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Abstract The problem of partitioning in perturbation theory is reviewed starting
from the classical works by Epstein and Nesbet or by Møller and Ples-
set, up to optimized partitionings introduced recently. Equations for
optimal sets of level shift parameters are presented. Attention is paid
to the specific problems appearing if the zero order solution is not a
single Slater determinant. A special formalism for multi-configurational
perturbation theories is outlined. It is shown that divergent pertur-
bation series, like that of an anharmonic oscillator, can be converted
to a convergent series by an appropriate redefinition of the zero order
Hamiltonian via level shifts. The possible use of effective one-particle
energies in many-body perturbation theory is also discussed. Partition-
ing optimization in a constant denominator perturbation theory leads
to second order correction familiar from connected moment expansion
techniques. Ionization potentials, computed perturbatively, are found
sensitive to the choice of partitioning, and ordinary approximations are
improved upon level shift optimization.
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1. Introduction
In his series of seminal papers entitled ”Studies in Perturbation The-

ory”[1–12], Per-Olov Löwdin has summarized a vast amount of knowl-
edge accumulated in perturbation theory at that time, with many ideas
originating in his own studies, but incorporating lots of information
about results obtained by former and contemporary researchers. The
guideline of these papers was certainly to present fundamental aspects,
and not be lost in particular details of technical problems.

The present appendix aims to augment the fundamental papers of
Per-Olov Löwdin with a detailed discussion on the partitioning problem.
While it could have been viewed formerly as a small detail, several recent
results indicate the conceptual importance of this subject. Of course,
the present review can only be considered as a foot-hill of Per-Olov’s
papers of everlasting value.

To begin with our discussion, a few general words are due on pertur-
bation theory (PT). Students in physics and chemistry nowadays usually
meet this theory in course of their studies in quantum mechanics, when
learning Rayleigh-Schrödinger PT (RSPT). However, it is worth to recall
that PT is a much older discipline: it was developed centuries ago for
treating small disturbances of planetary motions caused by the mutual
interaction between planets in the solar system, a problem which cannot
be solved exactly thus needing a refineable approximate method. The
Latin word ’perturbo, perturbare’ (i.e., to ’annoy’, ’trouble’, ’bother’, or
’disturb’) refers to this origin. Moreover, it is also worth mentioning that
the title of Rayleigh’s book, which is most often referred to when citing
RSPT, is ”The Theory of Sound1 ” [13] – indicating that this mathemati-
cal theory can be applied to a variety of physical problems. The present
quantum mechanical formalism of RSPT is due to Erwin Schrödinger
[14, 15] in 1926. Although PT has soon become one of the fundamen-
tal tools of quantum theory, its mathematical backgrounds have only
been studied in sufficient detail considerably later[16–19], many of these
studies being summarized in the comprehensive book by Kato[20].

Perturbation theory is a mathematical method to account for small
disturbances. It is usually assumed that the solution of the unperturbed
problem is known, and the aim of PT is to give formulae describing the
effect of small perturbations. Although in some mathematical studies
researchers are interested in large perturbations as well, this should be
considered as a (sometimes very interesting) mathematical curiosity and
it is quite far from the original spirit of PT.

1The first edition of this book dates back to 1877 (MacMillan &Co., London)
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Since its introduction in 1926, quantum mechanical formulation of
PT has been studied in great detail. Nevertheless, we are still facing
several unsolved problems. To name a few, we do not know the necessary
and sufficient conditions for the convergence of the PT series, we do
not have a general and robust method to deal with the case of quasi-
degenerate zero order, and there is no established method to fix the best
partitioning. In addition, in many-body PT (MBPT), the handling of
multi-reference zero order state(s) is an open issue[21–33], just like a
clear and general theory to correct coupled-cluster type wave functions
perturbatively[34–45]. The handling of symmetry in PT can also be a
difficult task, especially when the zero order problem has lower symmetry
than the perturbed problem, a situation one meets e.g. when studying
molecular interactions[12, 46–56]. Among all these problems, we shall
be concerned here with that of the partitioning.

The organization of this review is as follows. After briefly introduc-
ing the concept of partitioning, we discuss the standard (or traditional)
partitionings as used in quantum chemistry. Then level shifts will be
used to modify these standard partitionings, after which an ingenious
method, the so called Feenberg scaling will be reviewed. The concept of
the optimal partitioning, as introduced in our laboratory as well as used
by other authors, will be next outlined in some detail, including its appli-
cations to energy calculations in single- and multi-reference cases. In the
context of many-body perturbation theory, the choice of optimal orbital
energies and optimal orbitals will also be mentioned. Then a further
criterion for establishing level shifts is discussed – the minimization of
norm of operator R̂Ŵ . A somewhat peculiar, but useful, version of per-
turbation theory that uses constant denominators will also be treated,
in connection with partitioning optimization. Finally we consider the
application of the optimal partitioning to the calculation of ionization
potentials.

2. The concept of partitioning
Let us be concerned with the time-independent Schrödinger equation

ĤΨ = EΨ, having the form of an eigenvalue problem of the Hamil-
tonian Ĥ. To approximate the solutions to this equation, we split the
Hamiltonian as

Ĥ = Ĥ(0) + Ŵ , (1.1)

where Ĥ(0) is supposed to be close to Ĥ, so that Ŵ is small in some
sense. This splitting of the Hamiltonian is called the partitioning. It
is usually supposed that the Schrödinger equation for the zero order
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Hamiltonian Ĥ(0)

Ĥ(0)Ψ(0)
K = E

(0)
K Ψ(0)

K

can be solved, and that one may develop the exact solutions E and Ψ
in terms of the zero order solutions and the perturbation operator Ŵ .
It is also customary to insert a perturbation parameter λ in front of Ŵ ,
i.e., instead of (1.1) one may write

Ĥ = Ĥ(0) + λŴ . (1.2)

Then, the exact wave functions and energies, i.e., eigenvectors and eigen-
values of Ĥ, are looked for in form of a power series of λ:

ΨK = Ψ(0)
K + λΨ(1)

K + λ2Ψ(2)
K . . .

and
EK = E

(0)
K + λE

(1)
K + λ2E

(2)
K . . .

The perturbation parameter may have three interpretations. It can be
just a formal parameter merely guiding our eyes when deriving n-th
order corrections that are proportional to λn, and, after getting the
results, one substitutes λ = 1 into the final formulae. Oppositely, if λŴ
is considered a physical perturbation, like an external field acting on a
molecule, then λ measures the field strength which can have any real
value. Finally, λ can be considered as a mathematical parameter scaling
a given Ŵ ; the Hamiltonian Ĥ(λ) as well as its eigenvalues become λ-
dependent in this interpretation, with Ĥ(0) = Ĥ(0). In this latter case λ
can even be complex, which leads to a powerful tool to study convergence
properties of the PT expansion via investigating the analyticity of the
complex function E(λ)[20, 57].

From our point of view, it is the second case when we may speak about
a natural partitioning of the problem. A good example is a molecule in
a weak external field. In this case Ĥ(0) is the in vacuo Hamiltonian,
and λŴ describes the interaction between the molecule and the field. A
related example is a weakly anharmonic oscillator:

Ĥ = − 1
2m

p2 +
1
2
kq2 + λq4

with a small λ scaling the anharmonic (quartic) term. Here the ’natural’
partitioning of the problem is Ĥ(0) = − 1

2mp2 + 1
2kq2 (the Hamiltonian

of the harmonic oscillator), while λq4 constitutes the perturbation.
The above two examples are quite instructive since they remind us

that a partitioning that seems very natural from the physical point of
view may be quite unfortunate mathematically. In fact, the PT series of
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the quartic oscillator never converges in the above partitioning[58, 59],
even for infinitesimally small λ values. However, good convergence can
be achieved by a more appropriate partitioning[60] or resummation tech-
niques[61–63]. Similarly, the PT series for the Hydrogen atom embed-
ded in a small magnetic field is also known to be divergent at any field
strength[61, 64], while an external electric field brings the H atom un-
stable[61, 65]. These observations underline the essential importance of
investigations of the problem of partitioning in PT.

3. Traditional partitionings in quantum
chemistry

3.1 Epstein-Nesbet partitioning
A natural way of partitioning a matrix, whose eigenvalues are to be

approximated by PT, is to collect its diagonal elements to form a zero
order (diagonal) matrix, and let all off-diagonals to constitute the per-
turbation. All diagonal elements of the perturbation are zero in this
case, which is usually referred to as the Epstein-Nesbet (EN) partition-
ing[66, 67] in quantum chemistry. In the language of operators, the EN
partitioning is defined just by requiring that all diagonal matrix elements
of the perturbation operator, WKK = 〈Ψ(0)

K |Ŵ |Ψ(0)
K 〉, are zero. Note that

the EN partitioning cannot be formulated without explicit reference to
the basis {Ψ(0)

K }.
The EN partitioning has several advantages and disadvantages. One

advantage is that it can be defined at any level of theory, i.e. it is not
bound to, say, the many-body problem. In the case of the anharmonic os-
cillator EN is quite different from the natural partitioning quoted above,
where one does have diagonal perturbations. In fact, it gives much bet-
ter results than the ’natural’ partitioning[68], since it reassigns at least
the diagonal elements of the perturbation operator to the zero order.
The absence of diagonal perturbations is clearly an advantage. How-
ever, there’s a big price to pay: the values of matrix elements WKK are
basis set dependent, i.e., the partitioning is not invariant against uni-
tary transformations of the basis set {Ψ(0)

K }. This means that the EN
partitioning is not well defined. Quoting an example from many-body
theory: if the electron correlation is to be accounted for by PT, then the
EN partitioning yields different results if one deals with pure determi-
nants as zero order excited states, or with spin-adapted configurations
thereof. Moreover, the EN partitioning is not invariant against chang-
ing the spin adaptation scheme: having more than one singlet e.g. in a
configuration, the EN partitioning is again ill-defined.
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Numerical experience with the EN partitioning is mingled. Very good
results have been obtained in some cases[69–71], while in other cases an
overestimation of low-order contributions and bad convergence proper-
ties have been reported[70, 72, 73]. A successful compromise between
using pure determinants and spin-adapted configurations is represented
by the barycentric expression introduced in Malrieu’s group[74].

An important question about any partitionings is whether it obeys
the requirement of size-extensivity. This involves that the energy of
two noninteracting subsystems, as computed by the given method, is
equal to the sum of energies of the two isolated systems computed sep-
arately. It is sometimes quoted that the EN partitioning is not size-
extensive[75, 76]. However, a closer look into the problem reveals that
it does not necessarily violate this important principle. The problem
is quite delicate; it is connected to the ill-defined nature of the EN
partitioning. Let us check the example of a configuration interaction
(CI) matrix, having the elements 〈K|Ĥ|L〉, with K and L denoting two
Slater-determinants. Using EN partitioning, the perturbation denom-
inators will be 〈K|Ĥ|K〉 − 〈0|Ĥ|0〉 where |0〉 is the reference determi-
nant. Extensivity can be met if, upon infinite separation of the two
subsystems, the excited determinant |K〉 is factorized in a way that one
subsystem remains unexcited, symbolically: |K〉 = |KA0B〉 (note that
anti-symmetrization becomes irrelevant at infinite separation). When
constructing the excited determinants, this can easily be achieved if the
molecular orbitals remain localized on the constituting fragments A and
B. Since the orbitals of separated systems may be degenerate (they
necessarily are, if the two subsystems are identical), localization may
not be fulfilled automatically. Therefore, if a second order calculation is
performed for a dissociating system in terms of canonical orbitals, the
results are expected to be arbitrary and can violate the extensivity re-
quirement. However, localization can be ensured e.g. by applying any
of the well-known localization criteria[77–82].

The situation is illustrated in Figs. 1.1-1.6 on the example of the
potential curve of the Helium dimer computed in 6-311G** basis set. For
comparison, the full-CI (FCI) potential curve is shown in Fig. 1.5, and
PT results in the Møller-Plesset (MP) partitioning (vide infra) in Fig.
1.6. Choosing the Hartree-Fock solution as zero order, the second order
results obtained in the EN partitioning with canonical orbitals are shown
in Fig. 1.1. Here the EN partitioning was made without spin-adaptation,
i.e., in a determinantal basis. The resulting curve is very erratic: it
has an (exaggerated) minimum at a wrong distance (just above 2 Å),
then it tends to be saturated at an extensivity-violating limit up to 8 Å,
when it exhibits an unphysical sudden jump with unphysical oscillations,
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Figure 1.1. Potential curve of the He
dimer (EN partitioning in determinan-
tal basis with canonical MOs)
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Figure 1.2. The same as Fig.1.1, but
with Boys’ localized MOs
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Figure 1.3. The same as in Fig.1.1,
but in spin-adapted basis with canon-
ical MOs
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Figure 1.4. The same as in Fig.1.3,
but with Boys’ localized MOs
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Figure 1.5. Full CI potential curve for
the He dimer

-5.76917

-5.76916

-5.76915

-5.76914

-5.76913

3 4 5 6 7 8 9 10

 E
to

t [
a.

u.
]

R [A]

Figure 1.6. Second order potential
curve for He2 in the MP partitioning

finally ending at the correct infinite limit. The jumps and oscillations
appear due to the non-invariance of the EN partitioning with respect
to rotating degenerate levels. The situation is similar (although not the
same), if canonical orbitals but a spin-adapted configuration basis is used
to make the EN partitioning (see Fig. 1.3). If the orbitals are a priori



8 Surján and Szabados

localized by Boys’ criterion, a more smooth curve is obtained with the
correct (extensive) dissociation feature, but one still may observe small
oscillations along the curve due to the numerical problems that appear
in course of the localization procedure (see Figs. 1.2 and 1.4). Note that
these latter two curves are also different, indicating the dependence of
the EN partitioning on the spin-adaptation scheme.

In concluding, the EN partitioning, in spite of its simplicity, does not
represent a reliable PT method in the many-body problem. The main
shortcomings are due to the lack of orbital invariance and the invariance
against altering the spin adaptation scheme. All of this underlines the
importance of a detailed study of the partitioning problem in perturba-
tion theory.

3.2 Adams partitioning
Adams defined[83] the following zero order Hamiltonian:

Ĥ(0) = ÔĤÔ + P̂ ĤP̂

leading to the perturbation

Ŵ = ÔĤP̂ + P̂ ĤÔ

where Ô and P̂ are two Hermitian projectors satisfying Ô + P̂ = 1.
In matrix language this means that one partitions the full space into
two parts; the full matrix will then be separated into four blocks. The
two diagonal blocks will be considered as the zero order and the two
off-diagonal ones give rise to the perturbation. This partitioning has a
conceptual value. To apply it in practice, one has either to diagonal-
ize the two diagonal blocks to get a diagonal Ĥ(0), or one has to deal
with a non-diagonal resolvent. An interesting property of the Adams
partitioning is that all odd-order energy corrections are zero[83].

3.3 Møller-Plesset partitioning
In the many-body problem, especially in evaluating the electron cor-

relation energy, the most widely used partitioning is due to Møller and
Plesset [84] (MP). It can be defined as

Ĥ = F̂ + Ŵ (1.3)

where F̂ is the Fockian operator, playing the role of the zero order Hamil-
tonian. It is apparent that this partitioning is formulated within the
framework of many-body theory, thus lacks the generality of EN parti-
tioning which can be formulated at the level of quantum mechanics. To
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give an example, it would be difficult to define an MP-type partitioning
for the anharmonic oscillator. On the other hand, the MP partitioning
is defined with the aid of operators without any reference to any partic-
ular basis sets, thus it is basis-independent. If one works with canonical
molecular orbitals (MOs) ϕi which diagonalize the Fockian, the latter
can be specified as

F̂ =
∑

i

εi ϕ+
i ϕ−i

where εi-s are orbital energies, and the superscripts ± on ϕi indicate
creation and annihilation operators. The many-electron eigenstates of
this zero order operator are Slater-determinants with various excitation
levels from the ground-state determinant, thus the PT denominators in
this partitioning have the form

εp − εa

for singly excited states,

εp + εq − εa − εb

for doubles, etc. (We adopt the convention that letters a, b, . . . denote
occupied orbitals while p, q, . . . stand for virtual labels. Letters from the
middle of the alphabet (i, j, . . .) indicate generic indices.)

The MP partitioning is free from the problems discussed above in con-
nection with the EN partitioning. The MP results are invariant against
spin adaptation and against orbital transformations among degenerate
MOs. Usually, since the EN denominators are smaller than the cor-
responding orbital energy differences, low order MP results are mostly
smaller in absolute value than EN ones. Apart from rare cases, MP2
underestimates the true correlation energy of the given basis set. The
error of an MP2 calculation is rather systematic, thus this method forms
a basis of a stable, reliable tool in quantum chemistry. It can be usually
improved by going to higher orders (MP3, MP4). The 4th order results
are often quite accurate, although rather expensive to compute. This
is because (unlike MP2 and MP3 which need only double substitutions)
MP4 requires three- and four-fold excitations to evaluate.

If one wants to compute MPn results in orbital sets other than the
canonical one, care should be taken to the fact that in those basis sets the
Fockian is not diagonal. The actual expressions for the energy and wave
function corrections will therefore be changed. This is not a conceptual
but merely a technical problem, and efficient formulations have been
reported to evaluate second and higher order results with non-diagonal
zero order[85–87]. Evaluation of the correlation energy in terms of lo-
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calized molecular orbitals is a typical example when such a formulation
is needed.

Up to this point the discussion about MP referred to the case when
the zero order wave function is a single Slater determinant (using the
standard terminus technicus: the case of ’single reference’). This is an
acceptable approximation at around equilibrium geometries of closed-
shell systems. Energetics of dissociating covalent bonds, however, cannot
be studied in this partitioning. Generalization of the MP partitioning
for multi-reference cases, that can also describe dissociating bonds, will
shortly be discussed later.

Eq.(1.3) defines the MP partitioning in a strict sense. Speaking about
a generalized MP partitioning one may think about either a different
expression for the Fockian (such as the generalized Fockian in a multi-
reference theory, see Section 1.10) or, using a partitioning in which the
PT denominators are constituted by the differences of some effective one-
particle energies, different from canonical εi-s. Examples to this latter
case will be provided in section 1.8.

4. Level shifts

4.1 Basic definition
A given partitioning of the Hamiltonian, Ĥ = Ĥ(0) + Ŵ , can always

be changed by adding and subtracting an operator that is diagonal in
the basis of the eigenvectors of Ĥ(0):

Ĥ = Ĥ(0) +
∑

K

ηK |K〉〈K|
︸ ︷︷ ︸

Ĥ(0)′

+ Ŵ −
∑

K

ηK |K〉〈K|
︸ ︷︷ ︸

Ŵ
′

(1.4)

where ηK-s are arbitrary parameters called level shifts (here and further
on, the shorthand |K〉 = |Ψ(0)

K 〉 is used). One usually sets η0 = 0 to fix
the energy origin. Level shifts obviously do not modify the zero-order
wave functions, they merely affect the zero-order energy levels.

Level shift parameters have been applied in a number of works with
various purposes[26, 88–93], among which the removal of (quasi)de-
generacies from the zero order spectrum is an important issue.

The second order energy correction in the shifted partitioning becomes

E(2)′ = −
∑

K 6=0

〈0|Ŵ |K〉〈K|Ŵ |0〉
E

(0)
K − E

(0)
0 + ηK

(1.5)

Note that the second order numerator does not depend on η-s. This in-
duces an ambiguity for the second order expression: by the η-dependence
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of the denominator one can arrive at any second order result by changing
level shift parameters. The E(2)′(ηK) function is not even bounded. At
the third order, numerators become also η-dependent:

E(3)′ =
∑

K,L( 6=0)

〈0|Ŵ |K〉〈K|Ŵ −W00 + ηK |L〉〈L|Ŵ |0〉
(E(0)

K −E
(0)
0 + ηK)(E(0)

L − E
(0)
0 + ηL)

which causes that the third order results are less ambiguous.

4.2 Connection between MP and EN
Evaluating the correlation energy of an N -electron system perturba-

tively in the MP and EN partitionings, we find that the numerators of
the second order terms, |〈0|Ŵ |K〉|2, are the same in both cases. This
is because these numerators (unlike higher order ones) do not contain
diagonal elements of Ŵ . The denominators, however, are different:

∆EN
K = ĤK − Ĥ0 = ∆MP

K + ηK ,

where ∆MP
K -s are orbital energy differences, while ηK − s can be inter-

preted as level shifts. Conversely, starting from the MP partitioning,
one may prove that a resummation of certain terms appearing in the
higher orders of MP, namely those having contributions from diagonal
perturbations, is equivalent to a suitable modification of the energy de-
nominators[69, 94, 95].

4.3 Complex level shifts
One may in principle choose complex or imaginary values for the level

shift parameters ηK . This results that finite order corrections will not
be necessarily real, and additional assumptions have to be introduced
to extract real numbers that may solely have a physical interpretation.
One possibility is to take the modulus (absolute value) of each term[96–
98]. Optimization of complex level shift parameters have not yet been
reported, merely ad hoc formulae for setting imaginary parameters were
proposed[96–99]. The formula

E
(2)

damped = −
∑

K 6=0

|W0K |2√
∆K + |W0K |2

corresponds to taking the term-by-term absolute value of an imaginarily
shifted second order expression and requiring that it be exact for a two-
level system in the fully degenerate (∆K = 0) limit. This formula was
tested for molecules[96] and polymers[98]. It has also been compared to
other, non-perturbative formulae[100–103]. Imaginary shifts in multi-
reference PT have also been considered[99].
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5. Feenberg scaling
Feenberg and Goldhammer[104, 105] have investigated the effect of

introducing a single scaling parameter in front of the first order wave
function, which is equivalent to the repartitioning

Ĥ =
1
µ

Ĥ(0)

︸ ︷︷ ︸
Ĥ(0)′

+
(

Ŵ +
µ− 1

µ
Ĥ(0)

)

︸ ︷︷ ︸
Ŵ

′

(1.6)

discussed also by Amos[106]. Requiring that the third order energy
correction in this new partitioning vanishes leads to

E(2)′ =

(
E(2)

)2

E(2) −E(3)
(1.7)

which proved to be considerably successful[104, 105]. It was noted[107–
109] that Feenberg’s procedure is equivalent to a Padé approximation2

scheme[116], as the above equation indeed suggests.
An important question is whether the extensivity is maintained by the

above modification, for which affirmative answers were already published
[117, 118]. However, a closer look into the problem reveals that Eq.(1.7)
is separable for non-interacting subsystems only if the latter are identical
[119].

In the recent studies by Goodson[118, 120, 121], connection between
Padé approximants and Feenberg scaling has further been exploited.
Goodson has used quadratic Padé approximants[121], the denominators
of which may exhibit not only poles, but also branching points. He sug-
gested to determine the Feenberg scaling parameter µ from the condition
that the first branching point is pushed apart from the origin to the max-
imum possible extent, thereby maximizing the convergence radius of the
PT series. (For convergence radii, see e.g. [113].)

Feenberg scaling has been extensively studied by several other au-
thors, too[108, 109, 122–124, 112]. Cremer et al.[117, 125] generalized
Feenberg’s procedure to any (odd) orders and studied the convergence
of the original and the generalized series.

6. Optimized partitioning
It is apparent from Eq.(1.6) that the Feenberg scaling can be viewed

as a special level shift: all zero order energies are divided by a factor,

2Padé approximants represent a useful tool, widely studied in quantum theory[110–115].
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and the perturbation is modified just by a diagonal operator. The suc-
cess of the optimal selection of µ suggests that it is useful to consider
a more general case, when all level shift parameters are varied inde-
pendently. This section is devoted to discuss some possibilities for an
optimal selection of the ηK parameters introduced in (1.4).

6.1 General formulation
In order to set the level shift parameters ηK , one may proceed in the

following way. Parameters ηK affect individual terms of the perturbation
series, but not the converged sum. One may expect even for approximate
wave functions that the ’best’ ηK values are those for which the energy
is stationary. This can be expressed by the variational like condition

∂

∂ηK

〈Ψ[1]′ |Ĥ|Ψ[1]′〉
〈Ψ[1]′ |Ψ[1]′〉 = 0 K = 1, 2, . . . (1.8)

where Ψ[1]′ = Ψ(0) +Ψ(1)′ is the first order Ansatz for the wave function.
To set the connection to PT, let us expand the Rayleigh-quotient as

〈Ψ[1]′ |Ĥ|Ψ[1]′〉
〈Ψ[1]′ |Ψ[1]′〉 = E

(0)′
+ E

(1)′
+ E

(2)′
+ E

(3)′
+O(4) (1.9)

(cf. Wigner’s 2n + 1 rule). Neglecting O(4) terms, the variational re-
quirement takes the form

∂

∂ηK

(
E

(2)′
+ E

(3)′)
= 0 , K = 1, 2, . . . (1.10)

Here we left out the zero and first order terms since E(0)′ + E(1)′ =
〈0|Ĥ|0〉 is independent of level shifts. Substituting the expressions of
E(2)′ and E(3)′ into Eq.(1.10), and carrying out the variation one finds

〈0|Ŵ R̂′|K〉〈K|Ŵ ′R̂′Ŵ |0〉−W00〈0|Ŵ R̂′|K〉〈K|R̂′Ŵ |0〉 = 0 K = 1, 2, . . .
(1.11)

where the reduced resolvent of the shifted zero order is

R̂′ = −
∑

I 6=0

|I〉〈I|
∆′

I

with the shifted denominators ∆′
I = E

(0)
I −E

(0)
0 + ηI . Equation (1.11)

defines the level shifts in the new partitioning.
This system of equations can be brought to the form [68]

∑

J 6=0

AKJ
1

∆′
J

= 1 , K = 1, 2, . . . (1.12)
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where
AKJ = δKJ(E(0)

J − E
(0)
0 −W00) +

WKJWJ0

W0K
(1.13)

showing that, if matrix A is nonsingular, nonzero energy denominators
∆′

K are uniquely determined as the solution of an inhomogeneous linear
system of equations. Those shifts, which do not emerge in the expan-
sion of the first order wave function are not defined by Eq.(1.12). The
simplest choice is to set these parameters zero.

6.2 Properties of the optimized partitioning
6.2.1 Vanishing of the third order correction. One can
easily show that in the optimal partitioning the third order energy is
zero. Putting down the third order RSPT formula

E
(3)′

= 〈0|Ŵ R̂′Ŵ ′R̂′Ŵ |0〉 −W00〈0|Ŵ R̂′2Ŵ |0〉
=

∑

K 6=0

E
(3)′
K

and writing out the reduced resolvents explicitly, one has

E
(3)′
K =

W0K

∆′
K


∑

I 6=0

WKIWI0

∆′
I

− (W00 + ηK)
WK0

∆′
K


 . (1.14)

Substituting R̂
′
and the shifted perturbation operator Ŵ

′
into Eq.(1.11),

one finds that its left hand side equals E
(3)′
K . That is, Eq.(1.11) is equiv-

alent to the requirement

E
(3)′
K = 0, K = 1, 2, . . .

The fact that E(3)′ vanishes in the optimized partitioning points back
to the Feenberg scaling discussed in Sect.1.5. Having a closer look to
the Feenberg procedure it turns out that setting E(3)′ = 0 is equivalent
to the requirement ∂

(
E(2)′ + E(3)′

)
/∂µ = 0 in the one-parameter

optimization scheme, too[106, 117]. In fact, the original idea of Feenberg
for choosing the single scaling parameter µ was just this latter condition.

6.2.2 Consequences on the higher orders. Vanishing of
all E

(3)′
K -s has important consequences for higher orders, too. All terms

containing the expression

〈K|(Ŵ ′ −W00)R̂′Ŵ |0〉 (1.15)
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will be zero for all states K which contribute to E(3)′ , i.e., which directly
interact with the ground state. In particular, of the fifth order formula

E
(5)′

= 〈0|Ŵ R̂′(W ′ −W00)R̂′(Ŵ ′ −W00)R̂′(Ŵ ′ −W00)R̂′Ŵ |0〉
− 2E

(2)′〈0|Ŵ R̂′2(Ŵ ′ −W00)R̂′Ŵ |0〉
− E

(3)′〈0|Ŵ R̂′2Ŵ |0〉,
the last term is zero due to vanishing of E(3)′ , while the second term
is zero due to Eq.(1.15). Consequently, merely the first term may con-
tribute to E(5)′ . Similar considerations apply for higher orders, too.

6.2.3 Extensivity. The repartitioning with level shift parame-
ters obtained from Eqs.(1.12)-(1.13) preserves size extensivity. Consider
two noninteracting subsystems A and B, characterized by the equations
Ĥ = Ĥ

(0)
A +Ĥ

(0)
B , Ŵ = ŴA+ŴB, |0〉 = |0A0B〉. Taking a look at the

second order correction, e.g., in the new partitioning [cf. Eq.(1.5) ], one
finds that repartitioning preserves extensivity of the initial series if in the
noninteracting situation any level shift can be assigned to the subsystem
where that particular level belongs. Regarding the structure of matrix
A in Eq.(1.13), it is apparent, that a nonzero inter-system element may
only emerge in the case where 〈K| = 〈KA0B| and |J〉 = |JB0A〉.
This is because matrix elements of Ŵ of the type 〈KAJB|Ŵ |0B0A〉 are
all zero. In the former special case, since

WKJ = 〈KA|ŴA|0A〉〈0A|JB〉+ 〈0B|ŴB|JB〉〈KA|0A〉 = 0

AKJ again proves to be zero. This means that matrix A is block-diagonal
if subsystems A and B are infinitely apart, consequently level shifts are
determined solely by expressions of one subsystem or another.

6.2.4 Resummation of RS-PT series. Substituting Eq.(1.13)
into (1.12), one gets the following formula, suitable for an iterative treat-
ment[68]:

∆′
I = ∆I

W0I

W0I −
∑

J 6=0

WIJWJ0
∆′J

(I 6= 0) (1.16)

where ∆I = E
(0)
I −E

(0)
0 is the unshifted denominator, and the condition

W00 = 0 was used which can be set in the initial partitioning without
loss of generality. Considering Eq.(1.16), it is not difficult to see that
the second order guess to the energy,

E(2)′ = −
∑

I 6=0

|W0I |2
∆′

I

(1.17)
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is equivalent to an infinite order partial resummation of the original
partitioning. Substituting Eq.(1.16) into (1.17):

E(2)′ = −
∑

I 6=0

|W0I |2
∆I

+
∑

I,K 6=0

W0IWIKWK0

∆I∆′
K

= 〈0|Ŵ R̂Ŵ |0〉+ 〈0|Ŵ R̂Ŵ R̂′Ŵ |0〉 .

Here the first term is the original second order energy. The sec-
ond term is of order 3, and it can be further expanded by substituting
Eq.(1.16) repeatedly to yield

E(2)′ = 〈0|Ŵ R̂Ŵ |0〉+ 〈0|Ŵ R̂Ŵ R̂Ŵ |0〉+ 〈0|Ŵ R̂Ŵ R̂Ŵ R̂Ŵ |0〉+ . . .

=
∞∑

n=1

〈0|Ŵ (R̂Ŵ )n|0〉 (1.18)

which is clearly a part of the infinite order (exact) PT energy. More
precisely, we see that all type of terms of the PT series have been summed
up which would emerge also in Brillouin-Wigner (BW) theory [126, 127].
We may call these contributions BW type terms, which differ only from
true BW results in that the reduced resolvent R̂ is constructed from zero
order excitation energies (E(0)

K −E
(0)
0 ), and not from BW denominators

(E(0)
K −E0) containing the exact energy E0.
To write this result more compactly, let us introduce the reaction

operator T̂ :
T̂ = Ŵ + Ŵ R̂Ŵ + Ŵ R̂Ŵ R̂Ŵ + . . . (1.19)

that satisfies a Lippmann-Schwinger type equation

T̂ = Ŵ + Ŵ R̂T̂ (1.20)

since the iteration of (1.20) with T̂ (0) = 0 leads to (1.19). Using (1.18),

〈0|T̂ |0〉 = W00 + E(2)′

The formal solution of (1.20) is

T̂ = (1− Ŵ R̂)−1Ŵ (1.21)

indicating that the second order energy in the optimized partitioning
can be compactly expressed as

E(2)′ = 〈0|(1− Ŵ R̂)−1Ŵ |0〉 − W00

= 〈0|Ŵ
(
1− R̂Ŵ

)−1
R̂Ŵ |0〉 . (1.22)
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The last equality can be seen by subtracting and adding the term
〈0|Ŵ (1− R̂Ŵ )−1|0〉.

Let us recall at this point the damping procedure of Dietz et al.[124,
128, 129], which leads to a second order correction 〈0|Ŵ (1− Λ̂)R̂Ŵ |0〉,
where Λ̂ is an arbitrary damping operator. The authors proposition for

Λ̂: 1− Λ̂ =
[
1− R̂

(
Ŵ −∆E

)]−1
with ∆E = E0−E

(0)
0 clearly results

in a formula closely related to Eq.(1.22). There are two major differences
between the procedure of Dietz et al. and the optimized partitioning.
Once, Dietz et al. use several model spaces to construct operator Λ̂
in, while in the optimized partitioning those K-s are used for which
W0K 6= 0. Secondly, the infinite order correction, ∆E does not appear in
Eq.(1.22). Absence of ∆E from the optimized reduced resolvent has the
advantage that finite order PT corrections are extensive in the optimized
partitioning.

6.2.5 Derivation by projection operator technique. In
the spirit of Löwdin’s partitioning technique[2], the P -component of the
wave function, i.e., its projection to the subspace orthogonal to the ref-
erence (O-) space, is written as

|P̂Ψ〉 = R̂Ŵ |0〉+ R̂Ŵ |P̂Ψ〉 −∆ER̂|P̂Ψ〉

If one neglects the last term in this equation (which is justified if the
energy correction is a second order quantity), and left multiplies with(
1− R̂Ŵ

)−1
one gets:

|PΨ〉 = (1− R̂Ŵ )−1R̂Ŵ |0〉. (1.23)

Expansion of the inverse in (1.23), yields

|PΨ〉 = R̂Ŵ |0〉+ R̂Ŵ R̂Ŵ |0〉+ . . . = R̂T̂ |0〉.

On substituting this result into the energy formula E = 〈0|Ĥ|Ψ〉 one
finds:

E = 〈0|Ĥ|0〉+ 〈0|Ŵ R̂T̂ |0〉
= 〈0|Ĥ|0〉+ 〈0|Ŵ R̂Ŵ |0〉+ 〈0|Ŵ R̂Ŵ R̂Ŵ |0〉+ . . .

in perfect agreement with (1.18). This derivation, of course, does not
contribute to any new result as compared to the formulae of the previous
sections, but it makes transparent how the resummation of BW-type
terms emerges from Löwdin’s partitioning technique.
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6.3 The example of the anharmonic oscillator
The Hamiltonian of the harmonic oscillator perturbed by a quartic

term can be written in arbitrary units as

Ĥ =
1
2

(
p2 + q2

)
+ λq4 = Ĥ(0) + Ŵ (1.24)

One may start off with the partitioning suggested by the physics of the
problem, as discussed in Sect.1.2, with the solution of the zero order

Ĥ(0)|n〉 =
(

n +
1
2

)
|n〉 .

In this case there are only two levels that interact with the ground state,
since

W0K =
λ

4
(2 + 5K + 4K2 + (K + 1)2)δ0K +

λ

2

√
K(K − 1)(K + 1)2δ2K

+ λ
4

√
K(K − 1)(K − 2)(K − 3)δ4K ,

leading to the first order wave function

|Ψ[1]〉 = |0〉 −
λ
2

√
18

2 + η2
|2〉 −

λ
4

√
24

4 + η4
|4〉 .

Level shifts η2 and η4 can be determined using Eqs. (1.12) and (1.13) in
a straightforward way.

Perturbative results up to fourth order, calculated in the partitioning
of Eq.(1.24) and in the optimized splitting are plotted in Fig. 1.7 as a
function of the strength of the perturbation. Standard partitioning of
Eq.(1.24) is labeled by STND, OPT refers to the optimal partitioning.

Computing higher than third order of PT, one faces the question of
determining shifts, that are not set by optimization. These are η6 and
η8, in this special case, at fourth order. Calculating the curve labeled
OPT4 in Fig.1.7, η6 and η8 were set zero, which means keeping the
original partitioning for these levels. Inspecting Fig.1.7, it is apparent
that the PT expansion in the STND partitioning diverges already for
small λ values, while the corrections in the OPT partitioning remain
meaningful even at relatively large values of the coupling parameter. In
concluding, for the problem of anharmonic oscillator the optimization of
the partitioning in Rayleigh-Schrödinger PT extends its applicability to
strong perturbations.

7. Optimized partitioning in single reference PT
Now we turn to the problem of calculating electronic (correlation)

energies in atoms and molecules. Let us consider first a simple case, when
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Figure 1.7. Ground state energy of the anharmonic oscillator as a function of the cou-
pling strength λ in arbitrary units. Results of the standard partitioning are identified
by STNDn. Optimized partitioning is referred to as OPT, for details see text. Exact
result (solid line) was obtained by solving the Schrödinger equation numerically.

the lowest eigenvector of Ĥ(0) is a single Slater determinant, typically
the Hartree-Fock solution.

An interesting feature of the optimized partitioning is that, as ap-
plied to the correlation problem in many-electron theory, the well known
CEPA-0 (equivalently: coupled pair many-electron theory (CPMET)
[130, 131], linearized coupled-cluster (LCCD)[132], or D-MBPT∞[133–
135]) energy formula is recovered at the second order. This can be
demonstrated in several ways, since the very same method has been de-
scribed in literature in different manners. The CEPA-0 equations [136]

〈φpq
ab|Ĥ −H00|Ψ[1]〉 = 0

(φpq
ab denoting doubly excited configurations) originate from the varia-

tional problem of the functional

F = 〈Ψ[1]|Ĥ −H00|Ψ[1]〉

which upon substituting the first order Ansatz with shifted denomina-
tors, can be expanded as

F = 〈0|(1 + Ŵ R̂′) (Ĥ −H00) (R̂′Ŵ + 1)|0〉
= 〈0|Ŵ R̂′Ŵ |0〉+ 〈0|Ŵ R̂′W ′R′Ŵ |0〉 −W00〈0|Ŵ R̂′2Ŵ |0〉
= E(2)′ + E(3)′.
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This was just the functional we used in Eq.(1.10) to get the level shifts,
which, if only doubles are taken into account, are just the free parameters
in Ψ[1].

Equivalence of E(2)′ and the CEPA-0 correlation energy can also be
inferred from the energy formula (1.22), which is clearly the same as the
energy formula in the LCCD method [95, 132].

Based on the equivalence between the second order results and LCCD,
a few properties of E(2)′ are immediately evident. Namely, we get an
energy which is, though not variational, size extensive, and invariant to
unitary transformations among zero oder excited states. In particular,
E(2)′ (more generally, E(n)′ if computed in the subspace present in Ψ[1])
is invariant to orbital rotations within the occupied MOs (and also to
those within virtuals). This is an especially appealing feature as this
makes it possible to perform the calculations, e.g., in terms of localized
orbitals without affecting the PT formulae. This property markedly
discerns the optimized partitioning from EN or MP, since the former
is not orbital invariant at all, while the orbital invariant formulation of
the latter [85, 86] requires the use of non-diagonal resolvents. In the
optimized partitioning the same second order formula (1.17) gives the
same result whatever orbitals (canonical or localized) are used.

The equivalence between E(2)′ and the LCCD energy holds only if one
uses the Hartree-Fock wave function as the reference state |0〉. The op-
timization of the partitioning by level shifts is, therefore, a more general
procedure.

An important advantage of this reformulation is that, once the new
partitioning is defined, one may go beyond the second order in a straight-
forward manner.

Since the optimized partitioning is unique, it can be found by starting
from any initial partitioning. One has to recall, however, that only
levels of those states will be determined which directly interact with the
reference state. Accordingly, when 4th and higher order results for the
correlation energy are computed, the singles, triples and quadruples are
treated in the original partitioning. This problem could be, in principle,
circumvented by using a more accurate Ansatz instead of Ψ[1], but this
method does not seem to yield equations that are easily tractable.

Numerical results found in the optimal partitioning are presented in
Table 1.1 and Figs. 1.8–1.10, comparing them with standard MPn values
and the FCI benchmark. Note the parallelity of the OPT curves with
the exact results and the improvement of the convergence features.
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method inversion barrier
STO3-G 6-31G** 6-311G**

MP2 0.05240 0.02372 0.02027
MP3 0.05306 0.02415 0.02075
MP4 0.05323 0.02436 0.02087

OPT2 0.05360 0.02425 0.02083

CCSD 0.05361 0.02414 0.02074
CCSDT 0.05339 0.02433 0.02098

QCISD(TQ) 0.05343 0.02429 0.02081
FCI 0.05341

Table 1.1. Inversion barriers [a.u.] of the NH3 molecule
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8. Using noncanoninal orbital energies in
MBPT

8.1 Davidson-Kapuy partitioning
Assume that we work in an MO basis set in which F̂ is non-diagonal,

say a basis set of localized MOs (LMOs). Defining just the diagonal
part of F̂ as Ĥ(0), one arrives at a partitioning, in which the off-diagonal
elements of F̂ give rise to a new kind of perturbation. This, in connection
with using non-canonical MOs in MBPT, was introduced by Davidson
[139, 140] and extensively used by Kapuy[141–145] (for a review, see
[146]). To distinguish this second possibility from MP, we shall refer to
it as the Davidson-Kapuy (DK) partitioning. In the DK partitioning the
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Figure 1.10. Convergence of perturbation series estimating the total energy of the
He atom in 10s2p1d basis set[138]

diagonals of the actual Fockian (say the energies of LMOs) are considered
as effective one-particle energies. The DK partitioning was reported to
provide numerical results inferior to those of MP in the single-reference
case[86], but it has the advantage of computational simplicity.

An example where the Davidson-Kapuy partitioning comes about nat-
urally is the description of intermolecular interactions by PT. Consider
a many-body PT to describe the interaction of two subsystems in the
one-particle basis set formed by the canonical MOs of the isolated inter-
acting partners. These MOs are strictly localized on the fragments thus
they are not canonical for the dimer system. As a consequence, inter-
fragment perturbation one-electron matrix elements appear both in the
occupied and the virtual blocks, exactly like in the DK partitioning3.

The performance of the DK partitioning in multi-reference PT (MRPT)
theories is currently under investigation[147].

3An extra complication in the intermolecular case is that the fragment MOs are neither
orthogonal, nor satisfy the Brillouin theorem.
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8.2 Dyson partitioning
One may wonder, why the MP partitioning has proved to be more

reliable than any other. Its success – the reason of which has not yet
been completely understood – implies that there should be some physi-
cal model behind. One may quote Koopmans’ theorem [148] interpreting
εi-s as ionization potentials or electron affinities. A straightforward mod-
ification of the partitioning emerges then by constructing the denomi-
nators from correlated ionization potentials. General experience shows
that the difference between ionization potentials and electron affinities
is overestimated at the Hartree-Fock level: Koopmans gaps are usually
too large. Using better ionization potentials and/or electron affinities in
Møller-Plesset type expressions may, therefore, yield better correlation
energies. This modification is all the more appealing as it preserves the
size-extensivity of the perturbative formulae.

A simple improvement of one-particle energies can be obtained from
the second order inverse Dyson equation[95] which in its spin-orbital
form reads:

εi = εi +
1
2

∑

abp

[ip||ab]2

εi + εp − εa − εb
+

1
2

∑
apq

[ia||pq]2

εi + εa − εp − εq

where the antisymmetrized two-electron integrals are written in [12||12]
convention and orbital occupancies are restricted as mentioned before.
We identify the partitioning when εi-s are used in MP-type denomina-
tors as the Dyson (DY) partitioning. The structure of the second order
(MP2) formula is not affected by such a change, while diagonal correc-
tions appear at higher orders. For example, the term

−
∑

abpq

[ab||pq]2

(εp + εq − εa − εb)2
(ηp + ηq − ηa − ηb) (1.25)

has to be added to the usual third order formula, where ηi = εi − εi.
To illustrate its effect, we present a potential curve of the H2 molecule

in a 8s/5s basis set augmented with 2p 1d ( ζp1 = 0.46, ζp2 = 1.39,
ζd = 1.0) [149] in Fig. 1.11. It can be seen that DY2 and DY3 remove
the quasidegeneracy-induced divergence of the MP series, permitting a
rough estimation of the dissociation energy. At the long range limit DY2
covers at about 30% and DY3 55% of the correlation energy.

As a second process we selected the dissociation of methane to a CH3

radical and a H atom in 6-311G** basis (Fig. 1.12). For comparison,
the potential curve calculated by a 2 electron-3 orbital CAS-SCF is also
shown. The second and third order level shifted curves do not show
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considerable deviation from each other, they both yield a non-negligible
part of the static correlation energy at long distance, and show the same
effect as MPn at around equilibrium.

The performance of the Dyson-partitioning for quantitative details of
potential curves, such as geometries and spectroscopic constants, has
not yet been investigated in sufficient detail.

8.3 Optimized orbital energies in MBPT
The standard MP, the Davidson-Kapuy and the Dyson partitionings

all deal with some kind of effective one-particle energies, their differences
being used in the energy denominators. In the spirit of the optimized
partitioning, one may attempt to define effective orbital energies that
are optimal in some sense. The most straightforward choice is again to
minimize the third order energy with respect to the orbital energies.

To develop the necessary formalism, we write

Ĥ = F̂ + V̂ (1.26)

where F̂ is the shifted Fockian

F̂ =
∑

i

εi a†iai =
∑

i

(εi + ηi) a†iai

with the shifted quasiparticle energies εi = εi +ηi. The relation between
perturbation operators Ŵ and V̂ is simply

V̂ = Ŵ −
∑

i

ηi a†iai. (1.27)
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The unknown parameters of the theory are the level shifts ηi or, equiv-
alently, the shifted quasiparticle energies εi. One of them can be kept
fixed to prevent an immaterial constant shift of the zero-order spectrum,
the number of free parameters is therefore (Nbasis − 1). Following the
philosophy of the optimized partitioning method[68, 150], we determine
the level shifts from the equation

∂[E
(2)

+ E
(3)

]
∂εi

= 0. (1.28)

Actual expression for E
(2)

agrees with the standard MP2 formula,
while E

(3)
differs from MP3 as a consequence of the diagonal perturba-

tion in Eq.(1.27), giving rise to the term in Eq.(1.25).
Having obtained the explicit functional, partial derivatives occurring

in Eq.(1.28) can be derived in a lengthy but straightforward manner.
The analytical solution of the resulting equations is formidable. We ob-
tained numerical solutions using analytical gradients and diagonal Hes-
sians to initiate a BFGS procedure.

Quasiparticle energies determined in this way have the property that,
given two noninteracting subsystems A and B, each εi belongs either
to system A or B. This follows from the extensivity of the functional
[E

(2)
+ E

(3)
] and ensures that repartitioning by the corresponding level

shifts does not spoil size extensivity of the MBPT scheme. Of course,
the dissociation behavior with a closed shell (RHF) reference state will
not be correct, thus the results in this sense are not size-consistent. To
achieve the latter, an unrestricted (UMP-type) formulation would be
necessary.

As an example, we show the effect of ε-optimization on the correla-
tion energy of the Be atom (Table 1.2). It seems that for this system
the correlation energies drastically improve upon optimization, but the
optimized results go somewhat below the FCI limit.

Based on a model study of a two-state problem, Finley[151] suggested
to define one-particle energies in an MP type scheme that maximize the
radius of convergence of PT. The numerical performance and feasibility
of this approach is yet to be investigated.

Note that optimization of one-particle energies in MP-type PT is a
special case of a more general theory introduced by Davidson[139]. In
this latter, one adds an arbitrary, general one-body operator and sub-
tracts its two-electron counterpart regrouping in these manner the terms
of the total Hamiltonian entirely. Eqs.(1.26-1.27) correspond to the spe-
cial case when this one-body operator is diagonal.



26 Surján and Szabados

basis MP2 MP3 ε-OPT2 ε-OPT3 FCI

6-311G** -41.555 -52.881 -64.718 -64.865 -61.502
10s5p1d -57.120 -72.673 -80.433 -80.868 -78.109

Table 1.2. Correlation energy of the Be atom in mH. Second and third order PT
results are shown in two partitionings. Abbreviation ε-OPT refers to the partitioning
optimized with respect to orbital energies. FCI is indicated for reference.

Optimized orbitals in MBPT: Lindgren’s approach. In a recent
paper[152], Lindgren discussed an interesting possibility. He proposed to
optimize the n-th order energy with respect to the orbitals themselves,
not only just orbital energies. He argued that with increasing n the
optimal orbitals will converge to Brueckner orbitals[153, 154], and the
energies of these orbitals will be ionization potentials. The significance
of these arguments is still under discussion, but it is evident that the
idea has lead to a new kind of ’optimal’ partitioning in PT.

9. Zero order Hamiltonians with two-body
terms

The case we have considered so far is that of a zero order wave function
consisting of a single Slater determinant, when Ĥ(0) is naturally a one-
body operator. If one aims to improve a multi-configurational wave func-
tion via PT, one may define a zero order Hamiltonian possessing multi-
configurational eigenfunctions. Such a Hamiltonian is either formally
defined by means of appropriate projectors[24, 29] or it should contain
explicit two-body terms of type

∑
i<j hij or 1

2

∑
[µν|λσ]a+

µ a+
ν aλaσ. The

pioneering work in this direction by Dyall[155] was followed in Malrieu’s
[76, 156] and Mukherjee’s[157, 158] laboratories. In our group, we have
developed[159–163] a specific PT to perturb the antisymmetrized prod-
uct of strongly orthogonal geminal[164] (APSG) wave function, where
the geminals are eigenfunctions of an effective two-body Hamiltonian.
Inclusion of explicit two-body terms is conceptually an appealing feature,
but complicates the formalism significantly. Very recently, a promising
idea has been expressed by Rassolov[165] who suggested to keep only
certain terms of a two-body operator to form Ĥ(0), leading to a much
more effective construction of zero order excited states.
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10. Optimized partitioning with
multi-configurational zero order

10.1 Multi-configurational perturbation theory
For the perturbation of wave functions consisting of several Slater-

determinants various MRPT approaches have been proposed[21–33]. We
discuss here the one developed in our laboratory[147] which was termed
multi-configurational perturbation theory (MCPT). Consider a normal-
ized, multiconfigurational reference state |0〉 and the associated projec-
tor Ô = |0〉〈0|. The projector to the orthogonal complement space is
P̂ = 1 − Ô. Let us further introduce a set of determinants, denoted by
|K〉, generated by applying single, double, etc. excitation operators on
a Hartree-Fock-like determinant |HF 〉, chosen as the ’principal’ compo-
nent of |0〉:

|0〉 = d0 |HF 〉 +
∑

K=1

dK |K〉.

Coefficient d0 needs not be close to 1, merely the singular case d0 ∼ 0 is
excluded.

The set of vectors |0〉 and |K〉 (K = 1, 2, . . .) forms a basis in the full
M -dimensional vector space. Since vectors |K〉 form an orthonormal
basis in the M − 1 dimensional subspace, and the reference function
does not lie in this subspace for d0 6= 0, |0〉 and |K〉-s together span the
full space.

One finds that |0〉 and |K〉 overlap. Projected determinants |K ′〉 =
P̂ |K〉 = (1 − Ô)|K〉 are orthogonal to the reference state, but overlap
among themselves. The block structure of the full overlap matrix reads

S =

[
〈0|0〉 〈0|P̂ |L〉

〈K|P̂ |0〉 〈K|P̂ |L〉

]
=

[
1 0
0 S

]

with the overlap matrix S of the projected excited determinants

SKL = 〈K ′|L′〉 = 〈K|P̂ |L〉 = δKL − 〈K|0〉〈0|L〉 = δKL − dK dL.

where we used the Hermiticity and idempotency of P̂ .
The inverse of matrix S can be found analytically as

(S−1)KL = δKL +
dKdL

1− ∑
J=1

d2
J

= δKL +
dKdL

d2
0

,

facilitating a bi-orthogonal formulation through the reciprocal vectors
˜〈K ′|:

˜〈K ′| =
∑

J=1

(S−1)KJ〈J ′| = 〈K ′|+ dK

d2
0

∑

J=1

dJ 〈J ′|,
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and the definition of a non-Hermitian zero order Hamiltonian:

Ĥ(0) = E
(0)
0 Ô +

∑

K=1

E
(0)
K |K ′〉 ˜〈K ′|,

where E
(0)
0 = 〈0|Ĥ|0〉 is the energy of the reference state. The zero order

excited state energies E
(0)
K are the parameters of the theory.

This definition of Ĥ(0) possesses the properties Ĥ(0)|0〉 = E
(0)
0 |0〉 and

Ĥ(0)|K ′〉 = E
(0)
K |K ′〉. One can also see that the left eigenvectors are the

reciprocal projected determinants ˜〈K ′|, and the bra reference state 〈0|.
The lowest order energy corrections, following standard bi-orthogonal

perturbation theory, can be given as

E
(1)

= 〈0|Ŵ |0〉 = 0

with the perturbation operator Ŵ = Ĥ − Ĥ(0),

E
(2)

= −〈0|Ŵ R̂Ŵ |0〉 = −
∑

K=1

〈0|Ŵ |K ′〉 ˜〈K ′|Ŵ |0〉
E

(0)
K − E

(0)
0

E
(3)

= 〈0|Ŵ R̂(Ŵ − 〈Ŵ 〉)R̂Ŵ |0〉

=
∑

K,L=1

〈0|Ŵ |K ′〉 ˜〈K ′|Ŵ − 〈Ŵ 〉|L′〉 ˜〈L′|Ŵ |0〉
(E(0)

K − E
(0)
0 )(E(0)

L − E
(0)
0 )

,

etc.
Accuracy of low-order approximations as well as the convergence prop-

erties of the PT depend on how we choose the parameters E
(0)
K . Several

possibilities for choosing these parameters will be listed below.

10.1.1 Generalized MP partitioning. Following a Møller-
Plesset-like philosophy one may specify E

(0)
K -s as

E
(0)
K = E

(0)
0 + ∆εK K = 1, 2, 3, . . . (1.29)

where ∆εK are differences of suitably chosen one-particle energies:

∆εK =





εp − εa

εp + εq − εa − εb

. . .

for singles, doubles, etc. Several authors have applied such excitation
energies in their formulations of MP-type MRPT[23–25, 27, 28, 30, 72,
74, 155, 166–170].
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One-electron energies may be obtained as eigenvalues of a one-electron
operator called multiconfiguration Fockian, which can be defined in two
alternative forms[171]:

F 1
ij = 〈0|a†j

[
ai, Ĥ

]
− |0〉 =

∑

k

hikPkj +
∑

klm

[ik|lm]Γlm,jk (1.30)

or
F 2

ij = 〈0|
[
a†j ,

[
ai, Ĥ

]
−

]

+
|0〉 = hij +

∑

kl

Pkl[ik||jl] (1.31)

where subscripts ± indicate commutator (–) or anticommutator (+),
P and Γ denote the first- and second-order density matrices. The usual
notations are used for the one-electron integrals hij . The two expressions
are not equivalent in general.

Both F 1 and F 2 have their own significance. Matrix F 1, called also
the (negative) Koopmans matrix[171], is non-symmetric in general, its
antisymmetric part giving rise to orbital gradients in MC-SCF theory
[57, 171]. Matrix F 2 is always symmetric and can be considered as the
generalization of the usual Fockian built up by the actual (correlated)
density matrix P . The eigenvalues of both matrices can be interpreted as
approximate ionization potentials[171]. Using the eigenvalues, we may
speak about a generalized MP partitioning.

10.1.2 Generalized DK partitioning. While the usual Fock-
ian is diagonal in the MO basis set in HF theory, neither F 1 nor F 2 are
diagonal in the multi-configurational case. It is hence also possible to
use the diagonal elements of either F 1 or F 2 as one-particle energies.
Defining just the diagonal elements as εi-s, one arrives at a partitioning,
which resembles the DK partitioning discussed in Sect.1.8.1 To identify
this possibility, we shall refer to it as the generalized Davidson-Kapuy
(GDK) partitioning.

The advantage of the GDK partitioning from the computational point
of view in the MC case is obvious. Namely, if using the eigenvalues of
the Fockian (1.30) or (1.31), one has either to rewrite the reference state
to the one-particle basis which diagonalizes these matrices, or deal with
a non-diagonal Ĥ(0), both of which is quite impractical.

10.1.3 Generalized Dyson partitioning. A further possibil-
ity is to substitute Koopmans-type orbital energies in the PT denomina-
tors by correlation-corrected ionization potentials coming from, e.g., the
Dyson equation in the MR case as well, in the same manner as described
in section 1.8.2 for single reference PT. This interesting possibility has
not yet been tested numerically.
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Table 1.3. MCPT total energies of the Be atom in atomic units with various parti-
tionings. Basis set: 6-311G**, reference state: APSG[164]

HF -14.57187

APSG reference state -14.59095

Epstein-Nesbet GDK MCPT-Opt

MCPT2 -14.61384 -14.62346 -14.63458
MCPT3 -14.60565 -14.62993 -14.63458
∞ (FCI) -14.63337

10.1.4 Generalized EN partitioning. Instead of following
a MP-type philosophy, one may also specify E

(0)
K in the Epstein-Nesbet

spirit[66, 67]. Several authors have investigated this possibility[70, 72,
73, 172–178]. Then, an alternative to Eq.(1.29) is

E
(0)
K = 〈K|Ĥ|K〉.

However, in the spirit of the bi-orthogonal formulation of MCPT, it is
more natural to define

E
(0)
K = 〈K̃ ′|Ĥ|K ′〉

which can be characterized as the generalized EN partitioning.

10.2 Optimized partitioning in multi-reference
theories

10.2.1 Optimized partitioning in MCPT. The zero order
excitation energies E

(0)
K , which are parameters in MCPT, can also be

determined variationally by Eq.(1.10), as it was discussed in Section
1.6.1. Alternatively, optimal E

(0)
K -s can be resulted from setting E

(3)′
K -

s of (1.14) zero. These two conditions were shown to be equivalent
for reference states constructed from a single configuration, while they
give slightly different results in MCPT. The results of the partitioning
optimization are illustrated in Table 1.3, where the latter condition was
used.

10.2.2 Witek-Nakano-Hirao approach. Witek et al.[179,
180] have also presented an optimally partitioned PT applied to Hirao’s
MRPT formalism. They have also used the equation E

(3)′
K = 0 as the

condition of optimization, and noted that this is equivalent to setting
Ψ(2) = 0 in the new partitioning. They have shown that the second order
result becomes identical to the multireference linearized coupled-cluster
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(MR-LCCD) energy introduced by Laidig and Bartlett[181, 182]. This
can be considered as the generalization of the theorem on the equivalence
between optimal partitioning second order results and LCCD, shown in
Section 1.7, to the MR case. It is worth to recall in this context that
Davidson’s Hylleraas variational MRPT[183] was also shown to be nearly
equivalent to MR-LCCD.

10.2.3 Freed’s otimization approach. A simple and practi-
cal way of optimizing energy denominators in single- and multi-reference
PT has been advocated by Freed and coworkers[184–186]. The essence
of this approach is to consider a few low-lying states, solve the FCI prob-
lem in the basis formed by them, and select optimal zero order energies
that minimze

|EFCI − E(3)|+ |EFCI − E(4)|
where all quantities E(4), E(3) and EFCI refer to the small model problem
of low-lying states mentioned above. In a subsequent large calculation,
the zero order energies corresponding to the small model space are se-
lected as the optimized ones, while others, falling out of the model space,
may correspond e.g. to the EN partitioning. This approach has been
shown to work very well.

A different philosophy of selecting an appropriate partitioning was
followed by Davidson and coworkers in their OPTn schemes[72, 187].
In these works, the partitioning was tuned by selecting an appropriate
orbital basis.

Selecting suitable one-particle energies in an MP-type MRPT was also
studied in Freed’s group[188]. In their effective Hamiltonian method
[21, 189–191], which belongs to the ’perturb then diagonalize’ type ap-
proaches4, they have shown that high-preciosity results can be obtained
starting from a MP type partitioning but introducing a democratic aver-
age of valence orbital energies obtained from V N−1 potentials[192–194].
The effective Hamiltonian method has been compared[188] to another
’perturb then diagonalize’ scheme, the so called intermediate Hamilto-
nian method[195], in which the proper choice of zero order energies is
also an important issue[196–200].

4The term ’perturb then diagonalize’ expresses that one first forms an effective Hamiltonian
of relatively low dimension by some perturbative approximation to Löwdin’s partitioning
technique, then diagonalizes this effective Hamiltonian to yield several eigenvalues. This
approach can be contrasted to the ’diagonalize then perturb’ schemes, which the CASPT-
type methods belong to. The latter methods set up first an active space and solve the FCI
problem in it, then consider PT corrections to account for the effect of external states. Both
type of methods are markedly different from the ’single but multi’ approach (a single reference
state of multi-configurational character), such as MCPT.
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11. Minimizing the norm of RW

When repartitioning some original splitting of the Hamiltonian, one
may think about utilizing the parameter for accelerating the convergence
of the PT series. In fact, several repartitioning schemes have grown out
of this idea, like that of Feenberg[105], Dietz et al.[128], or Goodson
[121]. Here we present the idea emerged recently in our laboratory[60].

11.1 On the convergence of the PT series
The theory of Green functions provides a sufficient condition for the

convergence of the PT series[20]. To recall this, consider the operator
called the resolvent or the Green function (GF):

Ĝ(z) = (z − Ĥ)−1

where z is a complex scalar variable. The GF is an analytical function
of z except for points where z coincides with an eigenvalue of Ĥ, where
it has a simple pole. Eigenvalues of Ĥ can be extracted from Ĝ(z) by a
contour integration:

E
(0)
K = 1

2πi

∮
z Tr Ĝ(z) dz (1.32)

where the integration has to be performed on a path which contains
exclusively the K-th (isolated) eigenvalue. This statement can be proved
by inserting the spectral resolution of Ĥ and performing the integration
via Cauchy’s theorem for contour integrals.

If one splits the Hamiltonian to a zero-order part and a perturbation
and defines

Ĝ(0)(z) = (z − Ĥ(0))−1

as the GF of Ĥ(0), than Ĝ(z) fulfills the relation

Ĝ(z) = Ĝ(0)(z) + Ĝ(0)(z)Ŵ Ĝ(z) (1.33)

which is called the (simple form of) Dyson equation5. This result is easily
proved by multiplying Eq.(1.33) by the inverse of Ĝ(0)(z) (from the left)
and the inverse of Ĝ(z) (from the right), when simply the definition of
the partitioning Ĥ = Ĥ(0) + Ŵ is recovered.

5The true Dyson equation emerges after projecting Eq.(1.33) into a subspace; after this pro-

jection the simple perturbation operator Ŵ has to be replaced by a much more complicated
self-energy operator[201].
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The formal solution of Eq.(1.33)

Ĝ =
(
1− Ĝ(0)Ŵ

)−1
Ĝ(0)

can be expanded into a Taylor series to yield

Ĝ = Ĝ(0) + Ĝ(0)Ŵ Ĝ(0) + Ĝ(0)Ŵ Ĝ(0)Ŵ Ĝ(0) + . . . (1.34)

Upon integrating this equation according to Eq.(1.32) on an appropriate
contour term by term, one gets:

EK = E
(0)
K + E

(1)
K + E

(2)
K + . . .

Accordingly, the convergence of this series depends upon the validity of
expansion (1.34) for all z values touched during the integration6. At
a given z value, the convergence of Eq.(1.34) is known to depend on
the norm of operator Ĝ(0)Ŵ : if and only if ||Ĝ(0)(z)Ŵ || < 1, the se-
ries is convergent. However, there is an infinite number of ways how
an ’appropriate’ contour can be set up, and finding the necessary and
sufficient condition for convergence assumes that one has specified the
most suitable path for the integration, which is usually unknown. There-
fore, in practice, this observation yields only sufficient but not necessary
criteria for the convergence of the PT series. The exact convergence
conditions, necessary and sufficient, therefore, still remain unknown in
the Rayleigh-Schrödinger perturbation theory.

11.2 The norm of RW

Apart from the problem of finding the most appropriate integration
path, i.e. the appropriate z values, it is evident that quantity ||Ĝ(0)Ŵ ||
plays a determining role in the problem of convergence.

Instead of Ĝ(0), let us focus here on a related quantity, the reduced
resolvent R̂. This is defined for the ground state as

R̂(E(0)
0 − Ĥ(0)) = 1− |Ψ(0)

0 〉〈Ψ(0)
0 |.

or can be given in spectral resolution as used in previous sections. Un-
like Ĝ(0)(z), R̂ is regular if the ground state is non-degenerate in the
zero-order spectrum. The role of the reduced resolvent in PT can be
summarized by recalling the compact PT energy formulae at the lowest
orders[202]:

E(2) = 〈Ŵ R̂Ŵ 〉

6This contour should embed the K-th pole of both Ĝ and Ĝ(0)
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E(3) = 〈Ŵ R̂(Ŵ − 〈Ŵ 〉)R̂Ŵ 〉
etc. The PT corrections are constructed from the powers of operator
R̂Ŵ . A natural idea appears therefore to minimize the square norm of
this operator, ||R̂Ŵ ||2 with respect to any free parameters that are at
our disposal.

As free level shift parameters can always be introduced in PT, these
can be utilized to minimize ||R̂Ŵ ||2. For this purpose one first has to
choose a norm in the operator space. Let us define the norm of operator
A as

||A||2 = Tr (AA†),

expanding in a basis set representation

||A||2 =
∑

IK

AIKA∗IK =
∑

IK

|AIK |2,

which is the two-norm or Frobenius norm in matrix theory.
Evaluating ||R̂Ŵ ||2 with this definition, we get:

||R̂Ŵ ||2 =
∑

IK

〈I|R̂Ŵ |K〉〈K|Ŵ R̂|I〉 =
∑

I

〈I|R̂Ŵ 2R̂|I〉

=
∑

I 6=0

〈I|Ŵ 2|I〉
(E(0)

I −E
(0)
0 )2

,

where the resolution of identity was used to get rid of the summation
over K. Applying level shifts (1.4) we get

||R̂Ŵ ′||2 =
∑

I 6=0

〈I|Ŵ 2|I〉 − 2ηI〈I|Ŵ |I〉+ η2
I

(E(0)
I − E

(0)
0 + ηI)2

where the level shift of the ground state, η0, was set zero to fix the energy
origin.

To determine ηI values that are optimal in this sense, we require

∂

∂ηK
||R̂Ŵ ′||2 = 0,

which yields

ηK =
〈K|Ŵ 2|K〉+ 〈K|Ŵ |K〉(E(0)

K − E
(0)
0 )

〈K|Ŵ |K〉+ (E(0)
K −E

(0)
0 )

. (1.35)

In what follows, level shifts obtained from this relation will be identified
as RW-optimized ones. Similarly, the partitioning defined by them will
be referred to as RW-optimized (shortly: RW-opt) partitioning.
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Figures 1.13 and 1.14 illustrate the effect of RW-optimization on the
anharmonic oscillator. Note that the PT is divergent both in the stan-
dard and EN partitionings, while it turns out to be nicely convergent in
the RW-opt case.
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Figure 1.13. Convergence of the per-
turbed energies of the quartic anhar-
monic oscillator up to the 50th order
for weak coupling constant λ = 0.025
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Figure 1.14. The same as for
Fig.1.13, but with a larger value
λ = 1.0

11.3 Properties of the RW-optimized
partitioning

11.3.1 Uniqueness. The RW-opt partitioning is unique, i.e.,
the resulting shifted denominators do not depend on the initial parti-
tioning. To see this, evaluate the shifted denominators

∆K + ηK = ∆K +
W 2

KK + WKK∆K

WKK + ∆K

=
∆2

K + W 2
KK + 2WKK∆K

WKK + ∆K

=
(WKK + ∆K)2 − (WKK)2 + W 2

KK

WKK + ∆K

= WKK + ∆K +
〈W 2

KK〉c
WKK + ∆K

where the abbreviation W 2
KK = 〈K|Ŵ 2|K〉 and the second connected

moments of the perturbation operator,

〈W 2
KK〉c = W 2

KK − (WKK)2
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are introduced. To arrive at our final formula for the shifted denomina-
tors, we observe that

WKK + ∆K = HKK − E
(0)
0 ,

by which the shifted energy denominators become

∆K + ηK = HKK − E
(0)
0 +

〈W 2
KK〉c

HKK −E
(0)
0

. (1.36)

Here both HKK − E
(0)
0 and the connected moments 〈W 2

KK〉c are in-
dependent of the initial partitioning7. Therefore we see that the RW-
optimization results uniquely defined energy denominators.

11.3.2 Uncoupled nature. A second property of the RW-
opt partitioning can be inferred from (1.35) or (1.36) observing that
these formulae do not present explicit coupling between the states K.
(There is, however, an implicit coupling expressed by the presence of
the square of Ŵ in the connected moments.) This uncoupled nature of
RW-optimization makes it markedly different from the energy-optimized
partitionings discussed in Sections 1.6-1.10, where the coupling between
different states represents a serious computational difficulty. The sim-
plicity exhibited by Eqs. (1.35) or (1.36) is a great advantage from the
computational point of view, but gives a warning that the power of this
simple optimization might not be strong enough.

The same conclusion is supported by the observation that the RW-
opt denominators lie quite close to the EN denominators. The reason
is that if W00 = 0, the EN partitioning results from Eq.(1.36) simply
by neglecting the (usually quite small) second connected moments of
Ŵ . The results obtained in the RW-opt partitioning for modest pertur-
bations will thus be close to those of the EN partitioning. Moreover,
since the correction term 〈W 2

KK〉c/(HKK −E
(0)
0 ) is always positive, the

RW-opt denominators are slightly larger than the EN ones. Thus, low-
order corrections are expected to be in absolute value smaller in RW-opt
partitioning as compared with EN corrections. The difference between
the EN and RW-opt partitionings is therefore expected to be major if
the perturbation is strong, i.e., if 〈Ŵ 2

KK〉c-s are large. In these cases
RW-optimization appears to be a promising tool.

7With no loss of generality, one can choose W00 = 0. This can always be achieved – without

affecting the partitioning – by a simple shift of the origin of the energy scale. Then, E
(0)
0 =

H00 which clearly expresses a partitioning independence of Eq.(1.36).
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11.3.3 Degeneracy elimination. An interesting property
of the RW-opt partitioning is associated with the fact that all shifted
denominators are definitely positive. This is because (HKK −E

(0)
0 ) ≥ 0

by definition and the second connected moments 〈W 2
KK〉c are always

positive quantities (these moments are zero if and only if evaluated with
an exact eigenfunction of H, when all PT corrections are zero anyway).
Accordingly, any possible degeneracy of the zero-order spectrum will be
lifted upon RW-optimization. To have a closer look into the degeneracy
problem, let us evaluate the limit of the second-order RW-opt correction
when a state K becomes degenerate with the ground state, i.e., when
∆K = E

(0)
K −E

(0)
0 = 0 for some K. This leads to the shifted denominator

(c.f (1.35)):
W 2

KK/(WKK)2,

which is a regular expression for nonzero WKK .
In the special case when the initial partitioning is the EN one, i.e.

WKK = 0, the shifted denominator diverges thereby eliminating the
contribution of level K. This is not the accurate result that would
be obtained from degenerate PT, but it is certainly a better estimate
than the divergent energy of non-degenerate PT. The result of RW-opt
partitioning in such a degenerate limit will be the elimination of the effect
of degenerate levels, a damping of quasi-degeneracies, while summing up
slightly modified EN-type contributions from non-degenerate states. To
see how it works in practice, numerical studies will be necessary.

12. Constant denominator PT

12.1 Unsøld approximation
With the aim to extract PT formulae in the so called Unsøld approx-

imation that uses averaged energy denominators, let us define a zero
order Hamiltonian[203]

Ĥ(0) = E(0)Ô + νP̂ . (1.37)

Here ν stands for a constant or ’averaged’ value of excited energy levels,
thus ν−E(0) is an Unsøld type excitation energy. The reduced resolvent
has therefore the form

R̂ = − P̂

ν − E(0)

leading to the second and third order PT corrections

E(2)
Unsøld = −〈0|Ŵ P̂ Ŵ |0〉

ν −E(0)
= −〈Ŵ

2〉c
ω

= −〈Ĥ
2〉c

ω



38 Surján and Szabados

E(3)
Unsøld =

〈0|Ŵ P̂ (Ŵ −W00)P̂ Ŵ |0〉
(ν − E(0))2

=
〈Ŵ 3〉c

ω2
= −〈Ĥ

2〉c
ω

+
〈Ĥ3〉c

ω2

where ω = ν − E(0) is the averaged excitation energy, and 〈Ĥn〉c is the
n-th connected moment of the Hamiltonian[204] defined recursively

〈Ĥn+1〉c = 〈Ĥn+1〉 −
n−1∑

p=0

(
n

p

)
〈Ĥp+1〉c〈Ĥn−p〉.

Similar formulae can be put down at the higher orders.

12.2 Optimized Unsøld approximation: CMX2
Among numerous possible ways to determine ν, here we choose the

one that makes use of the concept of optimized partitioning. We may
consider ν as a level shift parameter, as it can be seen if regrouping the
terms of the Hamiltonian as

Ĥ = Ĥ(0) +
(
Ĥ − E(0)Ô − νP̂

)

where both the zero order operator Eq.(1.37) and the perturbation (the
three terms in parentheses) are ν-dependent. Changing the level shift
parameter ν affects the partitioning of the Hamiltonian, which can now
be optimized by finding a proper value for ν.

Parameter ν is now state-independent, which represents a substantial
simplification. Zeroing th derivative of (E(2)

Unsøld + E
(3)
Unsøld) with respect to

ν, one arrives at[205]

ν = E(0) +
〈Ĥ3〉c
〈Ĥ2〉c

(1.38)

This optimized averaged energy is now to be substituted into the PT
correction formulae to yield

E
(2)
opt = −〈Ĥ

2〉2c
〈Ĥ3〉c

(1.39)

E
(3)
opt = 0 (1.40)

That is, the third order energy correction in the optimized partitioning
is zero, in agreement with the general result[150].

Determination of parameter ν in constant denominator PT by means
of a variational optimization procedure with the first order Ansatz was
suggested some time ago by Cullen and Zerner[206]. The difference
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between their results and those presented above is that they did not
neglect O(4) terms in the Rayleigh quotient. This has the consequence
that their second order result is not size extensive but gives an upper
bound to the energy.

The second and third order Unsøld formulae (1.39) and (1.40) can
be compared to those resulting from the connected moment expansion
(CMX)[207]. The CMX expansion is a non-perturbative technique to
approach the exact energy. The lowest order corrections read[207]

E(CMX1) = 〈Ĥ〉

E(CMX2) = −〈Ĥ
2〉2c

〈Ĥ3〉c

E(CMX3) = − 1
〈Ĥ3〉c

(
〈Ĥ4〉c〈Ĥ2〉c − 〈Ĥ3〉2c

)2

〈Ĥ5〉c〈Ĥ3〉c − 〈Ĥ4〉2c
It is apparent that the second order optimized Unsøld approximation
coincides with the CMX2 energy, the latter can therefore be considered
as a constant denominator PT result with optimized partitioning. The
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third order CMX correction, however, is not zero, and it often represents
a considerable improvement. This is illustrated on the example of the
symmetric dissociation curve of the water molecule in 6-31G basis set,
where the CMX correction is shown as applied to the Hartree-Fock (HF)
and the antisymmetrized product of strongly orthogonal geminal[164]
(APSG) approximations.

13. Perturbation corrections to ionization
energies

The optimized partitioning elaborated above can also be used when
calculating ionization potentials perturbatively8. Energy differences like
excitation energies and ionization potentials (IPs) can be obtained from
the equation-of-motion[209, 210]

[Ĥ, Ω̂] = ωΩ̂ (1.41)

that holds for the ionization (excitation) operator Ω̂ connecting two
eigenstates of Ĥ, Ψ0 and ΨK , by

Ω̂Ψ0 = ΨK .

The ionization energy is ω = EK −E0. Introducing the ”super” Hamil-
tonian or Liouvillean H defined by its action on any operator Â being
HÂ = [Ĥ, Â], one may rewrite Eq.(1.41) as [211–213]

HΩ̂ = ωΩ̂ . (1.42)

Ionization operators are thus eigenfunctions of a superoperator defined
over ordinary operators, and one gets the corresponding ionization en-
ergy as an eigenvalue.

To apply standard approximations to the solution of this eigenvalue
problem, one needs a scalar product (.|.) among the operators that con-
stitute the domain of H. Accordingly, bra- and ket vectors of the oper-
ator space are identified as (.| and |.).

To obtain a perturbative series for ω, the super Hamiltonian is split
for a zero order superoperator and a perturbation

H = H(0) +W
and it is supposed that the solutions of the zero order problem

H(0)|Ω̂(0)) = ω(0)|Ω̂(0))

8An early, substantial paper on the perturbative calculation of ionization potentials was
written bu Hubač and Urban[208].
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are known. Expanding the exact ionization energy ω to a Brillouin-
Wigner perturbation series one gets the ”super” counterpart of the well
known sequence[2]:

ω = ω(0) + (Ω̂(0)|W|Ω̂(0)) + (Ω̂(0)|WR(0)(ω)W|Ω̂(0)) + . . . (1.43)

where the reduced resolvent is defined so that

R(0)
(
ω(0) −H(0)

)
= I −O

with
O = |Ω̂(0))(Ω̂(0)|

and the unity superoperator acting as

IÂ = Â .

A suitable approximation to the IPs is given by the Koopmans ap-
proximation[148], which is recovered at zero order if specifying the zero
order superoperator as

H(0) = F .

Here F is defined by FÂ = [F̂ , Â], and F̂ denotes the Fockian of the
neutral molecule.

Since any product of second quantized creation and annihilation op-
erators (corresponding to the MOs of the neutral molecule) is an eigen-
operator of F , the zero order solution for the ionization from the ith
canonical orbital looks:

F|ai) = −εi|ai) .

The above specification of H(0) therefore involves ω(0) = −εi and O =
|ai)(ai| .

13.1 The ionization operators’ subspace
To proceed further the scalar product and the superoperator of unity

has to be specified more in detail.
For any operator describing single ionization like

ap, a†p aqar, a†pa
†
q arasat, etc. (1.44)

the binary product can most simply be [212, 214]

(Â|B̂) = 〈HF |[Â†, B̂]+|HF 〉 (1.45)
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where |HF 〉 corresponds to the neutral system9. In order that the prod-
uct of Eq.(1.45) becomes a scalar product in the strict sense, the oper-
ators having zero norm have to be excluded from those listed in (1.44).
Furthermore, it is useful to select an orthonormal set with respect to
(1.45) among the operators in (1.44). This is usually achieved by devis-
ing the following subset of (1.44)[214]:

{aj} ∪ {ab} ∪ {a†j ab ac|b > c} ∪ {a†b aj ak|j > k}
∪ {a†ja†k ab ac ad|j>k, b>c>d} ∪ {a†ba†c aj ak al|b>c, j>k>l} ∪ . . .(1.46)

Having an orthonormal set of single ionization operators, the spectral
resolution of the identity superoperator can be put down as:

I =
∑
p

|ap)(ap| +
∑
pqr

(q>r)

N+
p,qr|ap,qr)(ap,qr|

+
∑

pqrst

(p>q,r>s>t)

N+
pq,rst|apq,rst)(apq,rst| + . . .

with the shorthands

ap,qr = a†p aqar , apq,rst = a†pa
†
q arasat ,

N+
p,qr = (np nqnr + np nqnr) ,

N+
pq,rst = (npnq nrnsnt + npnq nrnsnt) ,

np denoting the occupation number, and np = 1− np.

13.2 PT formulae for single ionization
The fact that basis vectors in (1.46) are eigenvectors of F , permits to

compose the spectral form of superoperators F and R(0)(z) as:

F =
∑
p

(−εp)|ap)(ap|+
∑
pqr

(q>r)

(εp − εq − εr)|ap,qr)(ap,qr|N+
p,qr + . . .(1.47)

and

R(0)(z) =
∑

p6=i

|ap)(ap|
z + εp

+
∑
pqr

(q>r)

|ap,qr)(ap,qr|
z − εp + εq + εr

N+
p,qr + . . . (1.48)

9In this section the orbital labeling follows the convention: a, b, . . . virtual, i, j, . . . occupied,
p, q, . . . generic.
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where P = I − |ai)(ai| was utilized for getting the latter expression.
Substituting Eq.(1.47) and Eq.(1.48) into the PT correction terms of
Eq.(1.43) one finds:

ω
(2)
i = (ai|WR(0)(ωi)W|ai) =

∑
pqr

(q>r)

(ai|Wap,qr)(ap,qr|Wai)
ωi − εp + εq + εr

N+
p,qr (1.49)

for the second order term, and

ω
(3)
i = (ai|WR(0)(ωi)WR(0)(ωi)W|ai)

=
∑
pqr

(q>r)




∑

stu

(t>u)

(ai|Was,tu)(as,tu|Wap,qr)
ωi − εs + εt + εu

N+
s,tu

+
∑

stuvx

(s>t, u>v>x)

(ai|Wast,uvx)(ast,uvx|Wap,qr)
ωi − εs − εt + εu + εv + εx

N+
st,uvx


×

× (ap,qr|Wai)
ωi − εp + εq + εr

N+
p,qr (1.50)

for the third order term.
Formulae (1.49) and (1.50) are relatively simple since only three op-

erators’ product contribute at maximum to the second order expression,
while only five operators’ product to the third order correction. No
higher operators’ product from (1.48) appear, due to the rank reduc-
ing nature of the commutator, which has the effect that matrix ele-
ments like (apq,rst|Wai) or (astu,vxyz|Wap,qr) are all zero. Interestingly
(ap,qr|Wast,uvx) is also zero, but not (ast,uvx|Wap,qr), showing that W is
a non-hermitian operator if the scalar product is defined as above.

Utilizing the basic anticommutation rules, the second order correction
of Eq.(1.49) is found to be identical with the ordinary second order Dyson
correction or Born collision[95, 212, 215] for the IPs.

It may also be simply verified that

(ap|Waq) = 0

in the canonical basis, consequently the first order correction in Eq.(1.43)
vanishes. The fact that

ωi = −εi +O(2)

may be interpreted as the formulation of Koopmans’ theorem[148] in
this framework.
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13.3 Optimal level shifts for the ionization
potential

The second order Dyson correction to the ionization potential, Eq.(1.49)
is known to perform poorly[216, 217], and a great deal of effort has been
put into going beyond this approximation. Some studies proposed to
include at least certain terms of the third order[218, 219], others applied
a wave function corrected for electron correlation in Eq.(1.45), instead
of the Fermi vacuum indicated there. The idea of modifying the ex-
pression of the binary product was investigated[220–223]. Level shifts
have also been used to affect the convergence, and consequently alter
the performance of low order approximations[215].

Another way to step beyond Eq.(1.49) is to apply a strategy differ-
ent from a simple PT. For example, Green’s functions techniques that
use non-diagonal approximation of the self energy matrix fall into this
category[217, 222–224].

In this section we apply a simple level shift of the form

H0′ = F −
∑
pqr

(q>r)

λp,qr|ap,qr)(ap,qr|N+
p,qr

W ′
= W +

∑
pqr

(q>r)

λp,qr|ap,qr)(ap,qr|N+
p,qr

and determine λp,qr in the spirit of the optimized partitioning. Rewriting
Eq.(1.50) for the primed partitioning, and equating it zero term by term,
one is lead to:

∑

stu

(t>u)

(ai|Was,tu)(as,tu|W ′
ap,qr)

−εi − εs + εt + εu + λs,tu
N+

s,tu

+
∑

stuvx

(s>t, u>v>x)

(ai|Wast,uvx)(ast,uvx|Wap,qr)
−εi − εs − εt + εu + εv + εx

N+
st,uvx = 0 (1.51)

for each pqr , q > r , ((p ∈ occ) ∧ (q, r ∈ virt))∨((p ∈ virt) ∧ (q, r ∈ occ)).
Rearranging Eq.(1.51) and neglecting the term arising from five opera-
tors’ product one gets:

∑

stu

(t>u)

[
δspδtqδur∆ip

qr − (ai|Was,tu)(as,tu|Wap,qr)
(ai|Wap,qr)

]
N+

s,tu

∆is
tu + λs,tu

= N+
p,qr (1.52)

which is a linear inhomogeneous system of equations for 1/(∆is
tu + λs,tu)

with ∆is
tu = −εi − εs + εt + εu. Note, that level shifts defined by the
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criterion (1.51) depend on index i. This means that to each ionization
potential there is a different set of level shift parameters that set the
third order correction to zero.

Table 1.4. The first ionization potentials in atomic units for the H2O molecule, at
geometry ROH=0.96 Å, α(HOH) = 105o and for the N2 molecule at RNN=1.1 Å.
Koopmans values and perturbative approximations, such as second order Dyson cor-
rection (DY2), shifted Born collision (SBC), and shifted second order Dyson correc-
tion with shifts got from Eq.(1.52) (OPTDY2) are tabulated. The so-called EOMIP
results, got with using the CCSD wave function are given for comparison.

basis FCI EOMIP Koopmans DY2 SBC OPTDY2

H2O molecule
STO-3G .317 .308 .391 .303 .282 .299
6-31G .436 .427 .501 .398 .387 .417

6-311G** .442 .499 .410 .404 .429
N2 molecule

6-31G .544 .629 .529 .498 .545
6-31G** .562 .630 .545 .522 .557

To illustrate the effect of these shift parameters, a few numbers are
collected into Table 1.4 relating the first ionization potentials of the wa-
ter and nitrogen molecules computed by various methods. Acronym SBC
in the table refers to the so-called shifted Born collision approximation
[215], that is obtained if neglecting of diagonal matrix elements of su-
peroperator W, which gives just the EN partitioning in this framework.
On the basis of the numbers presented, one can conclude that level-shift
optimization does improve upon the second order Dyson approximation
and also on SBC values. However, more thorough studies should be
carried out to investigate the reliability of the optimized second order
correction for IPs.

Finally, let’s mention that the electron attachment can be dealt with
in a very similar manner. Carrying out the derivation one is led to just
the same structure for the PT corrections as Eq.(1.49), Eq.(1.50) with
signs reversed. The same holds for the PT terms of the level shifted
partitioning, if shift parameters are introduced with proper signs.
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(1975).

[218] G. Born, H. A. Kurtz, and Y. Öhrn, J. Chem. Phys. 68, 74 (1977).
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