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Abstract

On the example of the H+
2 molecular ion, we show that spherically distorted s-type orbitals

possessing angular dependent orbital exponents, even in a minimal basis may lead to total energies

the accuracy of which is comparable with the ones obtained by fully numerical (’complete basis’)

calculations.
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INTRODUCTION

The principle of linear combination of atomic orbitals (LCAO) continues to serve as

one of the most widespread model to construct basis functions for molecular orbital (MO)

expansions in polyatomic molecules. Atomic orbitals (AOs), in most cases, are selected

in the same overall form as they appear in isolated atoms: s, p, d, etc. type orbitals.

Mathematically, they are chosen as irreducible representations of the rotation group that

describes atomic symmetry. Merely the values of orbital exponents in the radial part of the

AOs are adjusted to the molecular situation. Accordingly, the shape of a usual AO can be

specified as

χ(r, ϑ, ϕ) = f(r)Y (ϑ, ϕ)

where the radial part f(r) is usually a linear combination of Gaussians, while Y (ϑ, ϕ) is a

member of spherical harmonics describing the angular dependence according to rotational

symmetry.

In a molecular environment, of course, rotational symmetry does not hold anymore, and to

describe the polarization of atoms in molecules, AOs with high azimuthal quantum numbers

have to be included in the basis set. For example, while the valence orbitals in the H2

molecule are basically constructed from s-type AOs centered on the two H atoms, accurate

description of the molecule requires the inclusion of p, eventually d or higher, polarization

functions. Off-centered (floating) bond-functions are sometimes used to describe the same

effect, but their application is not too general due to some technical problems, e.g., the large

basis set extension error they generate. In addition, using off-centered functions one gives

up the LCAO principle.

In this paper we report an idea which remains solely on LCAO grounds, but by means

of it polarization effects can be described even in a minimal basis. We shall illustrate this

idea on the concept of distorted s-type orbitals, and present preliminary applications on the

simplest possible model, the H+
2 molecular ion, for which analytical solutions are available.
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DISTORTED s-ORBITALS

In this paper, dealing with a two-center problem, we consider exponential orbitals rather

than Gaussians. In the standard mathematical representation of 1s orbitals,

χ1s(r) = N e−ζr (1)

(here N is the appropriate normalization factor), the orbital exponent, ζ, is a constant,

making the 1s AO spherically symmetric. The value of this constant is ideally determined

by the variational principle, making the energy of the polyatomic system stationary with

respect to variations in ζ.

A simple but powerful way to describe polarization of this orbital induced by the molecular

environment is to allow the exponent to depend on the polar angles ϑ, ϕ. (We use a spherical

coordinate system where ϑ measures the angle from axis z, while ϕ is the angle between

axis x and the xy projection.) A general form of a distorted (un-normalized) exponential 1s

orbital thus reads:

χ(r) = e−ζ(ϑ,ϕ)r. (2)

In a two-center problem, choosing the molecular axis as direction z, cylindrical symmetry

eliminates the ϕ dependence and one is left with the less general form

χs(r) = e−ζ(ϑ)r. (3)

In principle, the total energy of the two-center molecule will now be a functional of the func-

tion ζ(ϑ), and the latter should be derived by setting the variation of this energy functional

zero. The resulting Euler-Lagrange equations would be much too complicated to be soluble.

Therefore, in the spirit of the Ritz method, we use the following simple variational Ansatz:

ζ(ϑ) = ζ0 + a cos(ϑ) (4)

and make zero the energy derivatives with respect to the scalar parameters ζ0 and a. So the

distorted 1s orbitals are written as

χs(r) = e−(ζ0+a cos(ϑ))r = e−ζ0re−a cos(ϑ)r, (5)

where, in order to ensure square-integrability of χs(r), we require that

ζ0 > |a| ≥ 0.
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If the positive z axis (corresponding to direction ϑ = 0) points towards the neighboring

atom, a negative value for a will ensure that the exponent in the inter-atomic domain is

smaller, while in the backward direction (ϑ = 180o) larger than the mean exponent ζ0,

which is effectively the exponent in the perpendicular directions, ϑ = ±90o. Since the larger

(smaller) value of the exponent represents faster (slower) decay in the wave function, this

simple way of making the orbital exponent angle-dependent describe the polarization of an

originally symmetric s orbital towards the molecular axis. A simple illustration of such a

distortion is presented in Fig. 1.

THE H+
2 PROBLEM

We demonstrate the usefulness of distorted s orbitals on the simplest molecular system,

the H+
2 ion. This is a two-center, one-electron problem, so the evaluation of molecular

integrals is feasible. The Born-Oppenheimer electronic Hamiltonian is, in atomic units

H = −1

2
∆− 1

|r −RA| −
1

|r −RB| (6)

where RA (RB) is the position vector of the hydrogen nucleus A (B). Exact solution of the

corresponding one-electron Schrödinger equation is possible[1, 2] in the form of an infinite,

convergent series. This solution will serve us as a reference.

The simplest meaningful approximation to the (un-normalized) ground state wave func-

tion is given by the two-term (minimal basis) expansion

ψ(r) = χ1sA
(r) + χ1sB

(r) (7)

where χ1sX
(r) is the minimal basis 1s-type AO in form of Eq.(1) centered at site X ( X=A,B).

Since the form of this expansion is determined by symmetry, the only variational parameter

in Eq.(7) is the orbital exponent ζ. The energy expectation value as computed by this wave

function,

E =
〈ψ|H|ψ〉
〈ψ|ψ〉 + Enuc, (8)

with Enuc = 1/RAB being the nuclear repulsion energy. These values, computed at equilib-

rium H-H distances, are shown in the first two lines of Table 1 for unoptimized (hydrogenic)

and optimal exponents. As compared to the exact non-relativistic Born-Oppenheimer en-

ergy (last line in Table 1), the effect of exponent optimization is quite significant but even
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the energy of the optimized exponential 1s orbital is only a crude approximation. Adding

a polarization function (a single 2pz orbital) with optimized coefficient and exponents[5]

(third line in Table 1) drastically improves the approximation.

The energies of the H+
2 ion as obtained in some standard quantum chemical basis sets are

collected in lines 4 – 7 of Table 1 for comparison. It seems that basis sets of TZP quality

are needed to reach mH accuracy.

Energy evaluation with the distorted s-type orbitals, Eqs. (3) or (5), which is the aim

of the present paper, requires the evaluation of new types of one-electron integrals which

cannot be found in classical works[3]. To collect the necessary integrals, one substitutes

χs(r) of (5) for χ1s in Eq.(7), and puts the Ansatz into (8) with the Hamiltonian (6). For

atom B, one takes −α for α, to ensure appropriate distortion orientation. The following

integrals occur:

1. Normalization integral

n = 〈χsA
|χsA

〉

2. Overlap integral

s = 〈χsA
|χsB

〉

3. Diagonal kinetic energy integral

tA = 〈χsA
| − 1

2
∆|χsA

〉

4. Off-diagonal kinetic energy integral

tAB = 〈χsA
| − 1

2
∆|χsB

〉

5. Diagonal electron attraction integral

uA = −〈χsA

∣∣∣∣∣
1

|r −RA| +
1

|r −RB|

∣∣∣∣∣χsA
〉

6. Off-diagonal electron attraction integral

uAB = −〈χsA

∣∣∣∣∣
1

|r −RA| +
1

|r −RB|

∣∣∣∣∣χsB
〉
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Evaluation of these integrals can be performed either in a spherical or in an elliptical coor-

dinate system. The elliptical coordinates are introduced as

µ =
rA + rB

RAB

ν =
rA − rB

RAB

where the two-center coordinates are defined as rA = |r−RA| and similarly for rB. A third

coordinate, ϕ, the angle of rotation around the molecular axis, is common in the spherical

and elliptical systems. Parameters rA, rB, multiplied by cosϑA, cosϑB, respectively, as they

appear in the formula (5) for the distorted s orbital, can be expressed by the elliptical

coordinates using cosine theorem as

rA cosϑA =
µν + 1

2
RAB (9)

rB cosϑB =
µν − 1

2
RAB (10)

leading to the representation of the (unnormalized) distorted s AOs in elliptical coordinates

χA(r) = e−(ρ(µ+ν)+α(µν+1))/2 (11)

and

χB(r) = e−(ρ(µ−ν)−α(µν−1))/2, (12)

where the shorthands

ρ = ζ0RAB

and

α = aRAB

are introduced as dimensionless parameters.

With this representation, the analytical result of the integrations listed above is collected

as

1.

n = πR3
AB

ρ

(ρ2 − α2)2
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2.

s =
πR3

AB

3

ρ2 + 3ρ+ 3

ρ3
e−(ρ+α)

3.

tA =
π

2
RAB

ρ

ρ2 − α2

4.

tAB = −π
2
RAB e−(ρ+α)

(
(ρ+ α)2

3ρ
− (ρ2 − α2)(ρ+ 1)

ρ3
+

2α

3ρ

)

5.

uA = −2πR2
AB

(
1

ρ2 − α2
− S

)

6.

uAB = −2πR2
AB

ρ+ 1

ρ2
e−(ρ+α)

where S denotes the following integral

S = e−α

∞∫

1

(
cosh(ρ+ αµ)

(ρ+ αµ)
− sinh(ρ+ αµ)

(ρ+ αµ)2

)
e−ρµdµ. (13)

Since the primitive function of this integrand cannot be found, S can be computed by ex-

panding the hyperbolic functions into Taylor series, leading to the following fast-convergent

expansion

S =
e−α+ρ

ρ

∞∑

n=1

2n−1∑

i=0

(ρ+ α)2n−1−i
(

α
ρ

)i

(2n− 1− i)!(2n+ 1)
(14)

which is convenient to convert into the recursion formula

Sk+1 =
(ρ+ α)2k

(2k)!(2k + 3)

(
ρ+ α

2k + 1
+
ρ

α

)
+

2k + 1

2k + 3

(
α

ρ

)2

Sk (15)

initialized by

S1 =
1

3

(
ρ+ α+

α

ρ

)
.

In our experience, this recursion converges in 5–10 steps to 10 figures accuracy.

These integrals reduce to the standard ones[3] in the α→ 0 limit.

Once the above integrals have been evaluated, the energy expectation value is straightfor-

ward to evaluate and minimize with respect to parameters ρ and α. At equilibrium distance

we obtained the values ρ = 2.5496 and α = −0.4710. Since ρ = ζ0RAB, and our equilibrium
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distance is RAB =2.0019 (practically the exact result), this means that the mean exponent of

the optimized distorted s AO is ζ0 = 1.2736, a value slightly larger than 1.24, the optimized

exponent of the spherically symmetric exponential orbital. The effective exponent in the

ϑ = 0 direction (between the two nuclei) is ζ0 + a = 1.0383, which is significantly smaller

than the value of the spherical exponent. In the backward direction we get ζ0 − a = 1.5088

indicating an enhanced decay of the wave function. This behavior is illustrated in Fig. 2.

clearly showing the increased accumulation of electrons in the bonding region. The asso-

ciated energy, as indicated in the 8th row of Table 1, differs only by 2 mH from the exact

numerical result. With spherical Gaussians, a contracted basis set of TZP quality should

be used to achieve such an accuracy, or one should use the special James-type offcentred

exponentials depending directly on elliptical coordinates[4] to get better energy.

Apart from equilibrium results, it appears to be interesting to have a look on the poten-

tial curve of H+
2 . In Fig. 3., we plotted the curves computed by spherically symmetric and

distorted orbitals, as well as the exact numerical curve taken from Ref.[2]. The improve-

ment obtained by distortion is well seen: the optimized result, although it corresponds to a

minimal basis, can hardly be distinguished from the exact curve on this scale.

EXPANSION IN TERMS OF SPHERICAL HARMONICS

Distorted s-orbitals can be related to traditional functions by considering the expansion

of their angular part

e−ζ(ϑ)r =
∞∑

l

Cl(r) Yl0(ϑ) (16)

in terms of spherical harmonics with m = 0. The expansion coefficients, Cl, remain de-

pendent on the radial coordinate. Such an expansion is readily carried out due to the

orthogonality of spherical harmonics. The result is plotted in Fig. 4. showing that for small

r the distorted orbital is dominated by its l = 0 component, i.e., the spherical s orbital.

As the distance from the nucleus increases, the p component (l = 1) starts growing, and at

around r = 9 it starts to have the largest weight. For higher l values the effect is similar:

they have a negligible contribution around the origin, but their role starts to increase slowly

with growing r. For even larger r values, the curves exhibit a maximum for l ≥ 1, while the

s component decreases monotonically. The maximum of the p component is seen at around
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11 a.u., while the plots for larger l have their maxima outside of the range of Fig. 4.

OUTLOOK AND CONCLUSION

This work reported an idea of using orbital exponents of s-type functions which depend

on azimuthal directions leading to orbitals capable of describing polarization effects. The

magnitude of the angle dependence has been optimized variationally. The resulting orbitals

are termed as distorted s orbitals. The idea was tested on the simplest example of the H+
2

molecular ion for which a great improvement in the accuracy of energies has been resulted.

Generalization of this idea to many-electron and multi-center systems is possible, but not

easy. As soon as one deals with two or more electrons, the problem of evaluating two-electron

repulsion integrals has to be solved, which appears to be much more difficult than that of

the one-electron integrals we have dealt with above. The situation is even more complicated

in polyatomic molecules, since there not only integral evaluation seems to be cumbersome,

but also the guessing of the functional form of the distortion (cf. Eq.(4)) requires more

intuition. Nevertheless, it is a challenging project to see whether the accuracy improvement

reported here for H+
2 can also be found in these more complicated cases. Work in these lines

is in progress.
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TABLE I: Total energies of the H+
2 ion at equilibrium geometry in various basis sets and various

approximations

basis set type exponents/parameters total energy, a.u. Ref.

Exponential, minimal 1s 1.0 (hydrogenic) -0.5654

Exponential, minimal 1s 1.24 (optimized) -0.5871

Exponential, polarized sp optimized -0.6003 [5]

Gaussian, double zeta (DZ) 6-31G -0.5840

Gaussian, DZP 6-31G** -0.5945

Gaussian, triple zeta (TZ) 6-311G -0.5905

Gaussian, TZP 6-311G** -0.6012

minimal, distorted s optimized -0.6006 this work

James (off-centered) optimized -0.6018 [4]

complete (numerical solution) - -0.60263 [1, 2]
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Figure Legends

Fig.1.

Schematic projection of a spherically symmetric (α = 0) and a distorted (α = −0.6)

s-type orbital. The lines connect the points where r2 times the orbital function has maximal

values. The dimensionless parameter α is given in units of the equilibrium H+
2 distance.

Fig.2.

Value of the unnormalized bonding MO in the x = y = 0 cross-section as a function of

z, composed from optimal spherical (dashed line) and distorted (solid line) 1s orbitals.

Fig. 3.

Potential curve of H+
2 obtained by the minimal basis set of spherically symmetric 1s AOs

and with distorted s orbitals as compared to the exact non-relativistic Born-Oppenheimer

curve. The latter is taken from the data in Ref.[2].

Fig. 4. r-dependence of the expansion coefficients Cl of Eq.(16) for l=0,1,2,3 and 4 (s, p,

d, . . ., respectively) for 0 < r ≤ 20 a.u.
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Fig. 1.
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Fig. 2.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

M
O

 v
al

ue

z

spherical AOs

distorted AOs

13



Fig. 3.
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Fig. 4.
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