Application of Multireference Theory: From the Photodynamics of Nucleobases to Graphene Multiradical Structures

Hans Lischka Texas Tech University

Why Multireference (MR) Approaches?

Energy Surfaces

- 1. Franck-Condon Excitation
- 2. Dynamics on the excited-state energy surface
- 3. Proceeding through the funnel to the conical intersection
- 4. Radiationless, ultrafast transition to the ground state
- 5. Dynamics on the ground state

Conical intersections are the rule not the exception! They form a seam in N-2 dimensions

Reliable methods for excited-state energy surfaces \rightarrow Multireference methods: MCSCF, MRCI

Nonadiabatic coupling, energy gradients \rightarrow analytic procedures

COLUMBUS Program System

- Focus: multireference calculations on ground and excited states
- Methods: MCSCF, MR-CISD, MR-ACPF/AQCC, Spinorbit CI
- Analytic MR-CI gradients, nonadiabatic couplings, parallel CI
- Authors: R. Shepard, I. Shavitt, R. M. Pitzer, H. Lischka
 - Vienna: M. Barbatti, M. Ruckenbauer, J. Szymczak, B. Sellner, F. Plasser
 - Budapest: P. G. Szalay
 - Jülich: Th. Müller
 - USA: S. Brozell, G. Kedziora, E. Stahlberg, ...
- Web page: http://www.univie.ac.at/columbus

Photodynamics

- Input includes the energy surfaces, energy gradients and nonadiabatic coupling vectors
- What kind of dynamics quantum (wavepacket) or surface-hopping?
- Restricted set of internal coordinates vs. onthe-fly approach with full set of internal coordinates?

Development of the surface-hopping program NEWTON-X

NEWTON-X

a package for Newtonian dynamics close to the crossing seam

Dynamics

General-purpose program for on-the-fly excited-state molecular dynamics, including non-adiabatic methods (Tully's surface hopping).

Modularity

Easy and direct link to any quantum chemistry package that can provide energy gradients and (optional) nonadiabatic coupling vectors.

Freeware and open source

M. Barbatti, H. Lischka (Vienna), M. Persico, G. Granucci (Pisa), et al.

www.univie.ac.at/newtonx

Adenine Dynamics

Adenine dynamics

- Ring puckering is the main mechanism at picosecond level
- First step: Fast relaxation $S_3 \rightarrow S_2 \rightarrow S_1$ (22 fs)
- Second step: $S_1 \rightarrow S_0$ relaxation (~0.5 ps)
- After relaxation into S₁: short trapping close to ²E structure
- Deactivation almost exclusively at ²E
- Deactivation via NH₂ out-of-plane motion is not a major path

Systematic Dynamics Survey

- Comprehensive dynamics study of all five bases
- Reaction paths *from the dynamics* and time constants
- Dependence of dynamics on initial pump energy
- Unifying picture what does it mean?

M. Barbatti, A. J. A. Aquino, J. J. Szymczak, D. Nachtigallová, P. Hobza, and H. Lischka, PNAS **107** (2010) 21453

QM/MM

QM/MM (Multiscaling) approach for excited states, including nonadiabatic effects

QM: Important part:

single nucleobase stacked dimer base pairing charged defects...

MM: DNA oligomer, water molecules counter ions,...

QM methods: MRCI, CASSCF, CC2, ADC(2), TDDFT(?) MM methods: Amber force field

DNA Dodecamer

Cytosine Dynamics

Guanine Dynamics

Cytosine vs. Guanine excitation

Cytosine QM	Guanine QM		
Gas phase			
Life time 0.58 ps	0.36ps		
68% semi-planar crossing	Strong puckering		
DNA			
Life time 0.38ps Low puckering degree	Only 9% in ground state after 0.5 ps		
	Ethyl. II		

Multichromophore Interactions: Stacked DNA Bases

Local excitations, excitonic coupling, charge transfer

Defect dynamics

Charge Transfer in π Stacking

Interacting Fragments Diabatic vs. Adiabatic Representation

 \Rightarrow Marcus theory

Weak Diabatic Interactions

Individual CT Processes I

Real CT: Starts with the charge in the ground state on one side and finally ends with the charge in the ground state on the other side

Transition state (TS) passage:

single passage over the TS with a sign change in the generalized reaction coordinate ξ; FCD: Fragment charge difference

Active charge transfer (CT):

This is a charge transfer event in the "active" state related to a single *TS passage*

TS global:

Starts in the ground state with the charge on one side; overall process of reaching the TS and finally arriving in one of the potential wells of the ground state again

Individual CT Processes II

To remain on the same diabatic surface: surface hopping is required from the lower to the upper state Will be numerically difficult if the nonadiabatic coupling region is narrow

Surface Hopping Methods in NEWTON-X

Electronic Schroedinger equation

$$\frac{\mathrm{d}}{\mathrm{dt}}c_{j}(t) = -\mathrm{i}\hbar^{-1}c_{j}(t)E_{j}(t) - \sum_{i=1}^{N_{s}}c_{i}(t)\sigma_{ji}(t)$$
$$\sigma_{ji}(t) = \left\langle\varphi_{j}\left(\mathbf{R}(t)\right)\right|\frac{\partial}{\partial t}\left|\varphi_{i}\left(\mathbf{R}(t)\right)\right\rangle$$
$$\sigma_{ji}(t) = \dot{\mathbf{R}}(t)\cdot\left\langle\varphi_{j}\left(\mathbf{R}\right)\left|\mathbf{\nabla}\right|\varphi_{i}(\mathbf{R})\right\rangle_{\mathbf{R}=\mathbf{R}(t)}$$

- Compute nonadiabatic coupling vector directly (e.g. COLUMBUS) NAC
- 2. Compute nonadiabatic interaction from wavefunction overlap **OVL**

$$S_{ji}(t) = \left\langle \varphi_j \left(\mathbf{R}(t - \Delta t) \right) \middle| \varphi_i \left(\mathbf{R}(t) \right) \right\rangle$$

$$\sigma_{ji}(t) \approx \frac{1}{4\Delta t} \left(3S_{ji}(t) - 3S_{ij}(t) - S_{ji}(t - \Delta t) + S_{ij}(t - \Delta t) \right)$$

Local Diabatization (LD)

Granucci, G.; Persico, M.; Toniolo, A. J. Chem. Phys. 2001, 114, 10608

 $\eta_i(t) = \phi_i(t)$ diabatic adiabatic

$$\{\eta_i(t + \Delta t)\} = \{\varphi_i(t + \Delta t)\}\mathbf{T}^{-1}$$

T is obtained from a Loewdin orthogonalization of the overlap matrix $S_{ji}(t) = \langle \varphi_j (\mathbf{R}(t - \Delta t)) | \varphi_i (\mathbf{R}(t)) \rangle$

Propagation and back transformation

$$\mathbf{c}(t + \Delta t) = \mathbf{T}^{-1} \exp\left(-\mathrm{i}\hbar^{-1}\frac{\mathbf{E}(t) + \mathbf{H}(t + \Delta t)}{2}\Delta t\right) \mathbf{c}(t)$$

Electronic transmission factor (κ_{el}) for [Et.-Et.]⁺

	[EtEt.] ⁺ 5.0 Å ^a	[EtFA-Et.] ^{+ a}	[EtEt.] ⁺ 7.0 Å
Simulation	0.671	0.401	0.010
Model	0.891	0.471	0.010

^a Plasser, F.; Lischka, H. J. Chem. Phys. 2011, 134, 034309

$$P_{12} = 1 - \exp\left(\frac{-(H_{if}^{\text{diab}})}{h\nu}\sqrt{\frac{\pi^3}{\lambda kT}}\right) \qquad \kappa_{\text{el}} = \frac{2P_{12}}{1 + P_{12}}$$

Brunschwig, B. S.; Logan, J.; Newton, M. D.; Sutin, N. J. Am. Chem. Soc. 1980, 102, 5798

Pyridone Dimer as Model for HB in DNA

Excitation Energy Transfer (EET)

Proton transfer/proton coupled electron transfer (PCET)

(a) Pyridone dimer $(2-PY)_2$

(b) PT structure

Muller, A.; Talbot, F.; Leutwyler, S. *J. Chem. Phys.* **2002**, *116*, 2836 Sagvolden, E.; Furche, F. *J. Phys. Chem. A* **2010**, *114*, 6897

Computational method: TDDFT/BHLYP, nonadiabatic dynamics with LD time step 0.5 fs

- Start in S₂, after 11 fs in S₁, localization on Pyridone 1
- At ~130 fs jump into S₂ and EET to Pyridone 2
- At ~235 fs another nonadiabatic event, no EET

- Hopping from S₂ to S₁, back S₂, then S₃
- 14 fs: proton transfer, zwitterionic
- 20 fs: back proton transfer
- 30 fs: remaining in S₁ state, FCD 0, simultaneous transfer of electron and proton
- Ultrafast internal conversion to the ground state

Proton coupled electron transfer (PCET)

- Initial conditions: 75%
 S₂, 25% S₁, according to ratio in osc. strengths
- Fast decay to the S₁ state, S₂ state remains occupied by ~10%
- Initial sharp rise of PCET, after 50 fs ~17%, then significant slowdown of the increase in PT

EET transfer time: 207 fs (exp. 318 fs)

Important modes: v_4 (106 cm⁻¹, "shearing") and v_6 (166 cm⁻¹, "stretching") v_{15} (581 cm⁻¹) and v_{26} (896 cm⁻¹), in-plane ring deformation v_{35} (1067 cm⁻¹), in-plane CH bending v_5 (108 cm⁻¹, "opening") of B_u symmetry – leads to localization of the excitation

 v_4 and v_6 which were also observed most prominently in two-color resonant twophoton ionization spectra v_5 was reported as well

Transport Properties and Defects in Graphene

From multireference theory to tight binding

armchair

Develop TB parameter sets that describe a defect based on ab initio methods Distribution of defects in a graphene sheet bulk values from DFT band structure

Cooperation with J. Burgdoerfer and Florian Libisch, Technical University of Vienna

H₂ defect zigzag corner нн vacancy

Methods

- CASCF (8,8) reference wavefunction
- Extended reference space for open shell systems (CAS(8,8) quasi-degeneracies)
- Dynamic electron correlation with Multireference Averaged Quadratic Coupled Cluster (MR-AQCC)
- Fixed molecular structure (MP2)
- σ orbitals frozen
- Basis set 6-31G; 6-31G* for smaller systems

Polyradical Chain

- CAS(8,8) reference is not enough → intruder states in MR-AQCC, the weight of the reference decreases steadily
- RAS(4)CAS(4,4)AUX(4)-1ex reference: in total 12 internal orbitals, 1-ex from RAS to CAS/AUX, 1-ex CAS to AUX
- Significant increase of the weight of the wavefunction
- σ orbitals frozen after SCF step

Poyradical character: n-acenes

MR-AQCC: a) RAS(4)/CAS(4,4)/AUX(4), b) CAS(8,8)/6-31G

Orbitals

Polyacenes

$n \times m$ periacenes

MR-AQCC(8,8)/6-31G

2-dim. pericacenes $(n \times 3)$

2-dim. circumacenes $(5 \times n)$

much less pronounced

Conclusions

- Tools are available for multireference calculations and nonadiabatic dynamics
- Photodynamical simulations of DNA bases provide a concrete and detailed picture
- QM/MM is a feasible way to extend the calculations to realistic environments
- QM region has to be large enough to contain the relevant photo-excited processes
- Many other applications: graphene defects, excitation energy transfer (EET)⇒photovoltaics
- COLUMBUS new directions: localized orbitals

Acknowledgments

Vienna: D. Tunega, (J. Szymczak, M. Ruckenbauer, B. Sellner, H. Pašalić) F. Plasser, A. Ramert TU: J. Burgdoerfer, F. Libisch (Graphene) **Argonne/USA**: R. Shepard (COLUMBUS) **Juelich**: Th. Mueller (COLUMBUS) **Mülheim:** M. Barbatti (NEWTON-X) **Pisa**: M. Persico, G. Granucci (NEWTON-X) Budapest: P. Szalay (AQCC) Prague: P. Hobza, D. Nachtigallova **T. Zeleny** (DNA etc.); J. Pittner (Dynamics) Lubbock: Adelia Aquino, Bill Hase

Lubbock 2011

