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Abstract We investigate the dependence of multiconfigurational perturbation the-
ory framework on the choice of the Fermi-vacuum. A new formulation, based on
a-posteriori averaging is suggested. The averaged theory is invariant with respect
to Fermi-vacuum choice but enhances the intruder effect. The performance of the
averaged formulation is illustrated on the ethylene rotational potential curve.

1 Introduction

Dissociation of covalent bonds in molecules, description of electronic excited states
or transition metal compounds belong to current problems of theoretical chem-
istry, usually addressed as ”multiconfiguration cases”. Basic quantum chemical
paradigms, such as configuration interaction, coupled-cluster (CC) and perturba-
tion theory (PT) have lived diverse multireference (MR) extensions of the single-
reference approach, in order to treat the above systems. Among multireference the-
ories one may distinguish genuine MR methods[1, 2, 3, 4, 5] as well as essentially
single-reference type multiconfiguration (MC) approaches[6, 7, 8]. This categoriza-
tion – which has been most used in CC methodology – is of relevance from the
point of view of the present PT study. Purely single-reference CC methods, called
completely renormalized CC approaches, which do not use any MR or MC con-
cepts, also have the potential to describe bond breaking and biradicals[9, 10]. A
common characteristics of purely single-reference and essentially single-reference
type MC methods is the presence of a formal reference determinant in the theory,
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which facilitates the particle/hole orbital assignment and involves one well-defined
excitation amplitude set. As opposed to this, genuine MRCC methods consider all
determinants present in a complete or incomplete model space as Fermi-vacua, and
consequently involve multiple amplitude sets to parametrize the exact wavefunction.
We adopt the convention of referring to this latter strategy as Jeziorski-Monkhorst
parametrization.

Multiple amplitude sets have been applied in PT methodology as well. Per-
turbative approximations of the Jeziorski-Monkhorst parametrized SS-MRCC[11]
show outstanding properties: size-consistency, size-extensivity and the potential to
be intruder free at the same time. It is however not wide-spread to consider mul-
tiple amplitude sets within a PT framework for the electron-correlation problem.
A usual categorization of MRPT frameworks is the distinction of effective Hamil-
tonian strategies[12, 13, 14] and single-but-multi philosophies[15, 16]. The for-
mer can target many electronic states of a system while the latter focuses on just
one state at a time. Both approaches have their own advantages and shortcom-
ings. In rough terms effective Hamiltonian theories are good candidates for ful-
filling the size-extensivity requirement they however struggle with serious intruder
state problem[17]. Single-but-multi approaches like CASPT[18, 19] or MRMP[20]
usually violate size-consistency but the sensitivity to intruders may be less severe.
There are several exceptions to the above rule. The intermediate Hamiltonian the-
ory developed by Malrieu et al.[21] e.g. is size extensive and avoids intruders via
the application of multiple partitionings when building the effective Hamiltonian
matrix.

Multiconfiguration perturbation theory (MCPT)[22] is another exception to the
above categorization, since it can provide rigorously size-consistent energy at sec-
ond order[23] although it applies a single-but-multi framework. In MCPT there ap-
pears a Fermi-vacuum which can be any of the determinants of nonzero weight in the
multiconfiguration zero-order function. The necessity to pinpoint a Fermi-vacuum
is a common feature of MCPT and single-reference type MRCC approaches. Nei-
ther MCPT nor affected MRCC theories show invariance with respect to the Fermi-
vacuum choice. Switching from one Fermi-vacuum to another when following a
potential energy surface has been shown to cause discontinuities. Though the error
due to this effect has been shown to be small in MRCC[24], the non-invariance can
become a qualitative problem when causing symmetry breaking. This issue has been
addressed recently in the context of XCASCCSD and cured by symmetry-adaptation
at a suitable step of the algorithm[25].

In the present study we consider the same problem in the framework of MCPT
and propose a modification which restores the invariance to the choice of Fermi-
vacuum. This involves calculating the perturbed quantities by all possible choices
and constructing a weighted average. The number of parameters in the theory agrees
with that of a Jeziorski-Monkhorst type MRCC parametrization. The redundancy of
a Jeziorski-Monkhorst parametrization however does not show up in the present
approach due to the fact that perturbational amplitudes corresponding to different
Fermi-vacua are determined separately. The linear combination of thus produced
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functions is constructed a-posteriori, the weights taken from the unrelaxed zero-
order wavefunction.

In this account we first briefly summarize MCPT followed by an analysis on
the extent of Fermi-vacuum non-invariance in different versions of the theory. We
continue by presenting the approach to ensure Fermi-vacuum invariance and close
with a numerical illustration.

2 Theory

2.1 Zero-order Hamiltonians

The perturbational framework designated as MCPT has been developed in two vari-
ants: the original formulation, hereafter called projected-MCPT[22] (p-MCPT) and
a version which can give size-consistent correction at second order, hereafter called
unprojected-MCPT[23] (u-MCPT). Both variants start with a multiconfiguration
zero-order function written as

|0〉 = cHF|HF〉+
∑

K∈R\{HF}
cK |K〉 (1)

where |HF〉 and |K〉 denote determinants. Determinant |HF〉 is used as Fermi-
vacuum. It can be any determinant which appears with nonzero weight in |0〉, prac-
tically it is the one associated with the largest coefficient squared. Determinants
appearing in the zero-order reference function form a subspace in the configuration
space, denoted by R. The sum for K in Eq.(1) runs over elements of subspace R,
except the pinpointed Fermi-vacuum.

In MCPT theories a zero-order Hamiltonian is constructed in spectral form, tak-
ing |0〉 as ground state zero-order eigenvector and determinants different from |HF〉
as excited state zero-order eigenvectors. These functions represent a non-orthogonal
basis in the FCI space which necessitates the treatment of overlap. It is at this stage
where p-MCPT and u-MCPT versions deviate. In p-MCPT

1. excited vectors |K〉 are first Schmidt-orthogonalized to |0〉 to get |K′〉;
2. a reciprocal set is constructed to |K′〉, denoted by 〈K̃′|.
In u-MCPT version step 1. is missing, reciprocal vectors to the set |0〉 and |K〉’s
are directly constructed, giving 〈0̃| and 〈K̃|. The spectral form of the zero-order
Hamiltonian is non-symmetric in both formulations, due to the use of bi-orthogonal
vector sets:

Ĥ(0)
p-MCPT = E0|0〉〈0|+

∑

K∈R\{HF}
EK |K′〉〈K̃′| (2)

Ĥ(0)
u-MCPT = η0|0〉〈0̃|+

∑

K∈R\{HF}
ηK |K〉〈K̃| . (3)
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Comparing zero-order operators of Eq.(2) and Eq.(3) one may observe, that an ad-
vantage of Schmidt-orthogonalization is getting the zero-order Hamiltonian sym-
metric at least in the one-dimensional reference space spanned by |0〉. Left and right
hand zero-order eigenvectors expressed in terms of determinants |HF〉, |K〉 and MR
function |0〉 are listed in Table 1 for completeness. Detailed derivation of the recip-
rocal vectors has been shown in an earlier report[23].

When defining zero-order ground-state eigenvalues, projection of the Schrödinger-
equation is taken either with 〈0| or with 〈0̃| to get

E(0)
p-MCPT = E0 = 〈0|Ĥ|0〉 (4)

or

E(0)
u-MCPT = η0 = 〈0̃|Ĥ|0〉 , (5)

respectively. By this definition, the first order energy correction is zero in both ver-
sions. It is to be mentioned at this point, that the symmetric and non-symmetric
energy formulae (4) and (5) are equivalent if the zero-order function |0〉 is obtained
from a variational solution of the Schrödinger-equation. This is the case e.g. if |0〉
is a complete-active space wavefunction or stems from a configuration-interaction
procedure.

Zero-order excited state energies can be chosen in both variants e.g. in the spirit
of Davidson and Kapuy (DK)[26, 27, 28, 29]

EK = E0 +∆εK

or

ηK = η0 +∆εK

where ∆εK is formed as sums and differences of one-particle energies defined as di-
agonals of a generalized Fockian. This partitioning is different from Møller–Plesset,
since the generalized Fockian is not necessarily diagonal.

Alternatively, excited state energies may be chosen to obtain a generalized
Epstein-Nesbet (EN) partitioning

EK = ηK = 〈K|Ĥ|K〉 . (6)

A non-symmetric generalization of EN partitioning is also conceivable in the form
EK = 〈K̃′|Ĥ|K′〉 or ηK = 〈K̃|Ĥ|K〉. For our present purpose the definition of Eq.(6)
is more appealing because it avoids any reference to the Fermi-vacuum. A detailed
discussion on partitionings in MCPT can be found in Ref.[30].
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2.2 Non-invariance to the choice of Fermi-vacuum

The first-order wavefunction in p-MCPT as obtained by bi-orthogonal Rayleigh-
Schrödinger theory looks

Ψ (1)
p-MCPT(HF) = −

∑

K∈R\{HF}
|K′〉 〈K̃

′|Ĥ|0〉
EK −E0

while the second-order energy is given by

E(2)
p-MCPT(HF) = −

∑

K∈R\{HF}

〈0|Ĥ|K′〉〈K̃′|Ĥ|0〉
EK −E0

= −
∑

K∈R\{HF}

(〈0|Ĥ|K〉− cKE0
)(〈K|Ĥ|0〉− cKη0

)

EK −E0
. (7)

Notation HF in round braces on the left-hand-side refer to the dependence of the
quantities on the Fermi-vacuum choice. Examining the second-order energy, depen-
dence on |HF〉 is least severe in EN partitioning if E0 = η0. In this case neither the
numerator nor the denominator of the energy expression is affected by changing the
choice for |HF〉. Dependence on the Fermi-vacuum only stems from the restriction
on the sum K 6= HF. At contrast to this, denominators show explicit dependence on
|HF〉 in DK partitioning, because particle/hole assignment is based on |HF〉. This
means that changing |HF〉may change the actual orbital indices which contribute to
a ∆εK . Whether the value εi itself is affected or not, depends on the definition. One
may use the diagonals of the generalized Fockian appearing in multi-configurational
self-consistent field (MCSCF) theories[31]

εi = hi +
∑

jk

Pjk (〈i j|ik〉−〈i j|ki〉) (8)

where hi denotes a one-electron integral incorporating kinetic energy and nuclear-
electron attraction, and the two-electron integral 〈i j|ik〉 is written in the 〈12|12〉
convention. Ordinarily the one-particle density matrix is defined as

Pjk = 〈0|a+
k a j|0〉 . (9)

Using Eq.(9) in the expression for εi, orbital energies are independent from the
Fermi-vacuum choice. It may be however appealing to substitute the Hartree-Fock
density matrix

Pjk = 〈HF|a+
k a j|HF〉 (10)

into Eq.(8), because εi’s obtained this way do not show degeneracies which may
stem from the spatial symmetry of the system and may lead to zero excitation en-



6 Ágnes Szabados and Péter R. Surján

ergy denominators in the PT expressions. Substituting Eq.(10) into Eq.(8) has the
consequence that εi’s become Fermi-vacuum dependent.

Turning our attention to u-MCPT formulation, the first order wavefunction can
be written as

Ψ (1)
u-MCPT(HF) = −

∑

K∈R\{HF}
|K〉 〈K̃|Ĥ|0〉

ηK −η0

while the second order energy looks

E(2)
u-MCPT(HF) = −

∑

K∈R\{HF}

〈0̃|Ĥ|K〉〈K̃|Ĥ|0〉
ηK −η0

= − 1
cHF

∑

K∈R\{HF}

〈HF|Ĥ|K〉(〈K|Ĥ|0〉− cKη0
)

ηK −η0
. (11)

In contrast to the p-MCPT version, second-order u-MCPT energy shows explicit
dependence on the Fermi-vacuum in the numerator. As illustrated in Section 3,
dependence of second-order u-MCPT on the choice of |HF〉 is more expressed in
numerical terms than E(2) of p-MCPT.

2.3 A Fermi-vacuum invariant treatment

A simple way to remove dependence of the PT expressions on the Fermi-vacuum is
to deliberately make every possible choice and form an average of the quantities ob-
tained. Theoretical formulation may start by a linearized Jeziorski-Monkhorst type
parametrization of the wavefunction

Ψ = |0〉+
∑

K∈R

T̂K |K〉cK (12)

with

T̂K =
∑

L 6=K

tL
K |L′〉〈K| , K ∈ R ,

if working with the vector set of p-MCPT. Substitution of the excitation operator
T̂K into the wavefunction Eq.(12) reveals that the number of parameters associated
with an excited determinant L not present in |0〉, equals the number of determinants
appearing in |0〉. This parametrization is redundant, since it is not possible to deter-
mine the amplitudes by the usual projection of the nth order Schrödinger-equation
by excited functions.

Presently we do not attempt to take down sufficient conditions for determining
all the amplitudes from a coupled set of equations. Instead, we apply an a-posteriori
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procedure and determine amplitudes so that the nth order wavefunction becomes

Ψ (n) =
∑

K∈R

c2
K Ψ (n)(K) , n≥ 1 , (13)

a weighted average of separately determined nth order corrections, obtained by a
given choice for the Fermi-vacuum, K. To reach this goal, tL

K’s are to be evaluated
as

tL(1)
K = −cK

〈L̃′|H|0〉
EL−E0

, K ∈ R (14)

where 〈L̃′| = 〈L| − cL/cK〈K| is the reciprocal vector to |L〉, constructed while K
plays the role of the principal determinant.

Terms of the energy may be obtained either by averaging according to

E(n)
p-MCPT =

∑

K∈R

c2
K E(n)

p-MCPT(K) ,

or by calculating the usual projection

E(n)
p-MCPT = 〈0|Ĥ− Ĥ(0)

p-MCPT|Ψ
(n−1)〉 ,

with n≥ 2. By either formula one arrives at the second-order energy

E(2)
p-MCPT = −

∑

K∈R

c2
K

∑

L 6=K

〈0|Ĥ|L′〉〈L̃′|Ĥ|0〉
EL−E0

. (15)

Note, that 〈L̃′| depends on K, and EL −E0 may also be K dependent (e.g. in DK
partitioning). For this reason the outer sum on K can not be evaluated irrespective
of L. Equation (15) is one of our working formulae, which ensures Fermi-vacuum
independence of the energy, within the p-MCPT framework.

It is worthwhile to examine a Fermi-vacuum invariant formulation with the use of
basis vectors of u-MCPT also, e.g. to obtain a size-consistent second-order energy.
This variant of the theory does not alter form (12) of the exact wavefunction, it only
affects the expression of the excitation operator:

T̂K =
∑

L 6=K

tL
K |L〉〈K| , K ∈ R . (16)

Parameters tL
K at first order, fulfilling criterion Eq.(13) in u-MCPT look

tL(1)
K = −cK

〈L̃|H|0〉
ηL−η0

, K ∈ R ,

which equals Eq.(14) if the excitation energy denominators are the same.
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At difference with p-MCPT, energy terms obtained by averaging or by projection
with 〈0| are different, since the reciprocal function to |0〉 varies with the Fermi-
vacuum choice. In this work we investigate the averaging procedure defined by

E(n)
u-MCPT =

∑

K∈R

c2
K E(n)

u-MCPT(K) ,

which now applies to n = 0 as well, to give

E(0)
u-MCPT =

∑

K∈R

c2
K 〈K̃|Ĥ|0〉 = 〈0|Ĥ|0〉 = E(0)

p-MCPT .

The second order energy obtained by averaging looks

E(2)
u-MCPT = −

∑

K∈R

cK
∑

L 6=K

〈K|Ĥ|L〉〈L̃|Ĥ|0〉
ηL−η0

. (17)

where cK appears in the first power since the reciprocal counterpart of |0〉 is c−1
K 〈K|

when K plays the role of the Fermi-vacuum. This latter expression is the second
working formula of this study which is tested in Section 3.

Comparing averaged energy formulae one may observe that relative simplicity of
u-MCPT expressions with respect to p-MCPT is diminished. Averaged zero-order
in u-MCPT becomes exactly equal to E(0)

p-MCPT, which is unaffected by averaging.
At second order, determinants interacting with any determinant in |0〉 contribute to
Eq.(17). This is not the case in the original formulation, where only determinants
interacting with the Fermi-vacuum may appear when summing for K in Eq.(11).

Before proceeding to applications, let us discuss another important aspect of
averaged second-order energies Eq.(15) and Eq.(17). Both formulae are of multi-
partitioning nature: the zero-order operator varies with principal determinant |K〉.
This affects not only the bi-orthogonal vector set, but also the zero-order excitation
energies. The latter fact may become a disadvantage, since it may enhance sensi-
tivity to intruders. If there is just one pair of determinants appearing in |0〉 which
are close in energy at zero-order, it is going to produce an almost zero denomina-
tor, when either of them is taken as |HF〉. An extreme example is a pair of open
shell determinants e.g. |K1〉= | jβ iα . . .〉 and |K2〉= | jα iβ . . .〉 which are exactly de-
generate in DK partitioning. This particular problem may be solved by turning to a
spin-adapted formulation, but it does not provide a solution if there are two or more
spin-functions belonging to a given multiplicity.

To suppress intruders, one may e.g. turn to intermediate Hamitonian theory,
where multi-partitioning has been applied successfully as a remedy[21]. Quasi-
degeneracy may also be handled by partial averaging, i.e. omitting the problem-
atic determinant pair from the summation for K in Eqs.(15) and (17). As long as
the affected determinants do not become of principal weight in the problem con-
sidered, partial averaging may be acceptable. However, to apply the theory in the
general case, further considerations on intruder avoidance are necessary. We do not
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address this question in the present work. Our aim is only to illustrate the usefulness
of averaging, when intruder states do not influence the situation. For this end we
restrict ourselves to two-determinantal multiconfiguration reference function, built
exclusively of closed shell determinants.

3 Numerical illustration

A test case showing spectacular failure of MCPT is provided by the torsional po-
tential curve of the ethylene molecule. In equilibrium the system possesses D2h
symmetry. Upon rotating the CH2 groups with respect to each other, the symme-
try reduces to D2. At the top of the barrier (at 90o dihedral angle) the point group
becomes D2d , non-Abelian.

The system is computed in Dunning’s double-zeta polarized basis[32]. A mul-
ticonfigurational reference function is provided by a complete active space (CAS)
function with 2-electrons on two orbitals. The Full-CI solution being exclusive due
to the large system size, state selective MRCCSDT[2+2] method[8] was computed.
Since this method incoporates full triples, it is highly superior to the second-order
PT methods we wish to evaluate, and serves as a good benchmark. Notation 2+2
refers to active indices (two-hole, two-particle) which define a reference space for
MRCC.

Inspecting the coefficients squared of the two-determinantal CAS wavefunction
as a function of the dihedral angle (Fig.1), one can see that the two determinants
exchange the principal role for dihedral angles smaller and larger than 90o. At 90o

the weights of the two determinants become of opposite value, and orbital degen-
eracies build up in the spectrum of the generalized Fockian (Eq.(8) and (9)), in
accordance with the non-Abelian symmetry. In Fig.2 we present rotational barriers
obtained by either p-MCPT or u-MCPT in both EN and DK partitioning. Due to the
degeneracy problem, Eq.(10) was applied when computing the generalized Fockian
to produce orbital energies for DK partitioning. In Fig.2 the Fermi-vacuum choice
follows the principal determinant, hence it is changed at 90o. Fig.2 does not indicate
ill-behaviour of p-MCPT neither in EN nor in DK partitioning. The same holds for
MRCCSDT[2+2] which – in principle – also depends on the Fermi-vacuum choice.
In contrast to the above, u-MCPT shows a completely erroneous, cusp-like barrier
top. The source of this phenomenon is the crossing of two continuous energy curves
obtained by one or the other determinant taken as Fermi-vacuum. The crossing oc-
curs in p-MCPT as well, but in u-MCPT the crossing angle is considerably sharp
as the derivatives with respect to the dihedral angle differ a lot from zero at 90o. In
p-MCPT, the crossing at 90o remains unnoticed in Fig.2.

To show the improvement in averaged theories, difference with MRCCSDT[2+2]
energy is plotted in Fig.3. The straight curves obtained for all averaged theories
indicate the removal of the cusp-like crossing at 90o. The usual behaviour of EN
partitioning overshooting the exact energy is also probable in this case, based on
Fig.3.
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Comparing the values for the rotational barrier collected in Table 2, one sees that
neither of averaged MCPT methods manage to improve the barrier of CAS(2,2),
which fortuitously shows extraordinary accuracy. It is only u-MCPT in DK parti-
tioning which gives a barrier of same accuracy at second-order. However, MCPT
also improves cca. 250 milliHartee in total energy error, according to Fig.3. This
altogether means, that averaged u-MCPT in DK partitioning at second order does
represent an improvement over the CAS(2,2) wavefunction in this system.
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Table 1 Left and right hand eigenvectors of zero-order Hamiltonians in p-MCPT and u-MCPT.

ground state excited state
right hand left hand right hand left hand

Ĥ(0)
p-MCPT |0〉 〈0| |K′〉= |K〉− cK |0〉 〈 eK′|= 〈K|− cK

cHF
〈HF|

Ĥ(0)
u-MCPT |0〉 〈e0|= 1

cHF
〈HF| |K〉 〈eK|= 〈K|− cK

cHF
〈HF|

Table 2 Barrier height of the ethylene molecule in DZP basis, obtained by the CAS(2,2) method
and subsequent Fermi-vacuum dependent perturbative corrections, averaged according to Eq.(15)
or Eq.(17). Abbreviations DK and EN refer to the partitioning. Method MRCCSDT[2+2] serves as
a basis of comparison.

barrier (Hartree)
CAS(2,2) 0.1226
p-MCPT-DK2, averaged 0.1387
p-MCPT-EN2, averaged 0.1313
u-MCPT-DK2, averaged 0.1226
u-MCPT-EN2, averaged 0.1313
MRCCSDT[2+2] 0.1220
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Fig. 1 Coefficient squared of the determinants constituting the CAS(2,2) function, for the C2H4
molecule, in double zeta polarized basis set.
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Fig. 3 Energy difference taken with MRCCSDT[2+2] around 90o dihedral angle of the ethylene
molecule. Methods applied are CAS(2,2) and subsequent Fermi-vacuum dependent perturbative
corrections, averaged according to Eq.(15) or Eq.(17). Abbreviations DK and EN refer to the par-
titioning (see text).


