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Abstract

A brief cross section of the initial steps taken by Hungarian au-
thors is given, starting from 1929, when von Neumann and Wigner
published their paper on level repulsion termed also avoided cross-
ing. The chapter also includes copies of three early seminal research
papers with some comments on the context and significance at their
time and looking back.
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1 Introduction
Quantum chemistry is clearly an interdisciplinary field lying on the bor-

derline of physics and chemistry. It can be cultivated by scientists whose
backgrounds are either in physics or in chemistry. As known, and as we will
illustrate in this Chapter, early results in atomic and molecular quantum
theory obtained by Hungarian scientists had strong backgrounds in mathe-
matical physics (e.g., Johnny von Neumann, Eugene Wigner, Pál Gombás,

1



Edward Teller.) While this tradition still continues to some extent in Hun-
gary, other chapters of this book will show that as time has passed, more
and more Hungarian chemists have entered the game of quantum chemistry.

2 The Non-crossing Rule and Group Theory
Quantum chemistry was born in 1927, when Heitler and London pub-

lished their seminal paper on the quantum mechanical description of the H2
molecule,[1] providing the first evidence that quantum mechanics is working
for more than a single electron.

Shortly after this landmark achievement, in 1929, two young Hungarian
scientists, Neumann and Wigner published a paper[2] in German language
entitled ”Über merkwürdige diskrete Eigenwerte” (in English: ”On pecu-
liar discrete eigenvalues”), which discussed the eigenvalue developments of
a Hamiltonian depending on a continuously varying parameter. The state-
ments obtained in this early paper became textbook-material, known today
as ’level repulsion’, ’avoided crossing’, or ’non-crossing rule’.

This paper reflects the broad mathematical interest of von Neumann and
the affection of Wigner to group theory. The latter developed in the famous
book by Wigner on this subject. Its original version[3], written in 1931
in German, entitled: ”Gruppentheorie und ihre Anwendung auf die Quan-
tenmechanik der Atomspektren”, while Wigner spent his summer holiday in
Hungary in the house of his parents. It was translated to English[4] by Griffin
in 1959 titled ”Group Theory and its Application to the Quantum Mechanics
of Atomic Spectra”. This is the book in which the famous Wigner 3j-symbols
(related to the Clebsch-Gordan coefficients) are introduced, followed by the
6j symbols called also Racah coefficients. The Hungarian translation of the
book, containing a foreword by Wigner, appeared only in 1979.

3 Brillouin-Wigner Perturbation Theory
In many-particle quantum theory one usually prefers to apply the

Rayleigh-Schrödinger perturbation theory (PT) to the Brillouin-Wigner
PT due to the extensivity property of the former. Following important
early contributions, see e.g. Feenberg[5], Löwdin[6], Hirschfelder[7], inter-
est waned though the topic was never fully abandoned, c.f. Ahlrichs[8],
Davidson[9]. A revival, starting in the 90’s was driven primarily by Hubac
and Wilson[10, 11, 12], Paldus[13], Pittner[14], and Head-Gordon[15].

Wigner’s contribution was published in 1935, in the somewhat obscure
journal ”Mathematical and Natural Science Bulletin” of the Hungarian
Academy of Science[16]. The paper, written in English, was based on a
lecture Wigner had at a meeting of the Hungarian Academy, on 12 Novem-
ber, 1934. The paper refers to the similar work by Brillouin (hence the
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name: BWPT), published in the previous year, as well as to a related work
by Lennard-Jones in 1930. Since the mentioned Bulletin is not easily avail-
able, the present author has received repeated requests in the past years for
photocopies. As the Bulletin is not anymore copyright protected, a facsimile
copy of Wigner’s paper is included below.
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ON A MODIFICATION 
OF THE RAYLEIGH—SCHRÖDING-ER 

PERTURBATION THEORY. 

By EUGENE WIGNER. 

1. The RAYLEIGH—SCHRÖDINGER perturbation theory1 gives 
an explicit power series in A for the characteristic values Fn and 
the characteristic functions <pn of a Hermitean operator H+A V 

{HJs
rXV)<pn = Fn<pn (1) 

if the corresponding quantities En and <pn for the «unperturbed 
operator» H are known 

H</>„ = En([>n. ( l a ) 

If the so-called matrix elements of V are denoted, as usual, by 

V„m = {<pn, V</>m) = Vtnn (2) 

the first terms of the aforementioned series read 

Fn' = En + AVnn + A2 V ' (3a) 
k 

f t ? = fn + A E ^ E k ^ . (3b) 
k 

Generally only these first terms of the series are used in actual 
calculations, the higher terms become increasingly complicated. 

1 J. W. S. BAYLEIGH, The theory of Sound. London and New York 
1894, vol. 1, p. 113. E. SCHRÖDINGER, Collected papers on Wave Mechanics. 
London and Glasgow 1928, p. 64. 
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4 7 8 BY EUGENE WIGNER. 

We shall fix our attention on the lowest energy value F\ . 
While it is evident that the first approximation for this 
F™ — Et-1- A Vlt is always greater than its real amount — since 
it is the expectation value of a normalized wave function <pi; 
nothing like this holds for the second and higher approxima-
tions. It even happens quite often that the last series in (3a) 
diverges in cases when the lowest energy value is finite itself. 
In these cases, of course, the RAYLEIGH—SCHRÖDINGER perturba-
tion theory is inapplicable to the problem. The aim of the 
present paper is to give an approximation formula for h\ which 
always yields values that are too high, and which can be proved 
to converge at least in certain simple cases. Such an expression 
is naturally provided for by the variational method which had 
been used frequently indeed in cases for which the general shape 
of the characteristic functions could be obtained by physical 
considerations. 

The final result, the °o-th approximation, will appear in the 
form of an infinite series. This infinite series was first found by 
L. BRILLOUIN1 who obtained it by an intuitive consideration of 
the usual scheme. He has already pointed out in his important 
paper that his series converges much more rapidly than the power 
series of SCHRÖDINGER. He has not investigated, however, the suc-
cessive approximations and their relations to the actual problem. 

2. For the sake of convenience we shall denote further on 
Fk

l) = Ek + Á Vkk simply by Ek, assuming Vkk = 0 or that the 
diagonal part of V is already put into H. In addition to this, 
we shall put X = 1. The expectation value of H + V— E1 for the 
wave function „ 

<Px = 4>i + 2 a > 4 ' k ( 4 a ) 
k=2 

is (R means that the real part of the ensuing expression must 
be tSikon) 

2 (Ek—Ei) I «, |2+ 2R 2 Vu-ak + 2 VklaU, 
F — E — — — — (4M 1 1 1 + 2 1 « , l 2 [ ' 

k 
1 L. B R I L L O U I N , Journa l de physique, 4 , 1, 1933. The perturbed energy 

first appears as resonance denominator in J. E . L E N N A R D - J O N E S article, Proc. 
Boy. Soc. London, A. 129 , 598, 1930. 
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O N A M O D I F I C A T I O N OF T H E E A Y L E I G H S C H R Ö D I N G E R . 4 7 9 

where all summations must be extended, as always in this 
paper, from 2 to oo. Expression (46) must be made to a 
minimum by choosing the a 's properly. 

To orient ourselves we proceed as follows. We neglect first 
the double sum in the numerator of (46), i. e. assume Vti = 0 
for /<• > 1, l> 1. Differentiation of (46) with respect to ak 
gives then 

This, inserted into (46), gives 

F T - E ^ - ( 5 6 ) 

This is an implicit equation for F f \ which can be solved e. g. 
by plotting both sides of (56) against F™. It is an exact solu-
tion of the problem if Vkl = 0 (i. e. it is F™ = F t): the finding 
of the characteristic values of a J A C O B I matrix.1 

It appears to be natural, now, even if the Vu are different 
from zero, to try (5a) for a'" but to use instead of (56) an 
equation expressing again that F f ) — E1 is equal to the total 
fraction (46), which, under the present conditions will no longer 
be equal to the right side of (56). One obtains, instead of (56) 

* * » _ * ' - V V » V " 1 V VikVuVn 1 1 émJ Ff—Eh ^J (F?-Ek)(F™-Ed ' 

The value of F t obtained from (6), since it is an expectation 
value of H-{- V, is always too high. For the next approximation 
one may try 

„(2) „(1) I a ak — «Jt + Pk 

neglect second power terms in the double sum of (46), then 
minimize the resulting expression. One obtains, by denoting 
the total fraction this time with F^ ) — E1 

1 (56) goes over into the usual formula of the RAYLEIGH— SCHBODINOEH 
theory if E1 is doubly degenerate, and E3, Et etc. are far away from Ei—E,. 
However, (56) may be used as it stands, without first solving a «secular 
equation». 
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480 BY e u g e n e WIGNEE. 

(» _ Y kl I Ffc;«;1' V*l 
F?-Ek i 

which is in this approximation equal to 

» y ^ , y v»v* ( 7 a ) 

Inserting this into (4b) again, one obtains 

p,3) F V VuVn , V VuVlkVki . 
F™—Et ^ CF[8,-Ei)(F™-Ek) 

2VuVikVkjVji , m 

(F<8) - Ei) (F[3) - Ek) (F<8> - Ej) ^ yn 
Ikj 
y VllVlkVlgVjiV 

(F'3' - Ei) (F;3) - Ek) ( F f - Fj) (F{8) - Fi) lkji 

This, solved by a graphical or other method, again gives cer-
tainly too high values for F t . 

It is evident now, how the higher approximations look. If 
one inserts 

(„) _ (n-l) I ^ n - i Vßnr-,Hn-2-• • ̂ Wt , g , 

Ml - ••fit-1 

into (4fe), the right side, which is the expectation value of a 
normalized wave function minus Ev becomes 

~ [T2+TS+-• • + 7 j n + r í n + 1 + ( iV-1) ( / • - F t)] = 

( H + F ) ^ « + 1 » ) ^ (9) 
— Et 

with 

and 

( 9 a ) 

T = y ^ífo ̂  njfj-i • • • ^m.mi . mi,) 
7+1 Á (f~Fllj)(f-E^1)...(f-Elll) 

Equ, (9) is an identity. If one chooses f such that 
Ti+Ta + ~' + T*+1 = f - E i (8) 
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one sees that the expectation value of the corresponding wave 
function is just 

jfTfn+l) _ f 

which can be taken as the ( n + l ) t h approximation. One can 
satisfy oneself easily, that the infinite series, obtained by gene-
ralization of (8), together with a similar generalization of (8a) 
and with (4«), formally satisfie equation (1) with Ft=f. They 
can diverge, of course, in spite of this. It is true, however, that 
all equations of the form (8) give too high values for Ft. One 
easily sees that the odd term of (8) are always negative,1 

(therefore improving on the energy value), while the even ones 
may be positive or negative. 

Of course, (8) converges in many cases in which the usual 
B A Y L E I G H — S C H R Ö D I N G E R method diverges. It can converge even 
in the case of a continuous spectrum which has been made 
artificially discrete by setting finite boundaries to an originally 
infinite problem. There is one, as I think, rather general case, 
in which it can easily be shown to converge. This is when H 
is an «even» operator, which remains unaltered under a trans-
formation Q, satisfying the equation Q*= Í, and V an odd 
operator which goes over into — V under the same transfor-
mation. Then Vki is zero if k and I refer either both to even 
states, or both to odd states and the even terms of the series 
(7) drop out. The conditions of the convergence are in this case 
merely that H-\- V should be bounded downwards (the lowest 
energy value finite) and applicable to all characteristic func-
tions of H. 

Of course, (8), (8a), (4a) still give a formal solution of the 
problem, if one inserts other numbers instead of 1. It is not 
so easy, however, to discuss the resulting equation in these 
cases. 

1 The (2n— l)st te rm in (8) is equal 

Tin— ^(4"'—4" "'T (f~Ek) (*) k 
which is, of course, negative. Equat ion (*) is material for the proof of 
convergence in cases to be mentioned later 

8



482 BY EUGENE WIGNER. 

3. As an example, I want to discuss the MATHiEU-equation 

(From the meeting of the I l l r d class of the Hungarian Academy of 
Sciences on the 12th November 1934.) 

The equation for the lowest energy is 

1 1 
~ = 2(1—F t) + 8 ( 1 - F 1 f ( 4 - / - 1 ) + 

+ 1 + i + ... 
^ 32(1—F t)3 (4—Fj)2 ^ 3 2 ( 1 - F 1 ) 2 ( 4 - F 1 ) 2 ( 9 - F 1 ) ^ 

This equation can be solved by successive approximations very 
easily, one obtains F1=— 0'37856. 

Another example of a similar simple case will be given 
by Mr. F. Seitz in the calculation of the Fermi energy of 
metallic electrons. 

in which the total potential sin x will be regarded as pertur-
bation. The unperturbed characteristic functions are 

1 , sin x , cos x , sin 2x 
^ T r •" 
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4 Towards Pseudopotentials
In this section we recover an almost forgotten effort of Hungarian physi-

cists, to deal with the many-electron problem at that time. These consider-
ations have lead to the introduction of a novel method treating inner-shell
electrons, called nowadays as the theory of pseudopotentials.

The original idea goes back to Hans Hellmann[17] and Pál Gombás[18,
19, 20], who independently noted that the orthogonality requirement be-
tween core and valence electrons can be approximately substituted by a re-
pulsive potential acting on valence electrons, allowing to ignore the explicit
treatment of core shells.

4.1 Fényes’ contribution
The theory was put in a more detailed form by Imre Fényes in 1945[21],

who, right after his doctorate with Gombás, was working as a young profes-
sor at the Bolyai University, Kolozsvár (a Hungarian university in Romania
at that time1). While the names of Hellmann and the Hungarian physicist
Gombás are well known among quantum chemists, Fényes is mainly known
in the areas of fundamental quantum mechanics, irreversible thermodynam-
ics, and science philosophy2. Nevertheless, his early paper on pseudopoten-
tials cited above, published in the Museum Bulletin of Kolozsvár in German
language, is historically important and deserves some attention. The paper
is in fact an excerpt of Fényes’ doctoral thesis, which appeared in print in
Hungarian language in ”Csillagászati Lapok”[22] (”Astronomical Records”,
a Hungarian journal published by the Society of Natural Sciences) already
in 1943. With the permission of the publisher, the English translation of
this early and basically forgotten paper[21] is given below. We corrected
trivial misprints, but left erroneous formulae as printed originally.

1Today: Babes-Bolyai University, bilingual (Romanian-Hungarian).
2Together with Heisenberg, in 1974, he had a series of seminars in Dubrovnik on

fundamental problems of quantum mechanics.
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Statistical analogy of orthogonality for valance
electrons1

by Imre Fényes
From: Múzeumi Füzetek, Kolozsvár, 3., 14, 1945.

(translated from German by András Gombás)

The eigenfunctions of the electrons of an atom are orthogonal, therefore the
eigenfunctions of the valence electrons are also orthogonal to that of the electrons
of the remaining noble gas-like ions. In this work, we prove that the aforemen-
tioned orthogonality relations can be caused by repulsive forces acting between
the ion and valence electrons. Since the orthogonality relationships mentioned
are equivalent to Pauli principle, the latter is also fulfilled by introducing these
forces. The potential of these repulsive forces corresponds in zeroth order ap-
proximation to the already known (Gombás) potential derived on the basis of
statistical calculations.

1. Hellmann2 and Gombás3 replaced the orthogonality relations of the va-
lence electrons’ eigenfunctions with repulsive forces for which the potentials were
obtained from statistical calculations. Later Gombás4 corresponded the potential
caused by p, d ... valence electrons and the repulsive forces replacing the orthog-
onality based on a new, but also statistical consideration. According to Gombás,
the potential of the force acting on the ith electron reads

φi(r) = −c
e

(
ν2/3 − ν

2/3
i

)
c = 1

2
(3π2)e2aH , (1)

where e is the elementary charge, aH is the Bohr-radius, ν is the electron density
of the ion, νi is the density caused by those electrons that have less energy than the
valence electron would require to enter into the dτ volume element. For example,
for the K atom, if the valence electron is in the s state, νi = 0; in the p state,
since in this case the state of lowest energy is 2p, νi is the electron density of the
ion (1s)2(2s)1; in the d state, νi = ν. Recently, Gombás and Kónya5 have derived
and discussed an expression for the ”initial energy” of valence electrons. This
expression also led to the cited equation regarding the repulsive potential (1).

The authors mentioned above have all tacitly assumed that the potential men-
tioned replaces the orthogonality. In the following we prove that the use of φi(r)
actually replaces the orthogonality.

1See also by the author: Csillagászati Lapok 6. 59-69, 1943. In this work I give a more
complete and simpler solution.

2H. Hellmann, Acta Phisicochimica URSS 1, 913, 1935.
3P. Gombás, Ann. d. Phys. (5) 35 65 1939; 36 680 1939; Z. f. Phys. 116, 184, 1940.
4Z. f. Phys. 118, 164, 1941.
5Mat. és Természettud. érteśıtő 61, 678, 1942.
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2. The Hartree-Fock equations6 are the Euler-Lagrange differential equations
of the following variational problem:

δ

∑
j

∫
ψ∗
j (r)

[
Hτ − e (V (r) −A(r))

]
ψj(r)dτr −

∑
j≥l=1

λjlδjl

 = 0 (2)

where
Hτ = − h2

8π2m
∆τ − Ze2

r
,

V (r) = −e
∫ N∑

k=1

ψ∗
k(r′)ψk(r′)
|r − r′|

dτr′ ,

eA(r)ψj(r) = e2
∫
ψ∗
k(r′)ψk(r)
|r − r′|

ψj(r′)dτr′ .

A(r) represents7 the exchange interaction operator, ψj(r) is the eigenfunction of
the electron in the j-th quantum state, N is the number of electrons, Z is the
atomic number, r is the position vector, λij are the Lagrange multipliers, ∆r is
the Laplace operator. The constraints of Eq. (2) are:∫

ψ∗
j (r) ψl(r)dτr = δjl

δjl =
{

0, if j ̸= l
1, if j = l

j > l; l = 1, 2, . . . , N (3)

The Hartree-Fock equations follow from (2) and (3):

[Hτ − e (V (r) −A(r))]ψj(r) = λjjψj(r), j = 1, 2, . . . , N (4)

where the eigenvalues are denoted by λjj .
Of the N electrons in the atom, let n denote the number of the core electrons

and q = N − n the number of valence electrons.
For distinction, let us denote the eigenfunctions of the valence electrons by ρ,

as ψn+i = ρi. Furthermore, let λn+i,n+i = λi.
The wave equation of the i-th valence electron is

[Hτ − e (V (r) −A(r))] ρi(r) = λiρi(r), i = 1, 2, . . . , q (5)

We are now interested in the following question. How does Eq.(5) change if the
eigenfunctions of the valence electrons are not orthogonal to the eigenfunctions
of the core electrons? In this case we obtain certain deviations from Eq.(5).
The eigenfunctions and eigenvalues of the new equations are labeled ρi and λi,
respectively. The new equations also result from Eq.(2), but certain constraints
of Eq.(3) will be different:∫

ψ∗
j (r)ρi(r)dτr = cij ̸= 0, j = 1, 2, . . . n, l = 1, 2, . . . , q, (6)

6V. Fock, Zs. f. Phys. 61, 126, 1930; 62, 795, 1930, 81, 195, 1933.
7V. Fock, Zs. f. Phys. 81, 195, 1933, Eq. (16).
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while the others remain unchanged. Assuming that this change causes the func-
tions ϕj(r), V (r) and A(r) to change only by negligible amounts, the modified
Hartree-Fock equation of the i-th valence electron follows from Eqs.(2) and (6):

[Hτ − e (V (r) −A(r))] ρi(r) = λiρi(r) +
n∑

l=1
ψl(r) λli (7)

As can be seen, due to the nonorthogonality of the valence eigenfunctions to the
eigenfunctions of that of the ion, a new term appears, which can be described as
the effect of a force with the potential φi(r):

eφi(r)ρi =
n∑

l=1
λli ψl(r). (8)

With this designation, we convert Eq.(7) into the following form:

[Hτ − e (V (r) −A(r) + φi(r))] ρi(r) = λiρi(r) (9)

Now we have to determine ϕi(r) from Eq.(8). The factors λli are unknown here.
Since the functions ψj are orthogonal to each other, it follows from Eq.(7) that

λli =
∫
ψ∗
l (r)

[
Hτ − e (V (r) −A(r)) − λi

]
ρi(r)dτr. (10)

These values are still unknown because the eigenvalues λi are not known. Our
aim is to determine these. We want to tune the λi in such a way that the newly
obtained system of eigenvalues matches the old ones, i.e. that λi = λi holds.
However, we still have to introduce an approximation. As known, the statisti-
cally determined electron density corresponds to the wave-mechanically calculated
value on average. We can therefore assume that those functions ρi(r), which do
not have nodal planes, will on average coincide with ρi(r). From this it follows,
however, that the wave-mechanical average value of an arbitrary function F (r) is
the same for both eigenfunctions:∫

ρ∗(r)F (r)ρ(r)dτr =
∫
ρ∗(r)F (r)ρ(r)dτr. (11)

Therefore, their distinction is only necessary when differential operators (in this
case the Laplacian) are applied to them. In this case, ∆rρi(r) does not match
∆rρi(r) on average due to the oscillations caused by nodal planes.

According to the above, we can therefore substitute the value of λiρi(r) in
Eq.(10) by λiρi(r) from Eq.(5), and thus obtain

λli =
∫
ψ∗
l

h2

8π2m
∆r(ρi(r) − ρi(r))dτr

− e

∫
ψ∗
l

(
Ze

r
+ V (r) −A(r)

)
(ρi(r) − ρi(r))dτr.

As said above, the second line is zero, so substituting

λli = h2

8π2m

∫
ψ∗
l ∆r(ρi(r) − ρi(r))dτr
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into Eq.(8), we get

eφi(r)ρi = h2

8π2m

n∑
l=1

ψl(r)
∫
ψ∗
i ∆r

(
ρi(r) − ρi(r)

)
dτr (12)

In a zeroth approximation ∆r ≈ − h2

4π2 p
2 where p is the momentum. So

∆rρi(r) ≈ − h2

4π2 p
2
i ρi(r) (13)

∆rρi(r) ≈ − h2

4π2 p
2
i ρi(r)

In the right-hand side of the last equation we may also write ρi(r) instead of ρi(r),
i.e.

∆rρi(r) ≈ − h2

4π2 p
2
i ρi(r). (14)

Substituting Eqs.(13) and (14) into Eq.(12) yields

eφi(r)ρi = − 1
2m

(p2
i − p2

i )
n∑

l=1
ψl(r)

∫
ψ∗
l (r)ρi(r)dτr.

The sum at the right-hand side represents the first n members of the series devel-
opment of ρi(r). If n is sufficiently large,

ρi(r) ≈
n∑

l=1
ψl(r)

∫
ψ∗
l (r)ρi(r)dτr,

therefore
φi(r) = −1

e

1
2m

(p2
i − p2

i ),

where pi is the orthogonalized, but pi is the non-orthogonalized momenta of the
eigenfunctions. The maximal momentum of the electrons of the ion is pµ ≤
pi, poi ≤ pi means the maximal momentum of those electrons of the ion whose
energy is smaller than the energy corresponding to the electron assigned to the
eigenfunction ρi(r). If we replace pi or pi with smaller pµ or poi, the result is

φi(r) = − 1
2me

(p2
µ − p2

0i). (15)

From Fermi statistics:

pµ = h

2

(
3
π

)1/3
ν2/3

poi = h

2

(
3
π

)1/3
ν

2/3
i

Inserting these results into Eq.(15), we obtain the expression derived by Gombás:

φi(r) = −c
e

(ν2/3 − ν
2/3
i ), (16)
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and for all valence electrons:

φ(r) =
q∑

i=1
φi(r). (17)

When applying this potential, the eigenfunctions of the valence electrons must
be orthogonalized to each other. The potential (17) therefore only replaces this
orthogonalization of the eigenfunctions of the core electrons. When calculating
excited states, we have to orthogonalize the eigenfunction of the valence electron
with respect to the eigenfunctions of all lower energies, retroactively down to the
ground state.

Institute of Theoretical Physics, Hungarian University, Kolozsvár-Cluj.

(From the session of the natural science section of E.M.E., 26 April)8

8The abbreviation E.M.E. reads in Hungarian: Erdélyi Múzeumi Egyesület, meaning:
Association of Museums of Transilvania.
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The essential message from Fényes in the above paper is given in the
introductory paragraph: he presents a derivation for the pseudopotential re-
sulting the same expression that was previously written down intuitively by
Gombás. Modern readers may certainly notice shortcomings, like erroneous
factors in Eqs.(13)-(14) or the use of the same symbol for an integration
variable and for an arguments of a function outside the integral. Also,
the errors introduced by certain approximations remain undiscussed. These
comments should not overshadow the significance of the single-authored pa-
per of a young physicist from 80 years ago, paving the way towards modern
pseudopotentials.

4.2 The contribution by Szépfalusy
As a continuation of Fényes’ research, Peter Szepfalusy’s work is to

be mentioned. He corrected and developed the theory in his paper from
1955[23], published in the Acta Physica Academaiae Scientiarum Hungariae,
the official journal for physics of the Hungarian Academy of Sciences at that
time. To our knowledge, this is the only work, in which the theory of Fényes
was cited. This paper is also in German.

Similarly to Fényes, the name of Péter Szépfalusy is not generally known
among quantum chemists. As a student of Gombás, Szépfalusy started his
research with the many-body problem and with the statistical theory of
atoms. Later his interest turned to other areas of statistical physics, su-
perfluidity, superconductivity, nonlinear phenomena and chaos theory, and
became well known in these fields. To illustrate his sound knowledge of the
many-body problem, we give here the translation of the table of contents of
a 36-page-long paper by him, appeared in Hungarian in 1963, in the Hun-
garian Journal of Physics entitled ”On the Green Function Method of the
Many Body Problem” [24].

1. Introduction
2. The energy of the ground state; Green’s functions
3. Equations for the Green’s functions
4. Analytic properties of the one-particle Green’s function
5. Perturbation theory
6. Wick’s theorem and Feynman-diagrams
7. Construction of the one-particle Green’s function by connected graphs
8. The self-energy operator and the Dyson equation
9. Quasiparticles

10. Fermionic systems with repulsive short-range interaction
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11. Self-consistent field
12. The superfluid state

APPENDIX
a) Goldstone’s method
b) Hartree-Fock approximation
c) Brueckner’s approximation

Quite a modern and ambitious list, isn’t it? In order to fully appreciate
this work, we remind that it was published just two years after Thouless’
Quantum Mechanics[25] and Pines’ Many-body Problem[26], and eight years
before the book by Fetter and Valecka[27]...

The English translation of paper[23] is given below. To distinguish the
literature references used by Szépfalusy from those at other places in this
Chapter, the former are identified as [Sz1], [Sz2], etc., and listed at the end
of this inset.
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On the Orthogonality of Atomic Orbital Wave
Functions

by P. Szepfalusy
Institute of Physics, University of Technology, Budapest
(Submitted by P. Gombás. — Received: June 30, 1955)

(translated from German by András Gombás)

Abstract
The wave functions of the valence electrons of an atom are usually calculated
as follows: it is assumed that the valence electrons move in a potential field
that arises from the combined effect of the atomic nucleus and the electrons of
the atomic core. The potential of the atomic core electrons can be determined
from statistical atomic theory. If the wave functions of the valence electrons
are determined in this way, their radial parts must have a sufficient number of
nodes due to the orthogonality that has to be ensured, which leads to enormous
difficulties in the calculation. However, Gombás has shown that the orthogonality
condition corresponds to a potential energy according to statistical atomic theory,
and he derived two forms of the potential that causes this potential energy using
statistical atomic theory [Sz1], [Sz2]. The aim of this work is to interpret these
potentials from the point of view of quantum mechanics [Sz3].

I

It is well-known that in quantum mechanics, the exact solution of the atomic
multi-particle problem is impossible due to mathematical difficulties. The most
general solution method is the ”self-consistent field” method [Sz4] formulated in
its original form by D. R. Hartree. In the following, we will briefly describe those
results of this method that form the basis of our considerations. According to
the ”self-consistent field” method, the wave function of the multi-particle prob-
lem is constructed from one-electron wave functions that do not depend on the
coordinates of the other electrons. Fock arranged these wave functions in a deter-
minant form [Sz5] that satisfies the antisymmetric property required by the Pauli
principle. With the wave function thus obtained, he then formed the quantum-
mechanical expectation value of the Hamiltonian operator of the atom and thus
arrived at the energy expression named after him. The mathematically simple
form of this energy expression is then obtained if one assumes that the elements
of the determinant are orthonormalized, an assumption that – as can be easily
shown – does not restrict the generality of the discussion. The one-electron wave
functions occurring in this energy expression can be calculated with the aid of the
”self-consistent field” method from the Fock equations. The Fock equations are
Euler-Lagrange differential equations of the variational problem δW = 0, where
W denotes the total energy of the atom. The orthogonality of one-electron wave
functions must be ensured via an auxiliary condition.

In the Fock equations that apply to the atom, none of the wave functions
belonging to the variables of the individual electrons plays a distinguished role.
The Fock one-electron equation, which can be conveniently used to determine the
optical terms, can be obtained as follows. First, one forms the energy expression
of the highlighted electron, which is equal to the difference between the energy
expression of the complete atom and that of the atomic residue remaining after
the removal of one electron. (Here we restrict ourselves to the case of a single
electron, but this procedure can be easily generalized to the case of several elec-
trons.) It is assumed that the variation of the wave function of the highlighted
electron does not entail a change in the remaining one-electron wave functions.
This assumption is particularly well fulfilled in the case of a valence electron lying
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outside a closed electron shell, and it is precisely this case that will form the sub-
ject of our investigations below. Based on the above considerations, the following
Fock equation [Sz6] results for the wave function of the valence electron – taking
into account the corresponding side conditions:

Hφ0(q) + V (r)φ0(q) − Aφ0(q) = Eφ0(q), (1)

where q represents the three spatial variables and the spin variable, φ0(q) is the
wave function of the valence electron, H = − h̄2

2m∆ − Ze2

r denotes the operator
of the kinetic energy of the valence electron and its interaction with the nucleus,
and finally E represents the energy eigenvalue of the valence electron. The oper-
ator A is the exchange energy operator, which, when applied to a function g(q),
corresponds to the following operation:

A g(q) = e2
∫
ϱ0(q, q′)
|r − r′|

g(q′) dq′, (2)

where ϱ0 =
∑n

i=1 φ
∗
i (q)φi(q′) represents the charge density of the n core electrons,

and φi(q) denotes the wave function of the ith core electron.
Finally,

V (r) = e2
∫
ϱ0(q, q′)
|r − r′|

dq′ (3)

is the Coulomb interaction energy of the valence electron with the other electrons.
The wave functions of the electrons in the atomic core must be determined in
such a way that the energy of the atomic core is minimized. This condition is
met when the wave functions of the core electrons satisfy the following system of
Fock equations:

Hφi(q) + V (r)φi(q) − Aφi(q) =
n∑

l=1
Eil φl(q). (4)

(i = 1, 2, ..., n)

Here, Eil is the Lagrange multiplier, while the other symbols have the same mean-
ing as in Eqs. (1), (2), and (3).

II
It should be recalled that Eqs. (1) and (4) are valid only if the wave functions

of the electrons in the atom are orthogonal to each other. We will now examine
how Eq. (1) changes if the wave function of the valence electron is not orthogo-
nalized to the wave functions of the core electrons, but the orthogonality of the
core electron wave functions to each other is maintained. As a consequence of the
latter condition, the energy expression of the core electrons and, together with it,
Eq. (4) will remain unchanged. The energy expression of the valence electron was
obtained as the difference between the energy expression of the entire atom and
the core atom. Therefore, it is the change in the energy expression of the entire
atom that needs to be examined. The wave function of the entire atom is given
by the following expression:

Φ = A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(q1) . . . . . . φ1(qn) φ1(q)
φ2(q1) . . . . . . φ2(qn) φ2(q)
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

φn(q1) . . . . . . φn(qn) φn(q)
φ(q1) . . . . . . φ(qn) φ(q)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5)
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where A is the normalization factor and φ(q) is the wave function of the valence
electron that is not orthogonalized to the wave functions of the core electrons.

To derive the Fock equation for φ(q), one could consider the following line of
thought: one could use the wave function (5) to form the energy expression of the
atom (the wave-mechanical mean value of the atom’s Hamiltonian operator). This
energy expression would already be much more complicated than the previously
mentioned Fock energy expression [Sz5], since not all one-electron wave functions
are orthogonal to each other anymore. By now subtracting the unchanged energy
expression of the core electrons from the energy expression obtained in this way,
one would arrive at the energy expression of the valence electron. From the
vanishing of the variation after φ(q) of this energy, one could derive the Fock
equation valid for φ(q). As a side condition, it would only have to be noted that
the wave function φ(q) of the valence electron is normalized to 1.

The lengthy calculation described here can now be avoided on the basis of the
following consideration.

It is immediately obvious that the determinant (5) does not change if, instead
of φ(q), the function

φ(q) +
n∑

i=1
ciφi(q)

is used, where the ci are arbitrary constants for the time being. This function can
in turn be equated to cφ0(q), where φ(q) is the valence electron wave function
orthogonal to the wave functions of the core electrons. The factor c is therefore
necessary because each one-electron wave function is assumed to be normalized
to 1. So we have

φ(q) +
n∑

i=1
ciφi(q) = c φ0(q), (6)

where

ci = −
∫
φ(q′)φ∗

i (q′) dq′,

and

|c|2 = 1 −
n∑

i=1
|ci|2.

Thus, the Fock equation for φ(q) can be obtained directly by substituting
φ0(q) from Eq. (6) into Eq. (1). When making the substitution, it must be
ensured that the wave functions of the core electrons satisfy Eq. (4). This results
in the following integro-differential equation for φ(q)

Hφi(q) + V (r)φi(q) − Aφi(q) +
n∑

i=1

∫
φ(q′)φ∗

i (q′) dq′
[
E φi(q) −

n∑
l=1

Eil φl(q)
]

= E φ(q). (7)

It is evident that this equation - similar to Eq. (1) - is linear in the wave function
of the valence electron. This is because a linear operator can be assigned to the
sum appearing on the left side of Eq. (7). If this operator is denoted by O, then
its matrix element is defined by the following equation:(

q|O|q′
)

=
n∑

i=1
φ∗
i (q′)

[
E φi(q) −

n∑
l=1

Eil φl(q)
]

(8)
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and it follows that

O φ(q) =
∫
φ(q′)

n∑
i=1

φ∗
i (q′)

[
E φi(q) −

n∑
l=1

Eil φl(q)
]

dq′. (9)

If this notation is introduced in Eq. (7), then the equation can be written as
follows:

Hφi(q) + V (r)φi(q) − Aφi(q) + Oφ(q) = E φ(q). (10)

The result obtained in this way can be formulated as follows: if the wave function
of the valence electron is not orthogonalized to the wave functions of the core elec-
trons, then in addition to the operator A, the operator O must also be considered
in the Fock equation of the valence electron.

III

The spin variable can be explicitly introduced into Eq. (10). In zeroth-
order approximation, the spin state can be considered independent of the state of
orbital motion. In this case, the description of the spin state is possible by a spin
function ηmsi(σ) that depends only on the spin variable [Sz7]. Here, msi is the spin
quantum number, σ is the spin variable, and by definition ηmsi(σ) = δσmsi where
δ denotes the Kronecker delta symbol. In this approximation, the wave function
φi(q) can be written as the product of a wave function ψi(r) that depends only
on the spatial coordinates and the spin function as follows:

φi(q) = ψi(r) ηmsi(σ). (11)

Correspondingly,

φ0(q) = ψ0(r) ηms(σ), (12)

and

φ(q) = ψ(r) ηms(σ). (13)

This separation of the variables in the one-electron wave functions leads, in
the case of Eq. (1), according to the aforementioned Ref. [Sz6], since the orbitals
around the atomic nucleus are occupied by pairs of electrons with opposite spin,
to the following result:

− h̄2

2m
∆ψ0(r) +

[
V (r) − Ze2

r

]
ψ0(r) − Aψ0(r) = E ψ0(r). (14)

If the operator A is applied to a function g(r) after integration over the spin
variable according to Eq. (2), then one has

A g(r) = e2

2

∫
ϱ0(r, r′)
|r − r′|

g(r′) dr′, (15)

where

ϱ0(r, r′) =
n∑

i=1
ψ∗
i (r)ψ(r′).
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The potential V (r) in Eq. (3) will take the following form after integration
over the spin variable:

V (r) = e2
∫
ϱ0(r, r′)
|r − r′|

g(r′) dr′. (16)

Eq. (10) differs from Eq. (1) only in the operator O, so now we need to
examine how the expression in Eq. (9) of the operator O changes when we in-
tegrate over the spin variable. Due to the orthogonality of the spin functions,
only those wave functions ψ(r) associated with the wave functions φi(q) remain
in the matrix element of the operator, in which the spin state of the correspond-
ing core electrons coincides with the spin state of the valence electron. Since the
orbitals around the atomic nucleus are occupied by pairs of electrons with oppo-
site spin, this means that in Eq. (9) after summing over the index i the result
must be divided by two. After that, it is still to be determined how the quantity∑n

i=1Eilϕl(q) contained in the expression for the operator behaves when explicit
spin dependence is introduced. This quantity is the right-hand side of Eq. (4). If
one takes into account that the orbitals around the atomic nucleus are occupied
by pairs of electrons with opposite spin, then due to Eq. (4), the parts of the wave
functions ϕi(q) depending on the spatial coordinates, given by Eq. (11), satisfy
the following equations:

Hψi(r) + V (r)ψi(r) − Aψi(r) = 1
2

n∑
l=1

Eil ψl(r) (17)

(i = 1, 2, ..., n).

On the right-hand side, the result was divided by two instead of summing over
states with the same spin, i.e., over half of all core states n/2, while the limit of
the summation was not changed.

Considering the above explanations, we have from Eq. (9):

O ψ(r) =
∫
ψ(r′) 1

2

n∑
i=1

ψ∗
i (r′)

[
E ψi(r) −

1
2

n∑
l=1

Eil ψl(r)
]
dr′, (18)

where ψ(r) represents the part of the valence electron wave function φ(q) that
depends on the spatial coordinates according to Eq. (13). According to Eqs. (10),
(14), and (18), the wave function ψ(r) therefore satisfies the following integro-
differential equation:

− h̄2

2m
∆ψ(r) +

[
V (r) − Ze2

r

]
ψ(r) − Aψ(r) + Oψ(r) = E ψ(r). (19)

In his work [Sz6], which has already been cited frequently here, Fock showed
that the valence electron wave function ψ0(r) appearing in Eq. (14) can be rep-
resented in the following form:

ψ0(r) = 1√
4π

f0(r)
r

Yl(ϑ, φ), (20)

where Yl(ϑ, φ) represents the spherical harmonics. According to the relation∫
Y ∗
l Yl dω = 4π, (dω = sinϑ dϑ dφ), (20′)
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it is a normalized spherical surface function. The normalization condition for
f0(r) is as follows: ∫ ∞

0
f∗0 (r)f0(r) dr = 1. (20′′)

Fock obtained the following equation for f0(r) after transformations that will not
be reproduced here in detail [Sz6]:

− h̄2

2m

[
d2f0(r)

dr2 − l(l + 1)
r2 f0(r)

]
+
[
V (r) − Ze2

r

]
f0(r) − Arf0(r) = E f0(r).

(21)

Here is the exchange operator Ar, defined as follows:

Ar g(r) =
∫ ∞

0
Gl(r, r′) g(r′) dr′, (22)

where g(r) represents an arbitrary function and the detailed form of Gl(r, r′) can
be found in the frequently cited work of Fock [Sz6].

The Coulomb potential V appearing in Eq. (21), which originates from the
electrons of the atomic core, is spherically symmetric if there is an atomic core
with a closed electron shell below the valence electron, which was already assumed
here from the beginning. This can be easily seen on the basis of the form of V (r)
given in Eq. (16), if one takes into account that in the case of an atomic core
with closed shells ϱ0(r, r′) is spherically symmetric.

Let us now investigate whether, similarly to Eq. (20), the wave function ψ(r)
can also be represented in the following form:

ψ(r) = 1√
4π

f(r)
r

Yl(ϑ, φ), (23)

where the normalization conditions of the individual point functions correspond
to those in Eqs. (20′) and (20′′).

Eq. (19) differs from Eq. (14) only in the term Oψ(r). It is therefore sufficient
to prove that the form of the operator O given in Eq. (18) acts only on the radial
part of the given wave function according to Eq. (23). For this purpose, one can
represent the variables in the core electron wave functions ψi(r) similarly to Eq.
(23) as follows:

ψi(r) = 1√
4π

fi(r)
r

Yli(ϑ, φ). (24)

The normalization conditions are also similar to Eqs. (20’) and (20”).
It can be easily shown that if the form of the wave functions given in Eq. (24)

is inserted into Eq. (17), only those factors Eil will be different from zero for which
the spherical functions that describe the angular coordinate-dependent parts of
the core electron wave function ψl(r) are the same as those of the ith core electron.
Thus, only these factors will also appear in the form of the operator O given in
Eq. (18). On the other hand, in Eq. (18), only the radial parts of those wave
functions ψi(r) will remain in the matrix element of the operator, for which the
angular coordinate-dependent spherical functions – due to the orthogonality of the
spherical functions with different indices – are the same as the angular coordinate-
dependent part of the valence electron wave function. It already follows from these
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considerations that the operator ψ(r) of Eq. (18) does not act on the angular
coordinate-dependent part of the wave function.

Thus, taking into account Eq. (21), the following equation can be set up for
the part f(r) of the wave function ψ(r):

− h̄2

2m

[
d2f(r)

dr2 − l(l + 1)
r2 f(r)

]
+
[
V (r) − Ze2

r

]
f(r) − Arf(r) + Of(r) = E f(r),

(25)

where

O f(r) =
∫ ∞

0
f(r′) 1

2
∑
i

f∗i (r′)
[
Efi(r) −

1
2
∑
l

Eilfl(r)
]
dr′. (26)

Here, according to the above explanations, the summation over the indices i and l
is to be extended to those core electron wave functions whose spherical functions
describing the angular coordinate-dependent part coincide with that of the valence
electron.

IV

In the following, we will turn to the determination of the semiclassical analog
of the operator O occurring in Eq. (25). For this purpose, an approximation will
be used that greatly simplifies our result. The behavior of the wave function f(r)
is such that it forms the average of the wave function f0(r) – which performs the
oscillations necessary for orthogonalization. For this reason, it can be assumed
that the quantum-mechanical expectation value of any sufficiently smooth func-
tion (e.g. the electrostatic and exchange potentials in our case) is the same for
both wave functions. This means, for example:∫ ∞

0
f∗(r)V (r)f(r) dr =

∫ ∞

0
f∗0 (r)V (r)f0(r) dr. (27)

This is naturally not fulfilled for the differential operator of kinetic energy.
Let Eqs. (21) and Eq. (25) be multiplied with f∗0 (r) and with f∗(r), respec-

tively, and integrated over the entire range of r. If the first equation is subtracted
from the second and the approximation in Eq. (27) is used, the following result
is obtained:∫ ∞

0
f∗(r)Of(r) dr = − h̄2

2m

∫ ∞

0

[
f∗0 (r) d2

dr2 f0(r) − f∗(r) d2

dr2 f(r)
]

dr. (28)

If one now treats the atom semiclassically, i.e., neglects the commutation rela-
tion between the coordinate and the canonically conjugate momentum component,
then one can write:

−h̄2 d2f0(r)
dr2 = p2

r0(r)f0(r) (29)

and

−h̄2 d2f(r)
dr2 = p2

r(r)f(r),

where pr0 and pr denote the radial momentum of the valence electron in the
orthogonalized and non-orthogonalized cases, respectively.
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Substituting Eq. (29) into Eq. (28) and using again the approximation intro-
duced in Eq. (27), we obtain:∫ ∞

0
f∗(r)Of(r) dr = 1

2m

∫ ∞

0
f∗(r)

[
p2
r0(r) − p2

r(r)
]
f(r) dr. (30)

This means that the energy represented by the operator O can be interpreted
as the effect of a potential Φ, if this potential is defined as follows:

Φ = −1
e

1
2m

[
p2
r0(r) − p2

r(r)
]
. (31)

Eq. (25) can now be written as follows using this expression:

− h̄2

2m

[
d2f(r)

dr2 − l(l + 1)
r2 f(r)

]
+
[
V (r) − Ze2

r

]
f(r) − Arf(r) − eΦf(r) = E f(r).

(32)

Let us now examine Eq. (31) for the potential Φ in detail and transform it
using the statistical atomic model. According to statistical atomic theory, the
kinetic energy resulting from the orthogonalization of the valence electron wave
function to the core electron wave functions is a consequence of the so-called
”exclusion principle.” This principle states that in a phase space cell of size h3/2,
due to the Fermi-Dirac statistics of electrons, at most one electron can be present.
If, therefore, in the atom, in the vicinity of an arbitrary location r, we assume
such a volume element ∆v in which many electrons are already present, but in
which the potential can still be considered constant, then at this location the
individual electrons occupy cells in momentum space of size h3/2∆v. The cells
with lower energy are gradually filled by the core electrons. In this way, the
radial momentum of the valence electron must be greater than the maximum
radial momentum prµ(r) of the core electrons, which have an azimuthal kinetic
energy that coincides with the azimuthal kinetic energy of the valence electron. If
we assume that the valence electron cannot be located in the cells occupied by the
core electrons in momentum space – in other words, if we do not orthogonalize
the valence electron wave function to the wave functions of the core electrons –
then the radial momentum of the valence electron decreases from pr0(r) to pr0(r),
where pr0(r) is the so-called radial eigenmomentum of the valence electron [Sz8].
Therefore, we can write:

pr0(r) = prµ(r) + pr(r) (33)

and from Eq. (4) it follows thus

Φ = −1
e

1
2m

[
p2
rµ(r) + 2prµ(r)p2

r(r)
]
. (34)

Since pr, << prµ in the case of the valence electron, Eq. (34) can be simplified
in a first approximation as follows:

Φ = −1
e

1
2m

p2
rµ(r). (35)

If one disregards the grouping of core electrons according to the azimuthal
quantum number and denotes the maximum momentum of the core electrons at
a given location in momentum space as pµ, then

p2
rµ = p2

µ − p2
φ, (36)
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where pϕ represents the azimuthal momentum of the valence electron.
According to statistical atomic theory

pµ = 1
2

(
3
π

)1/2
hϱ1/2 (37)

and

pφ = 1
2

(
3
π

)1/2
hϱ

1/2
i ,

where ϱ represents the total electron density of the atomic core and ϱi represents
the density of those core electrons whose kinetic energy is less than the azimuthal
kinetic energy of the valence electron, which is completely determined by the
azimuthal quantum number of the valence electron [Sz1].

Substituting the values from Eq. (37) into Eq. (36), one obtains, due to the
form of the potential Φ given in Eq. (35), the Gombás potential F derived from
statistical atomic theory [Sz1]:

F = −γ0
(
ϱ2/3 − ϱ

2/3
i

)
, (38)

where γ0 = 1
2(3π2)3/2ea0 in atomic units.

On the other hand, if a more detailed grouping of electrons according to
the azimuthal quantum number is carried out [Sz2], then the maximum radial
momentum of a core electron with azimuthal quantum number l is given by

prµ = h

4(2l + 1)
Dl, (39)

where Dl is the radial density of core electrons with azimuthal quantum number
l.

In this case, the potential Φ, which is analogous to the Gombás potential G,
can be set as follows:

Φ = − π2

8(2l + 1)2 ea0D
2
l , (40)

while the form of the Gombás potential G is [Sz2]:

G = − π2

8(2l + 1)2 ea0D
2
l −

1
4
ea0

1
r2 . (41)

The second term on the right-hand side is a consequence of the statistically
averaged azimuthal kinetic energy, which always occurs when one transitions from
quantum mechanics to the approximation of statistical atomic theory [Sz2]. This
means that instead of the azimuthal kinetic energy 1

2e
2a0

l(l+1)
r2 given by quantum

mechanics, the quantity 1
2e

2a0[l(l+1)+ 1
2 ]/r2 is to be taken. If this transformation

is carried out in Eq. (32) and the quantity appearing as a new term is added to
the potential Φ, then one arrives at the complete potential G.

In Eq. (34), the second term on the right-hand side has been neglected here.
This term can also be derived from statistical atomic theory as a secondary effect,
but this will not be discussed here.

The above discussions thus prove that the orthogonalization of the ”wave
function of the valence electron” to the wave functions of the core electrons can
be replaced by a linear operator whose semiclassical analogies are the potentials
F and G derivable from statistical atomic theory.

At this point, I would like to express my sincere thanks to Professor Dr. P.
Gombás for his valuable advice.
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4.3 Coda
Szépfalusy’s paper was not the only publication from the Gombás school

that dealt with pseudopotentials. Another member emitted from this group,
Levente Szász, settled in the USA and published several papers on the sub-
ject in journals including Physical Review,[28, 29, 30] and Journal of Chem-
ical Physics,[31, 32, 33]. He also wrote a review[34] on pseudopotentials in
1977 with full credits to the early works of Gombás and Szépfalusy.

Rezső Gáspár, who is mostly known in the international community for
his contribution to Slater’s Xα theory, was also a member of the Gombás
group. He became full professor in Debrecen, member of the Hungarian
Academy of Sciences, as well as a member of the International Academy of
Quantum Molecular Sciences. He continued research in pseudopotential the-
ory, publishing a few dozens of paper on this subject. His contributions are
summarized in a Festschrift of THEOCHEM Vols.151-152., edited by Imre
Csizmadia and Ágnes Nagy on the occasion of his 80th birthday. Legacy of
Gáspár and his school are summarized in part III., Chapter 7. of this book.

An important development in pseudopotential theory was done by
Phillips from 1958. In his first paper[35] he wrote: Gombás[36] and his as-
sociates have independently given a semiclassical treatment that is in many
respect parallel to that of Hellman. In particular, Szepfalusy[23] has shown
that the orthogonality terms can be replaced by a linear operator... Albeit
the name of Fényes is not mentioned here, it is apparent that a sufficient
credit was given to the Hungarian school, even if in subsequent papers by
Phillips[37] only his original work Ref.[35] was referenced, and due to its
importance, modern authors tend to cite only Ref.[37].

However, the results of Gombás and Szépfalusy were not forgotten. In
a more recent review by Schwerdtfegel[38], both of these early authors are
properly referenced.

Acknowledgment. The author is indebted to Professors Tamás Geszti
and Imre Kondor (Budapest) for calling his attention to the early works of
Fényes and Gombás.
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