Mgller-Plesset method). Roos made the CAS
PT2 procedure...

The geometry optimization is VERY DIFFICULT for
reactions due to avoided crossing problems...

If the multiplicity changes slowly, the hypersurfae will
be good. In the opposite case can be very bad!!!

Extreme example Cr, . Efremov (Soviet)
experimentalr, = 1.66 A(spectroscopy). Extreme
short!!! Efremov stated that there is a 6-times bond
between the Cr atoms. Goddard (based on his GVB
calculation) did not believed this fact, he said tht the
experiment had an error. But the observation was gud.:
Cr el.config. 3cP4s (Hund-rule) resulted state’S
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(spherical septet). But at the forming of Cp the state is
129 . The system has 12 active orbitals, has to dedwei
with a 12x12 UNO-CAS which shows a very shallow
minimum = the proper description can be done by
dynamic correlation methods only.

(I1) A big question is the definition. There is NO
sharp limit between the dynamic and nondynamic
correlation. In order to describe the smooth potenal
surface a difficult question has to be solved... &
problem of the definition was solved by Pulay et al
Earlier MC-SCF was not used in the Gaussian package
at all. Later UNO-CAS has been implemented (without
mention Pulay's name... after a letter they startedo cite
him).

(111 If the number of the active orbitals is too big
(limit around = 12) the UNO-CAS method can NOT be
used. E.g., the porphin has 18 active orbs., somenfigs.
have to be avoided.

4. DENSITY FUNCTIONAL METHODS

In principle, DFT (Density Functional Theory) is a
simple, semiempirical method for the dynamic
correlation. Its origin is very old, from the early
guantum mechanics, Thomas-Fermi atomic model
starting from electron density.

Hungarian scientists (Prof. Gombas, Prof. Gaspar)lao
worked on this topic (Prof. Gombas was the head dlfie
department where Prof. Kapuyt worked earlier...).
From the 60-ies: physicists used it for solid bodg'
energy gaps, very simple model, & Scattered Wave.
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They became very slowly popular because they wered
simple but very good methods. They work on the
pattern of the Hartree-Fock method. The physicistsay
that the DFT methods are "exact" but only if we take
into consideration the Universal Constant (i.e., th
difference between the exact and the calculated
values!!!).

Foundation:

Hohenberg-Kohn theorems

("It is interesting but without too much meaning" N.N.;
"These proofs are .. existence proofs rather than
constructive proofs so that the task of developing
methods which rely on these proofs is still largela
matter of experience and trial and error" Cook;

Also it is worthwhile to note that Kohn never was aany
chemical conference BEFORE he got the Nobel Prize.)

In the Born-Oppenheimer non-relativistic approxima-
tion the Hamiltonian —new partition:
H=T+ Vg +Vg
where the first and the last terms aregeneral (universal)
at ANY system ofn electrons, and the second term (the
"external potential") which characterizes the system
(or, alternatively, nand V(r;) = V (r) vide infra) is:
A n N 7 n . A
Vext =—2 X =2 =3V(rj)=nV(r)

i=la=1Tai i=1
l.e., as the sum of the external potential of theadividual
electrons.
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It is obvious that the external potential fixes the
Hamiltonian, son and V(r) determine all properties of

the ground state
(for normalised wavefunction)

E=(¢[RY) = (W|TY)+(@Neut ) + (¥ Na¥) =

n

= <w fw> +<</J \7@w> + 3 <w\\7(gi )w> =
i=1
L/J>+<</J \7@w>+ n<w\\7(g)w> =

W)+ (WVg¥) +nV (r)p(r)dr

1l
<
—

1|
<
—

The first Hohenberg-Kohn theorem (1964) stateslThe
external potential V(r) is determined, within a trivial
additive constant, by the electron density(r) .

Proof:
Let us assume the opposite: there are two possible

one-particle external potentials ¥/ (r) and V'(r) ) which
correspond to the_ samep(r) density: In this case:

HY =EY ,whereH =T +Vgy +Vg

Hy'=E'W' whereH'=T +V o tVg
(whereVeayt % V'ext)

p(r) = [|@(r,€ 23,..n)°d&drodr3 .7, =

= [|@'(r,€ 23,..n)%dédr,drg 0. 0T,
(except for the trivial case when the external potdials
differ by a constant,% and %" will be different).
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But for the expectation values of the energy (varison
theorem) we get (for normalised wave functions):

W = <L|J' AY)>E
W'=<LIJ‘I3I'LIJ >E'
Thus:

E<(W[HY)=(@|HW)+(W|(H-HYW) =

= E+n[[V(r) =V'(n]p(r)dr
E<(W|HW)=(W HY)+(W|(H-H)Y) =

=E-n[[V(r) -V'()]p(r)dr
which mean thatE+ E'< E'+E , i.e., "reductio ad
absurdum”. (Q.E.D.)

Conseqguences
Sincep(r) <« external potential uniquely <

Hamiltonian uniquely < ground-state wave function
uniguely, thus the ground-state wave function andrte
ground-state total energy must be a functional ofite

ground-state density:

Y(L2,...,n) =f[p(r)]
E = E[p(1)]

This means (since{W‘\?extilJ> =n[V(r)p(r)dr ) that a

similar functional must exist for the expectation alue of
the "general" terms of the Hamiltonian:

(W|(T + V)W) = Fp(n)]
The problem is theF[p(r)] functional: it is NOT only not

known but very probably can NOT be known (P.P.;
justification of second kind..., G.P.; if it is true, |. Mayer
proved this...).
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Holographic electron density theorem (P. Mezey)
(Extensionof Hohenberg-Kohn I. theorem)
Mol. Phys. 1999,96, 169.
States that any electron density fragment of a nomzo
volume of a molecular electron density contains all
information about the complete, boundaryless
molecular electron density.

The second Hohenberg-Kohn theorem (1964) states
For an n-representable trial densityp(r) , such thatp(r)
>0 and integrates to the number of electrons in the
system ( o(r)dr =n),
the equationE[p(r)] = E Is valid,
where Eg is the exact nonrelativistic energy of the
ground state (p(r) is the trial-density function).

Proof:
According to Hohenberg-Kohn I., a givenp(r) density

uniguely corresponds to an external potentiaf/([) , SO
exists a HamiltonianH whose Schrodinger-equation is:
AP =EP (¥ is normalized)

Let us use thep(r) density function to evaluate the

energy of a system with a differentknown external
potential V(r) which corresponds to the known

Hamiltonian H : I~E=<LTJ‘I3IL~IJ> = Ep(1)] (corollary of
Hohenberg-Kohn 1.). Since
E>Ey=(W hv)

(where HY = BWY)
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and by the corollary mentioned above:
Eo = E[p(r)] , we get:

E[p(r)] =2 Eg (Q.E.D.)

that is:

If we would have the energy of the system as a
functional of the p(r) electron density

E[o(r)] = [V (r)p(r)dr + F[p(r)]

where F[p(r)] is a functional that contains the kinetic
energy + the electron-electron repulsion, we could
determine the minimum of theE(p) functional and we
could have the accurate energy.

"...If 1 could,
| surely would..."
(Simon & Garfunkel, "Bridge over troubled water")

Though, this would be very good because tHe wave
function is very complicated, whilst the density i&
simple 3-variables function.

The situation can be explained within the HF theory
with ¢;(r) spinorbitals we can write the complete one-

electron density as

p(r) = _ﬁ\dﬁ (n)?
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The expectation value of the (external) potentialreergy
IS then (hereafterVgqy =V)

V) =216 (N () (r)dr
|

1 local operatoi(hasa valueatanyr).
(A local operator is NOT the most general one...) v

V)= N(IZid (D ()]dr = [V (1) p(r)dr

It is valid not only for HF, but also for the complete CI
wave function (it is proved).

"Nobody understands accurately why the DFT methods
work" (P.P.)

Thus E[p]=(V)+F[p]

where the last term contains the kinetic energy +ie
repulsion of the electrons.

The kinetic energy can be written (Thomas-Fermi
model) as a crude estimate (plane waves in a box):

T~Ip%d£

Kohn & Sham method

(Slater called it as Gaspar-Kohn-Sham ...)

they said that the kinetic energy has to be calcuiad
much more accurately. Let us think that there is NO
electron repulsion then the® = detd,d, ...¢ | Slater-

determinant would give the same energy as the true
nonrelativistic wave function
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kineticenergy Ts = ~%; ¢ (r)[, D2)¢i (r)dr

(the s index means 'single particle': without repulsion!)
Naturally, this is not expressed by the density, it
contains the second derivatives (NON-local). With
elementary modification we get

Ts = ill0g(07dr

where only the first derivatives play a role (errorin the
Atkins' book: "the second deriv. is needed"). Let be

W=Ts +[VOPAL+ (00 ple)drdra +
+Exclo(r)] +VnN
The first term is the single particle kinetic enery
(strongly non-local!!!), the second one is the expttion
value of the externalV (local), the third term is the
Coulomb-repulsion of the electrons and the fourthérm
Is the exchange (X)-correlation(C) functional, theast
term is trivial (nuclear repulsion).
In Exc are the following: the terms of the kinetic
energy which are NOT involved inTg, (correlation
functional) + the exchange functional. Theey is

"smaller" functional than F[p] , we will approximate it
by a local function.

Now comes the ‘variational principle’ (as in the HF
theory):

L=W -3, % ek (¢ |r) — d) —~ min
(Notabene for spinorbitas thefactor 2is notneeded)
The variation of the i-th spinorbital:

b; - ¢; +00;
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If in the expression ofdL the &b; would take part

multiplied by a, let say, positive constant , and if we
would have chosen thé¢; negative (or vice versa), then

the £ would lower, starting from the minimum. This is
absurdum, so the first variation of £ according todd;
has to vanish:

o7 =21/ ~20%0; |

5p=250;9; (real) (becausp(r)=Y,, (Do )
N =2[ogV(r)gidr =2(o¢; V|@;)

Ecouioms= 4T, [SA(1A(11) 12 )rydr =
=2(og; | J|g;)

where the J= J/)! local Coulomb operator is the
operator of the multiplication by the function J(rq) :
3= 6= 1221, 0
2
which describes the complete repulsion of the eleon
cloud at ther; point.

Let us suppose that a locaEyc exists:

4
Exc(local) = [exclp(r)ldr = COIﬂStEJOé
completelylocalfunction

FExc =9[exclpldr = Ié’g)ii—(l;['o]5pd£ =

- o[ o ﬁf@;[p] gidr = 2(34; |Vxclold)
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where exc is the density of the exchange-correlation
energy, and we substitutedp with the expression given

above...
Nota bene Vxc is the potential corresponding to the

exchange energy, it is proportional aboutconstljb%
being the derivative ofexc .

Ol -k 2 ek (DK | 1) — O )] = —2k &ik (085 | Dk )

summing up:

%5/~=<5¢i‘—%52+\7(£)+3(_f)+\7xc\¢i>‘
- Y Eik (30 [dk) =0

[Nota bene the Ilast term can be written as
£ii (00 |0j) =€i(dd;|dp;) similarly to the Hartree-Fock
theory, canonical form...]

If this expression is not zero, and negative, therkas to
be such ad$; which lowers the energy. If this expression

IS not zero, and positive, then usingdd; with the
opposite sign the energy will lower also.=~ has to be

Zero.
This can be true for eachp; only if

(-2 02+ V(@) +3() + Vi 10; = 10

similar to Hartree-Fock: the difference isVyc which is

dominated by the X exchange (over the C correlation
This new function can be derived from the homogenau
electron-gas as a local function, with the jelliunmodel:

electrons in the field of uniformly distributed postive

charges (the whole is neutral)...
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Nota bene Solution: SCF technique. The Kohn-Sham
orbitals do NOT have similar meaning as the HF-
orbitals; the determinant built by them can NOT be

considered as an approximation to the exact
nonrelativistic ¥ .

Nota bene programming is very similar to HF, too:

1
E = ZI‘ ZS PI‘SHI’S +§Z quZrZSquPI’S(pq‘rS)-FVXC

General case: non-locaVyc function.

Theory of metals: Wigner, later Slater.

Slater: homogenous electron-gas (jellium), the Hartree-
Fock functions are sin functions (simply from

symmetry, translation), Born-Karman conditions, on

the surface of the cubes the sin functions are vas:

VX = —3(2)% p}é
811

Slater derived the averageof the exchange energy, this
IS NOT completely correct.
Gaspar (Acta Physica Hungarica, 1954). the exact
derivate is given...
Kohn_and Sham 1965): newly derived the same as
Gaspar, wanted to publish, but Slater noticed, ...

v =l 2V,

81T

where a =§ in the exact deduction.

X method (Slater)
empirically 0.7 is a bit better: if the alpha is smewhat
larger (instead of 0.667), the exchange will be lger
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also, so the correlation (considered similar to exange)
IS involved.

Scattered Wave X, _method (K. Johnson) using the
"muffin-tin" potential: around the atoms is spherical,
between them is homogenous potential... Very badrfo
geometry: e.g., water is linear.

After these problems the X, density functional methods
discredited themselves, Slater did not get Nobel Re ...
Today the method is not used. The orbitals were qia
good...

Valuation:
Generally, it can use approximate formulas much
rather in W than in H or in any operator. Indeed, inW¥
we can be quite "liberal", because its error appeas in
the energy in a larger order of magnitude:
let W be the exact (normalised and real) wavefunction,
let its error be dW (where (3W|W) =0 , naturally), then
we get:
E[W+3W] = (W+3W AW +8W) = (W|AW) + 2(3W| AW) +
2E(3W|W) =0
+(3W|HEW) = (W AW) + (8W|HEW)
conclusion: the first-order error in ¥ means a second-
order error in E. Any intervention in H causes changes
immediately in first-order. thus, it is a very bigdaring
to approximate the terms within the Fock-operator,it is
a crude intervention. However, it works very well this

is amiracle. Very INTERESTING: the local V-
potential works even BETTER than the exact Hartree-
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Fock exchange!!l T. Ziegler (Canada) explained thishe
compared the HF and the locaV x¢ in a very simple
model (2 H atoms at a very big distance):

uzi(u+ ), SO
\/EAUB’

E= 2<u‘ﬁu>+ 2( ud ug—( up up
where( | ) , (.. ) and (.. ) terms correspond to one atom
(the second one is the Coulomb interaction, the tid
one is the exchange term. As can be seen, at lalg¢he
Coulomb and the exchange term does not cancel each
other, whilst in the DFT this compensation is more
accurate (still not exact...).
E. Clementi (and others) tried to improve the methd:
he used the exact HF exchange augmented by the lbca
approximation of the correlation - it is interesting that
the result was worse. Conclusively, we have to
approximate/treat the exchange AND the correlation
together as a localpotential.

Hartree-Fock-Slater method (HFS): p1/3; a =0.7

Ziegler results for bond distancesn JCP, 1991,94, 6057
... HF slightly longer, F, is very good, LiH slightly
longer, CO almost perfect, Sk good. The NL (non-
local) values are slightly over-corrected. For fregencies
in JCP, 1992, ...

Numerical details.

The Handy's HFS method (without neglecting terms,
the "clear formulas" were used with a high numericd
accuracy differently from the physicists) was slowe
than Hartree-Fock, the results were also similar, bt
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contrary, if the HF method gave very bad results (ke
CO, F,) their DFT values were better.

There is NO standard DFT method (like Hartree-Fock)
we have to use also a basis set for the descriptiohthe
orbitals:

basis set

e N

Gauss Slater

DGauss (Anselm, Cray)  Baehrends, Ziegler

deMon (Salahub, Can.
The MOs are calculated_ numerically(e.g., 1 orbital in
100 points means 19data) in DMol program: molecule
In a box, basis set: plane waves [disadvantagesry®ig
basis has to use e.g. ~40000; the atomic cores havee
described by pseudo-potentials (Gombas, Hellmann
started, Corning Glass glass-factory made...);
advantages: it is very easy to calculate with them]
"Augmented Plane Waves" plane waves + atomic basis
set (Gaussian orbitals are also the best ones her&éhe
completely numerical procedure is NOT pretty good.
Even the Gaussiaf® calculates the Coulomb-terms
(naturally, the Coulomb-term is much simpler than he
exchange, physically) like in case of the Hartreed€k
method, i.e., without approximations (first we haveo
check the method without too much approximations.).
Evident that if the Coulomb-terms are NOT
approximated, the HES procedure is more expensive
than the Hartree-Fock method but it is much cheaper
than the MP2 (disregarding the most modern "fast
MP2" programs which are as speedy as the DFT
methods...).
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The use of approximatep density: it is very promising
since the density is a much _simplefunction than the
orbitals (the individual orbitals are complicated, have
many nodes, their resultant is more smooth, spherad):
p=p=2, RN, "fitted density"

wheren, -s are the_basis functions for the densitjnote
the simplicity: we have used single summatioimstead of
the usual double ongp =3, > . DX, (F)Xs(r) . The

double summation is accurate using a finite numbeof
terms, the "fitted density" is accurate, in principle,
using infinite number of terms only: first has a god
convergence, later slower... However, the fitted daity
will be the "future". Still has a big problem: the
derivatives need more accurate description.] The sailt
of the fitted density for the matrix elements of tle
Coulomb-operator:

fitted densitErRr(xpxq‘n r) ~ O%N )

(Xp|Xa) =

accurat® Y .Dy(pqr9 ~G(N )
Determination of the coefficients in fitted density
Trick: the error of the complete Coulomb-energy hado
be of second-order in §-p). Dunlop minimized the

expression

L+
12
where the first term disappears at the derivationdoes
not depend on the fitting...

Exchange-correlation (XC) energy accurately is NOT

computable (even forpl/3 either, since the cubic root of

(@

1. 1 i 1.
—p-p) = (p‘—\p) -2(p —p)
12 12 12
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a sum is not the sum of the cubic roots of the ters).
Two possibilities: numerical integration or fitting in
each SCF cycle.

Handy: everything accurately, XC by a very accurate
numerical integration. Numerical integration:

grid, using, e.g.A=0.01 A, in an
elementary cube by length of 0.01 A
the p density can be considered as
P constant, multiplied by the volume,
make the sum... This is NOT possible
for the atomic cores:_there is an
inherent contradiction between a
grid and a sphere The greatest error occurs around the
nuclei where the density is very big and changes pally
- this effect can be described by grid of constam¢ngth
rather poorly.

Axel Becke (Canada)(JCP, 1988,88, 2547) the
numerical integration will be performed by Voronoi-
polyhedrals: the space of the molecule will be
decomposed by planes for atomic and interstitial pas.
Around the nuclei uses spherical grids, the points

are uniformly distributed by
Lebedeff's method (e.qg., 14
points,...); uses weights in order
to avoid the 2 times integration
because the integration is
Spherical grids around | independently goes around the
nuclei A and B nuclei: the weight is 1 around

the "own" nucleus (according to the Voronoi-
polyhedrals), in the interstitial places it is lowe, at
another nucleus is zero... It is well-known that th
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numerical integration of a smooth function is veryeasy,
but the same for a cusp is VERY difficult. Becke's
mixed method seems to be quite good.

Handy uses several 10000 gridpoints/atom - it is m&
but it is still scaled by o(NP) only...

Non-local functional approximations

V¢ : Slater-Gaspar-Kohn-Sham; it contains only the
exchange, in principle. It is possible to make are
accurate if we deduce a local function for the
electron-gas and fitting it numerically (by Monte-
Carlo method, with plane waves): Perdew-Zunger,
von Barth, Vosko(the bes].

We get a non-local potential if we use the gradient

correction (electron-gas in which the density chares,

how influence this the exchange correlation?):

Becke (B: fitted for atoms!!!):

2
X
VNL

~bp!/3
63)( [arsinh x

wherex = W b=0.0042

(naturally, Op is the gradient of the density).

L ee-Yanqg-Parr correlation functional: another...
-1/3

cp
y ye { 2/3 8/3, 8/3
—ab 18(2°"7)Ck (pg ™+ pg") ~
1+dp 3 9(1+dpL/3) 083 B
~18at,, + py (2T + sza) + 03 24 + szﬂ)}

PG+ P 1 [Dpg|” \
where y=2[1- ’8] and tyy = Po ,00

p* 8 o

LYP _ _
VC =-a
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the a,b,c, andd parameters are determined by

fitting to data for the helium atom.

B-LYP: works very well. It is better than MP2,

scaling is approximately Hartree-Fock or smaller,

computational time more than HF. B3LYP.

Models which include the exact exchange (given by

the Hartree-Fock theory for a Slater- determinant

composed of Kohn-Sham orbitals) are often called

hybrid methods. Becke's 3 parameter hybrid

functional with the LYP correlation functional:
Voo P =avRS + (1-a) Vi + bvEs8+ cvi P

+(1-c vy

where the superscripts DS, HF, LYP, and VWN

refer to the Dirac-Slater, Hartree-Fock, Lee-Yang-

Parr, and Vosko-Wilk-Nusair exchange/correlation

functionals. The values of the, b, and c parame-

ters were determined by fitting to atomization

energies, ionization potentials, proton affinitieof

model compounds. Very popular method...
Problems of DET methods

(i) excited states, negative ions. It is difficulto

manage the orthogonality;

(ii) states which can NOT be described by one-

determinant due to spatial symmetry (e.g., in

atoms like1S andl1D states in C atom);

(ii) states which can NOT be described by one-

determinant due to spin-symmetry (Local Spin

Density LSD ~ RHF) - UHF analogue: e.g.,
openshellsinglet(closedshel) 1 i | j|~|(closedshell) 1 i t ||
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it is impossible to describe with the present
methods.

(iv) Long-range dispersion forces: typically

correlation effect (adhesive tapes!!!) - weak
attraction

(v) Can NOT be improved systematically.

Example: DFT-based SQM Force Field Method

"An application of the DFT-based scaled quantum
mechanical force field method to a weakly bonded
system: NO,"

A. Kovacs, K.B. Borisenko, G. PongorChem. Phys.
Lett. 1997,280, 451.

SQM Force Field: combination of theoretical and
experimental information

[P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs and
A. Vargha,

J. Am. Chem. Soc. 1983,105, 7037.]

Theoretical information

- _[ 0% | _| 2 [0E
V| 9919q; o 9499 ), .

E: total energy (electronic + nuclear repulsion)
gj, gj: nuclear coordinates

e level of QM approximation (method + basis)
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» choice of reference geometry
e appropriate internal coordinates (NIC)

Experimental information

Fd =T [F[T , where T - diag(x¥?
9(X
%: scale factors
(congruent transformation)

GFscaIedL — L/lcalc

G: inverse kinetic energy matrix

F: force constant matrix (“force field")
NS igenvalues (diagonal)@requencie)
L: eigenvectors (normal vibration)

E Wi LUvica'C —viex'o)2 ~ min

result: scale factors in a least-square sense

Earlier:
Hartree-Fock method / split-valence basis sets

Rauhut and Pulay: [J. Phys. Chem. 1995,99, 3093]
DFT, B3-LYP functional / 6-31G* basis set
natural internal coordinates
11 transferable scale factors
mean deviation = 13 cni

(31 molecules, 644 fundamentals)
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training set: 20 organic compounds
(common structural motifs)

Non-common compounds ???
weakly bonded dimer of nitrogen dioxide: NOy4

(none of the molecules in the "training set" of
Rauhut and Pulay contained any N-O bonds !!!)

Natural Internal Coordinates and Scale Factors for

N-oOg4
no. coordinate description scale factor
1 R NN stre 0.922
2-5 1r1,..,1I1 NO stre 0.922
6-7 B1=212q-qr),
Bo = 21/2(qp-qp") NO2rock  0.990

8-9 y1 =612201-@1-q1),
Y2 = 6:1/2(20-@p-@") NO2 scis 0.990
10- 81 =01243

11 62 = 62156 NO»> wag 0.976
12 1=41(12513¢
+T2613+ ONNO
+12614t125149) torsion 0.831

Note: for coordinates 10-11 Califano's definitioasaused.
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Theoretical and Experimental Structural Parametersof
N-O4 (in Angstroms and degrees)

Gaussian '94, IBM SP2 Model 203

method N-N N-O O-N-O
Theoretical:

B3-LYP/6-31G* 1.782 1.196 134.7
B3-LYP/cc-pVTZ 1.796 1.186 134.7
B3-LYP/cc-pvVQZ 1.797 1.185 134.6

B3-LYP/aug-cc-pVQZ 1.799 1.185 134.7
B3-LYP/6-311+G(2d,2p) 1.795 1.188 134.6

CASPT2/QIT 1.7940 1.1906 134.90
MP2/6-311G*() 1.794 1.198 135.1
MP2/6-31G(d,f) 1.786 1.208 135.2
VWN/TZP 1.774 1.194 134.8
CCSD(T)ITZ2P+{ 1.752 1.195 134.7
Experimental:

ED 1.777(6) 1.192(3) 134.6(4)
ND 1.756 1.191 134.4

IR 1.756 1.196 133.8
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Calculated and Experimental Vibrational Spectra of NoOy4

Species EXp IR Int SQMDFT Calc. int.
(cm]d) (km/mole) (cnrl)

Ag 1380 1407 6.1R
806 828 96R

254 289 1000R

Ay 79 87 )
B1g 1724 1762 18R
498 497 179R

B1y 436 - 428 166IR
Bog 677 673 04R
Bou 1757 7189 1784 58344 1R
? - 228 02IR

B3y 1261 440.9 1278 4556 IR
751 270.0 752 2271 3IR

mean deviation: 20.7 crd

maximal individual deviation: 38 cnml

Consequently, the DFT-derived SQM force field
method of Rauhut and Pulay may give reliable resu#t
for non-common compounds as well.

G. Pongor: A Compendium of Modern Quantum Chemistry



123

5. MAGNETIC PROPERTIES; NMR CHEMICAL
SHIFTS

Quite new chapter of the Q.C., in the books rarely
written. It is "mysterious” for many chemists

The magnetic field is caused ALWAYS by moving
electric charges(magnetic monopole is NOT known).
Basically different from the electricity: it depends on theg
velocity and NOT on the positions!!!

Good description:

H.F. Hameka: Advanced Quantum Chemistry (Theory of
| nteraction between Molecules and Electromagnetic
Fields), Addison-Wesley, ?, 1965.

"The modern physics has not changed from the old
times of Newton, only augmented it with not too sk
amount of knowledge..." P.P.

0= 0 1+ 9 j+ g k Nabla-vector (...St. David's harp)
oxX 0y~ 0z

B=Byi+Byj+B,k magnetic induction vector

BE CAREFUL!!
Hereafter V=V (r) means the_electric potentia(and
NOT the potential energy function/operator as it is
usual in the Quantum Mechanics/Chemistry.
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Electric field: F =gradVv(r) =V can be expressed
as the gradient of a (scalar) electric potential faction.

Magnetic field (induction): analogously a (directly NOT
observable)A(r) vector-potential can be deduced:

] J K
B=curlA=0xA(r)=0/0x 0d/dy 0/0zZ=
Ay Ay A,

0A 0A
Bz _Tyi 4 (B _ORzyj, Py Oy,
oy 0z 0 ox = = 0Xx oy

Nota bene curl is also calledot.

External fields:

["External” means external for an atom or molecule]

In the case of an external field, into the Hamiltoran

"comes" V(r) (and NOT F ), and A(r) (and NOTB)

(...Bohm's paradox).

Problem: A(r) - A(r) + grad(any scalar function):
B is the same (it is NOT affected!!!).

For the NMR effect it is NOT needed the most genela
A(r) , it is enough the homogeneous magnetic field

i ] k
AN =1Bxr=1B. B, B
_([)_E_ £_§ X y y

X Yy z
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If we push the origin of the coordinate system by a
constant vector, it does NOT change the magnetic field
(the derivative does NOT change).

The nucleus can be considered as a magnetic dipgthie
to its nuclear spin). The vector-potential of theu N

nuclear magnetic dipole moment is
Ky X (r—RN)
Ay =-N 3N
=Ry

where R, Is the coordinate vector of the nucleus N.

(It is analogous to the potential of the electricltarge or
to the force which decrease byt/r and 1/r2 , respec-
tively).

From the Hamilton-function can be deduced:

electrostatics + fixed nuclei: does NOT generate a
magnetic field, a very weak effect comes from their
vibration only:

R n
H= %'zl[Ei +%A([i)]2 T N€attr + €Gept Nitep
1=
(wherec is the velocity of the light; the last three terms
of the expression are the usual potential terms, g,
nuclear-dectronic attr action, etc.) that is, the kinetic
energy term changes (c.f., magnetism & velocity!!l)
The perturbation originating from the nuclear magnetic
moment is very WEAK: practically does NOT perturbs
the electronic structure.
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Let us assume that only one nucledmsEN magnetic
dipole moment. [In the reality manynuclei havegl\I -S,

and there exists a VERY important spin-spin coupling
between them, but this is not interesting now dueotthe
chemical shift. Even the spin-spin couplings have
different types, too: one of them can be observed solid
state only, another works through the electronic
system...(The derivative of the electronic densitat the
nucleus can be expressed by the nuclear charge hig
Is a theorem.) ] In this case we get:

n s (1 —
F=Fg+ - 3 {p, + (Bx1)+2p » iy (0 33'“)]

2Ci=1 ri —R\|
(where H is the Hamiltonian of the system without
magnetic field, ande means scalar product). In the last
equation we retained the first-order terms only(the
second-order terms are very important for the magngc
susceptibility).

5 & & 3

. a as (bxg=|by by b=
_ Y = sigrkvolume of the body

b The change of any two of a
b, and cwill change the sign but, naturally, it is
invariant cyclically: X
e (Bxrj)=Be (i xp)=Be ]
thus this perturbation brings the angular momentum,
naturally: the external B field rotates (curl = rot) the

}
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molecule around the direction of the Bvector in the
complex space... The second term:

x(ri —R i —Rn) XD "
Zpi-EN (r; SN) P (ri —RN) 39, PN
— i-Ry " -Ry| N

of course, the angular momentum is independent from
the space if the system does NOT move (in the opfies

case depending...). Herd},N Is the angular momentum of

the i-th electron corresponding to a coordinate syem
possessing the origin at the N-th nucleus.

The chemical shift is a second-order tensor:
- 0°E
WP 0Byoup

wherea B = spatial x, y, z
the observation of the non-symmetrical part is very
difficult... The NMR is a "slow method", the molecue
can move freely in liquid state, thus, only the idoopic
part can be observed:

Ojsotropic = 3 (O xxtOyyt0 )

In solid statesthe anisotropic part is important and can
be observed (e.qg., if the molecule is adsorbed dret
surface of zeolith, the orientation can be determied):
e.g., at the HF (SCF) level for the second-order
perturbations the calculation of the second derivaves
can be applied (Pulay).

Gauge-invariance in the simplestcase means that the
origin can be moved and in this case we have to adil
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A(r) a constant vector this can not change the
electrodynamics of the system

1 1
A=_Bxr ; A=_Bx(t-R
A=Bxr s A=_Bx{-Ro)

so we must have the same result also in the secarase,
l.e., the calculated values can NOT be depending ¢ime
location of the molecule in the coordinate system.
Problem: (i) in case of the H atom (or any other atom of
closed-shell) there is NO problem:

dR
N

S

the rotation does NOT change the s-
orbital. The three p-orbitals individually rotate, but can
be described uniformly with/without the perturbation;
(i) In case, e.g., 8, homog. magnetic field and IF the
atom is NOT at the origo

y / \
| |
\ !
\ /
m X

origo Us

the B, field tries to rotate the orbital around the z-axis,
will be multiplied with an imaginary factor. If the atom
Is at the origin, can be uniformly described with/vithout
B. If the atom is very far from the origo, it can be
described without B. But with B the orbitals will be
slightly moved and if theB, operator acts on a moved
orbital the rotation can NOT be well described by he
basis functions (more accurately, the basis functis can
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not describe well the perturbed wavefunction). For
atoms the result can be good, but for MOLECULES
NOT: it is NOT possible to place all the atoms intdhe
origin, thus the results will depend on the basiset used
and on the choice of the origin and the orientationAt a
very large basis set the problem will disappear.

For a small molecule, if we use a moderate basigs s&d
if only one nucleus is interesting, we have to puitinto
the origin and the problem is solved... But for adrger
molecule...

F. London, 1937 first-order perturbation for an AO
i
rB)= r,0) Lex XRp)er
Xp(r,B) =Xp(r,0) p[%(B p)eI]
where X,(r,0) is the original AOR, is the centre

of the AO, and i is the imaginary unit.

That is, if the change of the basis set is allowedl a
magnetic field, we will NOT get different results
depending on where we put the atoms...

Gauge Independent Atomic Orbitals (GIAO)(as it was
named by R. Ditchfield in 1974): In case of GIAO,he
orbitals ARE depending on the field ("orbital
following") but the results ARE independent
Derivative methods: Pulay, 1987, Advanced Chem.
Phys: he noticed that the effect of the magnetic
perturbation (caused by a homogenous magnetic field
Is the same as the calculation of the second dertixees
at the Hartree-Fock level. For_Gaussian basis sets

—a(i-Ry)? _ 5 (BXRp)T

Xp(r.B)=e [EC
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"All the physics can be described by a few mathemanal
formulas: the completion for a complete quadrate, lte
sine/cosine of the sum of two angles, and the surnao

geometric series ..." P.P.

with an elementary modification we get:

(r=Rp)* + Ay ~ (r=Ry")* + const

Nota bene The Ry’ center will be complex but this will
NOT cause any difficulties...

[Alternative methods:

Individual Gauge for Localised Orbitals (IGLO):
Kutzelnigg, 1980: localizes the MOs, and introducef®r
thesea gauge-factor. The localised orbitals can be
considered roughly spherical. We have to move the
origin of the coordinate system into the "center-of
mass" of the localised orbital...

Localised Orbital Local Origin (LORG) :

Hansen, von Bouman, 1985, ...]

"The future: the GIAO method..." (P.P.)

The NMR shift (shielding) calculation at the SCF lgel
takes 2-3x Time of the energy calculation.

13C shieldings can be easily(well) calculated at thisvel.
Nuclei with lone pairs (like N) cause much more
problem: correlation... These need correlation metbds
like MP2-NMR shifts, DFT-NMR shifts. Mentioned
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methods are implemented into the most modern
program systems (ACES II, PQS, Gaussian).

Examples 7-circulene: 300 basis functions, energy 3
hours, SCF-NMR shieldings 2.5¢ 3 hours (1 hour
computer time is about 1 $).

Hexa-radiallene: people thought it is planar;
Calculations showed that NOT: 40 mhartree (25
kcal/mol) lower energy if it is out of the plane. h THIS
case we get the experimental NMR shifts.

Silicon compounds: ipse feci...

Fluorinated triptophane: it is build up into the peptide.
It can be located within the peptide by NMR.
Gramicidine: Pulay.

EPILOGUE

Problems in the future

1.) Effective correlation methods for large molecus,
excited states.

2.) Relativistic effects, heavy atoms.

3.) Global geometry optimization methods for
large/floppy molecules.

4.) Solvent effects.

5.) Effective parallel softwares.
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APPENDIX |
The Born—Oppenheimer approximation and beyond

1. Goal:

The separation of the electronic and nuclear motion
Anyway, this is not absolutely needed: there is aay to
solve the Schrddinger equation of the “complete”
(electons + nuclei) Hamiltonian for small systemssee,
e.g.. M. Cafiero, S. Bubin, L. Adamowicz, “Non-
Born—-Oppenheimer Calculations of Atoms and
Molecules”, Phys. Chem. Chem. Phys, 1491 (2003).

2. History:

Originally it was called as Born—-Oppenheimer (B—O)
[1] approximation. It has to be emphasized that Heler
and London [2] used the B-O approximation
‘implicitly’, even before the publication of the B-O
paper [1]. The problem related to the B-O
approximation wasl/is the rather clumsy
(perturbational) description. Later Born developed
another, more elegant method [3] that is not basedn
the perturbation theory (apparently, Slater [4] wasthe
first who discovered the so-called ‘Born method’).
Today everybody speaks about the B—O approximation
but uses the (Slater-)Born method [Kapuy’s comment]
(After the World War Il Oppenheimer and Teller had a
strong conflict (see, e.g., [5]) which is well-knowfor the
international scientific community. Anyway,
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Oppenheimer has a grand portrait in the KGB
museum, Moscow [6].) Both the B-O- and the (simplégr
Slater-Born-methods are called as adiabatic
approximations (Born and Fock, [7]) although the
resulted equations are not the same (!). Later Selis
and Pulay [8] introduced the diagonal correction ofthe
adiabatic (also cited as B—-O) approximation. A brié
and brilliant summary of the topic is written by
Kutzelnigg [9].

3. The B-0O theory:
(the first step of Born-hierarchy of approximations [3a])

It is a perturbative treatment of the problem. The
perturbation parameter is

L
77 =m*

(here m is the average of the mass of the nuclei building
up the molecule). Born and Oppenheimer, neglecting
the corrections higher than quartic order, showed hat
the molecular energy is

E :’70EK +’72E/(v +’74EK|/r

where E, is the energy of theelectronic system, E,,, is
the vibrational energy, and last, E,,; is the rotational

energy (the first- and third-order corrections vanish).
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Appreciation and problems:

1. Valid only for small molecules (N = 2) [13] andor
vibrations of small amplitudes; 2. It is difficult to
estimate the role of the neglected higher terms; 3.
Divergent (!); 4. Valid only if the electronic staes are
well-separated; 5. Confirmed the already accepted
chemical concept of the shape and sterical structarof
the molecules [15].

According to the B—O approximation the electrons ca
adapt immediately to the relatively slow movement fo
the nuclei, and the nuclei “see” the averaged
distribution of the electrons only.

The nonrelativistic total Hamiltonian of a molecule (n
electrons,N nuclei) in atomic unitsis:

R 1 N _1 1 n N n -1
H=-23 Mg = Z -3 Zargi +ZZFU * ZZZazbrab
2a:1 2; i=1 ai <] a<b

where ry is the distance between particlek and |, Z,
and M, are the nuclear charge and mass of tha-th
nucleus, resp. (naturally, the M, nuclear masses are
measured in units of the electronic masan,). The
Schrodinger equation (Sch.E.) of the aforementioned
Hamiltonian is as follows:

H¥(dj,Da)=E¥(d;.Dy)
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(here d; and D, are the space-and spin-coordinates of

the electrons and nuclei, resp.) The mass of the dei is
much larger than that of the electrons (see above).
Thus, the Schr.E. of the aforementioned Hamiltonian
can be separated into two parts: the Sch.E.s of the
electronic (I) and the nuclear (lI) Hamiltonians. In
order to derive them, let us define the electronic
Hamiltonian as

~ el 1N N n 1 NN
H™ = —EZ ZZZara. +ZZF.J +22rab
=1 a i 1< | a<b

The Sch.E. (1) of the electrons, in the field of th fixed
nuclei is

A (di5Ra) = B Ra ¥ (0 Ra)

(1)

where the character “;” means that there isparametric
dependence only on theR, (a = 1,2,...,N) nuclear
configuration (i.e., hereMalD2 > 0if My — ).

The Sch.E. of the nuclei (Il) can be derived, if we
consider the terms corresponding to the electronsithe
total Hamiltonian as expectation values (averaged on
the electronic coordinates already)
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] ab
2291 2iz1  ai i< ] a<b

1N
= -— ZMalgg"'EK(;Ba)
2a=1

thus the Sch.E. (ll) is as follows

ANy, (Da) = Exu¥qu(Da) (In)

The crucial point is the potential (energy hyper-)
surface

\7nucl — EK(;Ba) |

where the motion of the nuclei takes place.

(According to the adiabatic theorem (or, adiabatic
approximation[7]) the x electronic state_does not change
during the motion of the nuclei.)

The B-O approximation is of great importance in
(quantum) chemistry. Its use gives the possibilityor the
definition of the potential energy curves surfacesand
hypersurfaces allows us to visualize the chemical
reactions, reaction coordinates, and validates thielea of
the molecular equilibrium geometry. It must be
emphasized that some of these concepts were used in
chemistry earlier as the B—O approximation has been
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discovered, so the B—O approximation only confirmed
these ideas.

Precisely, only the stationary points of the effective
potential energy surface are definite (i.e., the tion

coordinate can not be determined uniquely) [10].
Stationary points are: the minima (starting materials

and end products), thesaddle pointg(transition states),
and the ‘local minima (reactive intermediates).

saddle point

0
$4%
‘,,:

i SRLITER,
f,"uﬁ-ffmf"
o

(1

b
yﬂﬂ”;f#f"
;Ilf’lt;¢ { ¥
t.:fift

The ‘reaction coordinates’ are not observables.
However, their definition can be given in staticalor
dynamical sense [10]. 1. Statical: not unambiguousee
later); 2. Dynamical: the classical trajectory coull be
determined on aneffective potential surface (calculated
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via quantum chemistry) for a ball (semiclassical
approximation). “Bob-slay effect”. thus the actual
activation energy can be higher than the gap itselfe.g.,
reaction of molecular hydrogen and iodine).

Note: In the B—O approximation the total wave function
IS approximated in the form as follows:

Y (rR)=x(R)¥#(r;R)

(here the spin coordinates are ignored). This expssion
IS not an approximationitself; the approximation is that
the ¥, and y functions are the eigenfunctions of the
separated Sch.E.s | (electronic) and Il (nuclear)ndeed,
let's assume that there exists &/(r,R) function with

the feature (¥|¢) =1 in this case the function? is
always can be presented in the form of
Y= x(RWr;R) , where (x|x)g=(%|%,), =1 In

F”=MB)

(obviously, the integration of ¥ over the electronic
coordinates is somg function of the nuclear ones). Now

order to prove this let us start with (WWJ

<)(\)(>R:<¢/J\1/J>rR:1 . On the other hand, we can
write

Y(r;R)=%¥(rR)/ x(R) , from where we get
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(W |Wi), =WI¥), I X(R)= x*(R)/ x*(R) =1
(QED).

Here we have followed the argument of Stepanov and
Pupyshev [12]. The Y(R)¥,(r;R) expressionmeans a
specific way of a strong (or, ‘autoctratic’) correhtion
[9b], in which one motion leads to the other (i.e.it is
only seemingly similar to the case of separated,
independent coordinates of ‘democratic’ correlation
[9Db], see the box in p. 8).

4. The Slater—Born method:

The @,.(d;;R5) eigenfunctions of the electronic

Hamiltonian constitute a complete orthonormal
(von Neumann-) set at eachR, (a = 1,2,...,N)
configuration. With the help of them the eigenfundbns
of the total nonrelativistic Hamiltonian can be
expressed in the form of a power series:

¥(d; ’Da):%:XA(Ba,z__a)"U/l(gi;Ba) (111)

(here the y, coefficients describe the movement of the
nuclei, and =4 is the vector of the nuclear spins).

Substituting the Eqg. (lll) into the Sch.E. of the total
nonrelativistic Hamiltonian, then multiplying both sides

of the equation by W;(gi ; Rq ) and finally, integrating
them over the electronic coordinates, we get the
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following coupled system of equations for they;
coefficients:

{-’IanC| + EK(;Ba)+ BKK(Ba )}XK(Ra’_:a)+/]z é/(A(Ba )XA(Ba’::a) =
K

=EXk(Ra =a) (V)

where the matrix elements of thecoupling operator B
are as follows

S1(Re) = - LMk 2 + 20 )
a

(Here the crucial point was the following: TnU¢
contains double derivation according to the nuclear
coordinates, and we have to derivate the function
Xi1(Rg,=3)(dj;Rg) in a lege artis manner, i.e.,

XY+ yy N

[It iIs easy to show the different levels of the Bor
hierarchy of approximations using Eqg. IV. If all the

matrix elements of the coupling operator B are
neglected, this is the B—O approximation. If all tke off-
diagonal terms are neglected, this is the adiabatic
approximation (in a strict sense). If all the coupling
matrix elementswere taken into consideration, this is
the non-adiabatic (or, diabatic) approximation.]
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Up to this point the procedure is completely correc
(apropos, we have to summarize in Eq. (lll) over bin
the discreteand continuous spectra of eigenvalues!). If
we neglect theoff-diagonal coupling elements, Eq. (IV)
disintegrates into independent eigenvalue equations

{-I“-nucl +Ex(;Rq) + Bey(Ry )}X/(,U(Ba’zra )= (V)
=& Xku(Ra.=a) (k,u=012,..)
In a specific, stricter sense, this is the (SlateBorn-

type) ‘adiabatic’ approximation. This is the secondstep
of the Born-hierarchy of approximations. Let us write

the BKK term as follows:

. 1 _
Bk = _EZ M a1{<K‘AaK> + 2<K‘Qa’(>ga} =
a

_ <K -IA-nucIK>
(because(¥|Oa%) =0 , as it can easily be shown by
differentiating the normalization condition
(P | ) =1).

The By, term of the nuclear Hamiltonian is called as

adiabatic correction (of the B-O potential surface)
which is sometimes also called ‘diagonal B-O
correction’, DBOC. At first, the DBOC was computed
for the special case of the Hartree—-Fock theory by
Sellers and Pulay [8]. Note that an effective potéial
energy surface is still exists within the frame ofthe
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‘adiabatic approximation’, although it slightly dif fers

for isotopologues [through masse€T "V in B, ]. The
Ansatz for the adiabatic approximation is as follovs:

#(dj,Da)=Xk(Ra,=a Wk(di;Ry)

The highest level of the Born-hierarchy of
approximations is the non-adiabatic [sometimes also
called diabatic (!)] approximation. In that case tre
Ansatz has the general form as is given in Eg. ()l The
linear combination could have smaller or larger
number of terms, for the first-order and second-orebr
non-adiabatic effects, respectively. First-order non-
adiabatic effectsarise if the electronic states close to, or
they are (avoided) crossing each other. In this casa
small number of the terms in Eqg. (lll) is needed.
Second-order non-adiabatic effecewise if an electronic
state is well separated from other ones but a highe
accuracy is required. In that case a large number fo
terms have to be used in Eq. (llI).

Example: the DBOC of the H-atom [9a,9Db]:

Here we can treat exactly the center of mass (COM)nd
relative coordinates, and can compare the result \th
the B—O (or adiabatic) approximation.

Let r and R the coordinates of the electron and the
nucleus, resp. The full Hamiltonian# (in terms ofr and
R) can be transformed into a new form using thex
COM and the p relative (internal) coordinates as
follows:
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mry+mpry _r+MR

R = T M=M +1
- m +Mmp M+1
MMy 1\t 1 1
p=r-R ; u= =(1+—) =1-—+0 —
- m +np M M M 2
1 - 1 o 1
H=Hp +H, ; Hp =T, =——0% : H,=———[%-=
R TP RTR™ a1 R P 2u P p

(where ¢ and u are the respective total and reduced
masses, andp is the norm of p). The exact
nonrelativistic energy and wave function for the
electronic ground state moving with total momentumK

are

7 S -
__E+m , Y =y(up)exp(iKR) ;
3/2

w(up)=* L exp(-p) -

In the B-O approximation, starting from the
nonseparated Hamiltonian of fixed nucleus:

1 - __ 12
H =Hiixed * Tnucl ; Hfixed =Tel = & Tel =~5H;

1 2
Thucl = _WDR
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(herer is the norm ofr), the energy of the H atom in its
ground state traveling with momentumK is

2
£B-O:‘%+|2<—M . @ =y(p)exp(K [R) ;w(g):%rexp(—p) .

Obviously, the B-O approximation causes two errors:
(a) uses the electronic mass instead of the reducethss,
l.e., neglects the motion of the nucleus in the wgive

motion; (b) replaces K2/2(M +1) by K2/ 2M , lL.e.,
neglects the participation of the electron in the
translational motion. From these two errors only the
first one Is cancelled in the adiabatic approximabn,
since the DBOC is as follows:

DBOC =<¢(£)‘Tnucl4”(£)> = ﬁw’(ﬁ)hell/’(ﬁ» =

1
VIR
(In the last Eqg. a simple trick was used:
<6w(£) 9p|ow(p) EQ£> :<6w(£) 9P
dp OR dp OR dp or

wp(p) 9p
dp oOr

The Y2 comes from the virial theorem.)
The sum of the electronic B-O energy and the DBOC
IS:
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_l+i:—l(l—ij:—£+0(|\/|_2)
M 2

This sum agrees with the electronic part of the exa
energy toO(M _1) :

Note that there is no adiabatic correction to the
translational motion. Only the non-adiabatic Ansatz can

describe the translation correctly within the Born-
hierarchy.

To check the effect of the non-adiabatic Ansatz, we
transform the exact wave function¥ to terms of p and
R (rather than p and g):

K=M8+£=(M+1)B+£=B+ P
=~ M+1 M +1 M +1

and

Kp
M +1

Y =y (up)exp(K & ) =@ (up)exp(KR)exp(
=@(p)exp(KR) ,

):

where ¢ is the electronic andexp(iKR) is the nuclear

wave function component, resp.. The energy of the
nuclear motion is

2

Enucl = (X Thuelx) = (exp(KR)[Thyciexp(KR)) = |2<—M;

and the electronic energy is
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. Kp Ko )\
1 £ o0t K -

. Kp 1 . Kp |. Kp -3
{Tehl Y +J+2HT6|,| Y +J,| Y +J¢/>+O(M )

(here the so-called Baker-Campbell-Hausdorff
expansion was used, see, e.g. [16], as follows

£ = <‘/~"( H fixed + Tnucl )¢7> = <l//

= <¢'\ H fixedlﬂ> + <¢'

¢ BAeB = A+ A,é]+%[[AA,é ,é]+§1|[[[z\,@ 8.8+ ..).
Note that the single commutator ié imaginary (doesot

contribute), since the double commutator gives a te
of

[[Tel ,iﬁg],iﬁg] =-K? . (Error!!! See p. 179, G.P.)

(the term with T, Was ignored in the double

commutator because its value is less thaB(M ) ). Thus
we get:

K2

2+0(|\/|‘3) .
2(M +1)

£ :<¢"H fixed‘/’>_

The sum of theK-dependent terms is

2 2 2
K K = K +O(M™3)
2M (M +1)¢ 2AM +1)

Ecom =
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so we have got the energy of the COM motion with
O(M™) accuracy. Summing up,_the participation of the
nucleus in the relative motion is anadiabatic effect,
whereas the participation of the electron in transition
IS anon-adiabaticeffect

Discussion:

1. Sutcliff [13]: For neutral or positive atoms there
are an infinite number of bound states. For
negative atoms there is at most a finite number of
bound states. For molecules with fixed nuclei the
situation is similar. If the nuclei are allowed to
move, the problem becomes very difficult. In
neutral or weakly positive systems there are some
bound states (dissociation to atoms) but not
necessarily of an infinite number. For too negative
or too positive molecules there are not any bound
states at all. These are according to the

Hunzicker’s theorem [14]. (Ipse feci: anyway, we have to
use the discret (boundjnd continuous spectra in Eq. Ill.)

2. Inevitably, the electronic energy surfaces touch
and cross somewhere: here the coupling matrix
elements are likely to be divergent [13]. In such
cases one can ignore the matrix element and the
coupling has taken into consideration in the
potential.

3. Adiabatic versusnon-adiabatic corrections:

Leading contributions in energy terms:
electronic: O(M°)
(harmonic) vibration: O(M*?)
(rigid) rotation: O(M™)
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translation: O(M™)

In calculation of the electronic energy, theO(M™)
adiabatic correction is important, the O(M™@) non-
adiabatic correction can be neglected if the questn are
connected to the potential energy surface (dissotian
energy, reaction barriers, etc.).

Adiabatic and non-adiabatic corrections are of equily
important to vibration and rotation. This can be sen in
a numerical study of H, [17], as follows:

Adiabatic and non-adiabatic corrections to the
vibrational frequencies of H, (in cm™) [17]

N B-O Aad. Anon-ad. | Exp.

0—1 4163.40 | -1.40 —-0.83 4161.14
1-2 8091.15 | -2.55 -1.59 8087.93
2—3 11788.14 | -3.47 —-2.27 11782.36

4. It is possible to define a Born-hierarchy
with/without first separating the COM motion. It is
non-trivial that the adiabatic energy is independen of
whether or not the COM motion has been separated bf
It must be emphasized that the adiabaticcorrections
differ in the two options (the electronic energy aker
separation of COM motion contains contribution of
O(M™ that can be considered as adiabatic correction).

In spite of the equivalence, it is an interesting
qguestion of which of the two Born hierarchies is
internally more consistent. An argument to first
eliminating the COM motion is that the Hamiltonian
has bound states only after this elimination (Sutdfe,
[13]). On the other hand, without this separation,one
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starts from the electronic energy of fixed nucleiif is

strictly of O(M°) ), whereas it (after the separation of
the COM motion) contains terms of O(M™) as the
adiabatic correction does. This makes the Born
hierarchy without separation of the COM motion more

internally consistent.

5. Kutzelnigg [9a,9b]: The electrons play two, not
really compatible, roles: i.) The quant.mech.-al
interference (exchange) of the electrons is respahke
for the existence of an attraction between nucleiil.)
Can electrons at the same time join to the nucleini
vibrational or rotational movement (in slow classial
motions)? It looks plausible that inner-shell elecbns do
not contribute to the binding energy, but participae to
a large extent in the nuclear motion.

A good compromise effective masses for vibration
are the atomic masses, but for rotation thenuclear
masses.

6. Spectroscopic/diffraction methods:
In order to make groups of different spectroscopic
methods, we can use the electronic and nuclear wave
function components.
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Electronic

Nuclear

Electronspectr.

Rotational spectr.

(ultraviolet,
visible)

(microwave,
far IR)

PES spectr.

Equilibrium
geometry

Vibrational
spectr.

(ultraviolet,
X-ray)

(electron-; X-ray;
neutron
diffraction)

(infrared,;
IR/Raman)

ESR

NMR

(microwave)

(radiowave)

The molecular structure is depending on the electmuc
state. Ethylene: ground state (closed-shell sing)etD,,,

(planar); first excited state (open-shell triplet L1]): S,

(twisted).
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APPENDIX I
GDIIS
Geometry Optimization by Direct Inversion in the
Iterative Subspace

Pal Csaszaf, Péter Pulay
J. Mol. Struct. 114 31-34 (1984).

Geometry optimization is one of the most frequently
encountered problems in QC._All modern methodsare
based on gradient (force) technique:

1. Force relaxation method (P. PulayMol. Phys. 17 197
(1969): needs fair guess of Hessian

2. Variable metric techniques: automatic modifyingof
Hessian during iteration (e.g., R. FletcherComput. J.,
13, 317 (1970)).

3. GDIIS: the best method.
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The goal of GDIIS: the location of stationary poins
(usually minima) on a (nearly quadratic or rather non-
guadratic) potential energy surface:

E =E(q) = E(q,02.-Gn)

(here n is 3N-6, typically large). The essence otIB: the
parameter vectors generated in previous iterations,

Oy GGy

are linearly combined to find the bestparameter vector
in the m-dim. subspace (here m is not large). Letsu
denote the sought-for solutiong0 , and express theg

error vectors as follows:

a; =g *+€i (i=1,2,..m)

Let us suppose that

2iGg; =g

Is valid in a least-square sense (usually n > m)hiis:

2iG(dy*+&)=2iG0y+XiCi€& =qg
=0

l.e., the following method can be formulated:
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which means a  Lagrange-type  constrained
minimization. However, it is easier to minimize the
square of the norm of the residual vector

2
F=|zicel = (Zice|zjciej) = %iXjGc;lele)) =
2i2jGCjDj —» min
Using the method of the undetermined multipliers
(Lagrange), the following functional has to be
minimized:

F=%ixjccibj —2A(% 6 ~1) - min

(here 2 stands for convention). Derivation of F
according to g and A we get:

2iGDKi—-4=0
2iG-1=0
that is,
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Dy1 D22 Dom 1| ¢ 0
Drnl Dm2 - Dmm 1 Cm O
1 1 .. 1 0]-A] [1]

The true error vectors are not known, naturally.
However, in the (nearly quadratic) vicinity of the
stationary point they can be approximated as

1

g =-H g,

where 9; is the gradient vector corresponding to the
geometry @, , and H is an approximation to the

Hessian.

In case of linearly (almost) dependent parameter
vectors the aforementioned matrix (GDIIS) equationis
ill-conditioned. In order to treat this problem, the
simplest technique is the omission of the error véar
with the largest norm (see also below).

The solution of the GDIIS equation yields an
interpolated parameter and gradient vector:

Oreg = 216G G
ey = TiG G,
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The new, independent geometry step will be generate
as follows:

— -1
41 = 9mer ™ H "9pmag

(the gradient vector is not explicitly evaluated fo the

parameter vector 9lm+1 IIN. Convergence cheking can

be done, e.g., on the norm of the approximated erro
vector...

Results:

Molecule N GDIIS Fletcher
Ethylene 3 4 3
formamide 9 4 17
Thymine 32 4 11

Note that GDIIS significantly ourperforms the variable
metric methods for larger molecules.

The Calculation of ab Initio Molecular Geometries:
Efficient Optimization by Natural Internal Coordinges
and Empirical Correction by Offset Forces

G. Fogarasi, X. Zhou, P.W. Taylor, P. Pulay,
J. Am. Chem. Soc. 1148191 (1992).

Convergence of GDIIS can be significantly accelerad
by the appropriate choice of nuclear coordinatesThese
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coordinates are the Natural Internal Coordinates
(NICs) originated from vibrational spectroscopy. (Note
that the ,Z-matrix method” implemented, e.g., In
Gaussian, is designed for input specification rathrethan
for geometry optimization. Even Cartesians are beér
choice for ring molecules.) The NICs minimize the
coupling te rms between the coordinates so their as
gives the ,most quasi-quadratic” potential surface.

The INTC program has been written for generation the
NICs automatically. Pulay’s programs (TX90, PQS)
and TurboMole (independently) can use this automati
generation of NICs.

The use of NICs, simple_diagonal guess of Hessié),
iIn conjunction with the GDIIS method yields very gmd
results at geometry optimization. Convergence of

organic molecules is typically achieved in 8 15steps
even for systems with over 100 degrees of freedom.

Constrained optimizations can be introduced for sesral

purposes. Extremely ,weak” coordinates causes a ver
anharmonic surface: the minimum can be found only
by fixing the floppy coordinate at several values rad

reoptimizing the remaining coordinates at each offtem.

A more important application is the search for
transition states (TSs). GDIIS can be used to find'Ss.

Constrained optimization is usually very successfuto

locate the transition region.
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Geometry optimization can easily be generalized to
handle redundant coordinates.

DIRECT INVERSION IN ITERATIVE SUBSPACES
(DIIS)
Recollection by Peter Pulay

in: " Molecular Quantum Mechanics: Analytic Gradients
and Beyond (eds.: A.G. Csaszar, G. Fogarasi, H.F.
Schaefer lll, P.G. Szalay), ELTE Institute of Chemstry,
Budapest, Hungary, 2007, pp. 71 — 73.

Several modifications of the original DIIS method lave
been suggested over the years vyielding slight
improvement only. It is worthwhile to mention one
modification of Peter Pulay which went unpublished,
although it is used in all of his/theirs programsin order
to make the DIIS method more robust numerically, he
adds a small positive numbelb to the diagonal elements
of the DIIS matrix. Its effect is equivalent to adang
(with a small multiplicative factor) the squared nom of
the DIIS coefficients to the original object functonal F:

F'=3%i%G¢jDj +b%i 6" ~2A(% G ~1) ~ min
This is an application of Levenberg's (or
Levenberg-Marquardt’s) "damped least square

method” (c.f., the orthonormality of the basis setis
supposed).
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APPENDIX Il
Avoided crossing, conical intersection

The electronic wavefunction of the He Hamiltonian

operator (in which we have omitted the term of the
nuclear repulsion) is solved [5]

He@(r Q) =Ee(Q)®(r Q)

(where r means all the electronic coordinatesQ stands
for the spatial nuclear coordinates, respectively)n the
basis of two functions @, and @&,) by the variational

method, that is:

@ =C)(Q)P +Cy(Q)®P;

This yields two potential surfacesEs(Q) and Eg(Q)

which mean upper limits for the energies of the two
states. We have to solve the

HGj =C;

eigenvalue equation (here & =Eg(Q), I = 1,2 ,
respectively). Let us denote by

Hia(Q)=(@y|He®)  (wherek,l =12)

the matrix elements of the Hamiltonian, then it isclear
that
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(Hip +Hoo)+ \/(Hll —Hayp)? +4H1oH
2

£2(Q)=

These eigenvalues depend dQ, thus their behavior can
be different. Question: can they cross each other.e.,
&1 = &> at any special value ofQ? Obviously, such an

equivalence can be exist at the simultaneous fulfihent
of the following two conditions:

H11(Q) = H2(Q) and |H12(Q)* =0

For a diatomic_molecule there is only one variable
which determines the nuclear configuration (the R
nuclear distance). In this case there is no way tatisfy
the system of the aforementioned conditions genenhal
(there are two conditions and a sole parameter), sae
conclude to the statement of the avoided crossinghe
crossing is possible if and only if anyone of thewo
conditions will be satisfied automatically. This ca be
the situation If the @ and @, functions belong to

different symmetry (and/or multiplicity). For such a
case the rule states that_only states of different
symmetry types (or multiplicity) could cross each ther.
Another situation is also possible, in which the
@ and @5, functions are the exact eigenfunctions of the

He operator: in this case we can not state that the
& =Hq1(Q) and the & =Hyy(Q) potential curves
could cross or not because no another condition
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appears. (Note that there is a mathematical theorem
corresponding for the orthogonality of eigenfunctims
corresponding to non-degenerate eigenvalues, as Wwas
the general non-orthogonality of eigenfunctions
belonging to degenerate eigenvalues which can noe b
applied here...) Summing up, for approximate
functions it can be stated that theygenerally do not
cross each other, for exact potential curves thers no
definite answer. This is a bit paradox situation:
nevertheless, it can be expected that even the ekac
potential curves do not cross each other usually.

LisF+

\

Avoided crossing region

A

Energy

Y

Distance

The correlation diagram of LiF

For polyatomic_moleculesthe validity of the avoided
crossing rule is even less understandable. It camly be
stated that the crossing of different potential
hypersurfaces at which@, =¢ for all the i-s but one
selectedQy variable, the situation is very likely similar

to the avoided crossing rule of diatomics formallylf we
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write the Ansatz as linear combination of many @
functions:

the crossing rule means (at special values of th@y )

that there existsat least two eigenvectors & and b) with
the same eigenvalue ¢. (Of course, any linear
combination of these vectors, let's saw + Ab, will also
satisfy the eigenequation with the same eigenvalje.
This means that— generally speaking— there are two
such conditions which satisfy the secular equation

Hj - & =0

with such an & which is equal to the degenerate
eigenvalue. For example, in case oh = 3 these
conditions are:

(H11-€)(H22 —€)-HyoHp1 =0
HioHo3 = Hig(Hop - €) =0

Conclusively, in case oh > 2 intersections are possible
but the hypersurface (whose dimension is less bytan
that of the starting potential hypersurfaces due tothe
two conditions) can be described as “conical
intersection”, that is such an intersection which
seemingly matches a peak of a conical surface.
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A 4
4

Reaction Co-ordinate Reaction Cao-ordinate -

The graphic representation of a transition state @ft)
and a conical intersection (right)

The rule of avoided crossing, ignoring its relatiity,
IS very popular at the change of the nuclear
configuration, at the qualitative analysis of the lehavior
of molecular states. For example, such a case apped#
we investigate the change of the electronic energyf
diatomic molecules’ various states, starting from ery
small atom-atom distances (R - 0) to very large
distances (R - oo, isolated atoms). An analogous view
can be applied at the change of a reaction coordits
starting from certain initial value (that corresponds to
the reactants) up to a value describing the produst For
such transitions the graphic representation of the
energy change is called as correlation diagrams.

Some finer details on the conical intersection [64]:

The ICS (Intersection Coordinate Subspace) is a
n-2 dimensional hypersurface, on which the two
potential hypersurfaces intersect (cross) each othe
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(here n is the number of the internal degrees of
freedom).

The conical intersection is of great importance in
photochemical reactions: in these processes the
absorption of a photon with a certain frequency/enegy
puts the system into an excited state; from here ttould
get into the conical intersection by vibrational
relaxation where two ways are opened: i.) going b&do
the minimum of the initial/ground state; ii.) or,
remaining in the excited state and getting into a ew
minimum. According to a semiclassical model,
symbolizing the nuclei by a ball of classical way fo
motion, the ball starts to turn round and round
circularly in the cone of the conical intersectionthus it
could get back to the initial state as well.

The modern description of the conical intersection
is the following:

Two adiabatic states ¥4 and %, which have an

intersection, can be described by the linear combation
of two arbitrary and orthogonal, non-adiabatic (or,
diabatic) functions @ and @, . The latter span the

Hilbert space together with the other electronic
wavefunctions ¥, (where ¥ = 3) supposing that their

E3, E4, ... eigenvalues are not degenerate big and E»

HN=P1C1+PCo1 ; o =P1Co + DL
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where the Cj; linear coefficients and the corresponding

E;and E>, energies could be determined from the
eigenvalue problem of the Hamiltonian matrix:

Hij =(& [Ho;j)

In the practically important cases the matrix elemats
are real. Naturally, the Hamiltonian matrix (and its
elements) depend on tha nuclear/internal coordinates
q=(on.02..--0n) » that is Hj =H;jj(q) . Now write the

Hamiltonian matrix into the following form:

H=HE+RU ,

where E is the unit matrix, U, H, Rand a are defined as
follows:

_(cosa  sina
v _(sina —cosa'j
H =(Hyp+Hp)/ 2
AH =(Hyy —Hpp)/ 2

R:(AH2+H122)%
cosa =4AH /R ; sina =Hqo/R
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Substituting the equation of the H matrix and an
arbitrary linear combination % =@ cosy + @, siny into
the expectation value equation we get:

(#|H¥)=H +Rcoq2y-a)

The extrema of this function yield the two electroit
eigenstates and the corresponding energies:

Y =@cosa 2+ @,sinal2; Ej=H+R
Wy =@ coda + )| 2+ @y sin(a + ) 2=

—@Psina/2+@Pocosa/2 ; Eo=H-R

It can be seen that the degeneracy occurs wheR
disappears: the latter needs the simultaneous fuliment
of the two conditions:

AH =0 ; Hyo =0

Thus the intersection of the two states requires tav
conditions: the offdiagonal matrix elements of the
Hamiltonian matrix have to disappear, and the diagaoal
values have to be equal. The form of the electronic
wavefunctions are so that the change of the angle
from O to 2m causes the change of the sign of the
wavefunction. If the number of the internal degreesof
freedom is 4, the hypersurfaces of the two statesuld
be equal on a two-dimensional surface. Its deepgsbint
IS the minimum of the ICS, and the reaction occurs
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through this point. This is not a trivial problem since

the conditions for the intersection need non-adiak&
coupling terms Hi; .
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APPENDIX IV
A brief description of the independent particle
(Hartree-Fock) model

Let us start with the electronic Hamiltonian operabr

H
|| M:

el - -

N n 1
E Zzzarau +eru + erab (1)
a i

i<

(it is the exact, non-relativistic operator in atonc units,
see the Appendix | for the notation). It is worthyto
rewrite Eqg. (1) in the following form:

‘Zh(l)+22nj (2)

| i< ]

where the one-electron parts of Eq. (1) are colleetl in
h(i) (the last term is a constant).

If the Hamiltonian is approximated by its one-eleaton

part (IfleI =Yh(i)=hy), we can exactly solve the
i

Schrédinger equation since an eigenfunction of a suof

one-electron operators can be constructed as a prock

of one-particle functions¢(r ;) as follows:

D1 R)=¢1(rq)po(r2)ldn(rp)
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(here the dependence of the eigenfunction on the
electronic spin-coordinates is eliminated and its
dependence on the nuclear coordinates is parametat

only). Now

{zh(i)}bl( r1)fo(r2) MPn(rn)=[h(r1)gi(r1)lga(r2) OM
I

Pn(1n)+di(r1)N(r2)pa(r2)]ds(ra) MPn(rn) + ¢ r1)pa(12)
{h( T )@n( In )] :

Since each one-particle function is an eigenfunctioto
h(r;) with energy & we can write

hg®g = Eg®Pp , with Eg =3¢
i

We can open an even better way approximating the
two-particle term of Eq. (2) as an effective one-pécle
operator v(r;) (here we considered the average repulsion
of all other electrons in the system to electroi):

A= [ ) +u(r ]+ S X - I ) =
I I

i<

Eﬁ(ii ))+V =Hp+V .
|

V is small (it is surely smaller than the two-partite
term), so we can assume that the replacement B by
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Ho is a good approximation. ButH, is also separable,
thus

FOri ui(ri)=&u(ri)

(here F is the Fock-operator, an effective one-particle
Hamiltonian).

First to specify the procedure we must take into
consideration the electron spin. Each one-particle
function will be either u;(rj)a({i) or y(r;)B({) , or,
using a simpler notation, ui(rj)a(di)=¢j(d;) . It is
valid that

F(dj)éi(di)=&di(d;)

Second, the eigenfunctions ofH® must satisfy the
antisymmetry postulate of the quantum mechanics (&
electrons are fermions). This circumstance will case
the simplest form of the trial function (Ansatz):

$1(d1) ¢2(dy) ... ¢n(d1)

d d d ~
O = #(d2) ¢2(d2) .. ¢n(d2) = 3 gy(dy) (M dr )

1
Jn

#1(dn) ¢2(dp) ... ¢n(dy)
where 2 is the antisymmetrizer operator

(a=(1/Vn)Lp(-1)PP where P is the permutation
operator and (-1) is the parity factor). It is easy to
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prove that H, and 2 are commutable operators, thus
we get the same one-particle equations (using a new
notation):

F(L$(1)=g¢i(1) |
moreover,

Ho( (1) ([0 gn(n)) = Egli( g1(1) [[Lgn()
Ho®g = Eg®Pp .

(Other eigenstates oH, are cp,a in which the occupied

orbital ¢ (i) is replaced by the virtual orbital ¢,(i) being
as well an eigenfunction of-(i) :

Ho® = Hoa( ¢1(1) MPa(i ) ()
= E74( ¢1(1) Mg,( i ) MPn(n))
— Eia‘p|a ,

where the eigenvalue is as follows:

EP=| ek |+ea=Eg+ea—§
K(#i)

Up to here the outline of the general independent
particle model was given. It becomes the Hartree-fk
(or, SCF) approximation if @y is the “best” single-
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determinant approximation to %y energetically. This
means that we use the variational principle
Escr=(®p|H®p)2 Egxaco - Via the deduction of the

energy variation we obtain:

B(1)= N1 +W(1) = h(1)+ 3 [6}(2)a2 - Ao (2)dr,
J

It is evident that the Fock operator is dependent o the
form of all the spin orbitals ¢ .That is why the Fock
operator is a one-electron operator only formally so we
need a self-consistent solution of its pseudo-eigatue
equation. Moreover,

Escr = (90| F120) = 261 L))+ T3 010|010
| i
:Z<i\hi>+zz<ij lij) =3 § —_ZZ(ij lij)
| i <j | i <j

Obviously, Escr is not a simple sum of theg orbital
energies. Above the double bar means

<ij Hij}z(ij\ij}—(ij\ji} , Where
(i[ii) = I (D] (rzd, (D¢;(2)Mndr, =i jj) .
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The aforementioned SCF equations are called as the
Unrestricted Hartree-Fock (UHF) equations (it is nad
assumed that the spatial orbitals are doubly occupd).
This means thatg; =u;a and ¢;+1 =u;' 5 wherey; Zu;'.
In closed shell systems (at usual molecular geomigs)
we get the best energy while havingy =u;" which

means the Restricted Hartree-Fock (RHF) equations.
The Restricted Open-Shell Hartree-Fock (ROHF)
equations have maximum double occupancy as possible
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ERRATUM
To the Born-Oppenheimer approximation

To Budapest, March 5, 2010.
Prof. Dr. Werner Kutzelnigg,

Lehrstuhl fir Theoretische Chemie,

Ruhr-Universitat Bochum,

D-44780 Bochum, Germany

Dear Prof. Dr. Kutzelnigg,

| red your papers ( (a) W. Kutzelnigg, Molecular Quantum Mechanics: Analytic
Gradients and Beyonads. A.G. Csaszar, G. Fogarasi, H.F. SchaefePIG. Szalay,
ELTE Institute of Chemistry, Budapest, Hungary, 200p. 184-192; (b) W. Kutzelnigg,
Mol. Phys. 1052627 (2007) ) with much interest. However, in tie¢ailed version of the
study Mol. Phys. 1052627 (2007)) | found a mistake when | preparedtdxt for my
classes. In page 2633, Eg. (31) is as follows éfrethe atomic units are used as in
your paper):

[Te iKr e LiKr ey = -K?

(the letterK andr are bold-faced letters in the paper). | think élxpression is positive,
since

2
. . 2110
[[-I_e"ﬂrel]"ﬁrel]:‘l2 5 5 Klrel | K =K? .
26£e

If we would like to avoid the use of the Baker-Cdmaip-Hausdorff formula, this can be
seen also using the scalar product

ex;{i Ko )Teexp{i Ko ) =1 Deexp{iKrJ Deex;{i e j >0 -
M+1 M+1)/ 2 M+1 M+1

obviously. The positive value (instead of the negabne) changes somewhat the final
Eq. (32) as well:

2 2 2
Lk k)

+ = +
2M  2M (M +1)2 2(M +1)

Ecom=
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that is, we got the kinetic energy of the COM motioO(M™) only, and not t®(M?) as
in the paper.

Another reason of this letter is the following. Ntyrmer teacher (and later my fatherly
friend) was Prof. Dr. Ede Kapuy. He was an excelémmentist and an extremely learned
person. Also, he was altruistic on a bit exaggerdevel. Earlier, in the seventies
happened that Ede worked out a theorem which weesva original work that time in the
guantum chemistry. He said to his colleagues teertim at his university, he discussed
it with his colleagues, made repeated deductions,hb never published it. If | know
properly a few years later he opened a journahenlibrary and noticed that a (young
American ?) scientist found the same result andighdd it. Under these circumstances
almost all the people would have been either disegped or sad but not Ede: he run
along the department and said happily to everybedg: this, | was right. Let the Lord
give him peace in the eternal home (he has diegehfs ago)! Unfortunately, we do not
remember which was the theorem mentioned abovank that you, Prof. Kutzelnigg,
knew him, and may be you have heard this old shsra funny and very characteristic
story for Ede. Could you let me know which theores the aforementioned one? It
would be very interesting for us, also for Prof. Béter Pulay who forgot the name of the
theorem as well.

Thank you very much for your kind efforts in advanc

Your faithfully,

Dr. Gabor Pongor

Hon. Assoc. Prof.

Institute of Chemistry,

E6tvos Lorand University

H-1518 Budapest 112, P.O.B. 32.
pongor@chem.elte.hu
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