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Abstract

A stationary condition involving the first-order wavefunction of many-body pertur-

bation theory (PT) is shown to lead to the partitioning introduced recently by Knowles

(J. Chem. Phys., 156, 011101 (2022)). This facilitates direct generalization for mul-

tireference (MR) PT schemes operating with a one-body Hamiltonian at zero-order.

The essence of the method is an optimization of one-body integrals in the first-order

interacting subspace, thereby achieving superior performance over Møller-Plesset (MP)

type approaches. The stationary condition based extension, performed in the pivot-

independent variant of the multiconfiguration PT (frame MCPT, fMCPT), rectifies the

shortcomings of our previous MR adaptation. The resulting PT series comes close to

the stationary condition-based extension, carried out in the complete active space PT

(CASPT) formalism. Numerical results demonstrate that Knowles partitioning consis-

tently outperforms MP partitioning in fMCPT.
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1 Introduction

A fundamental level of quantum chemistry is electronic structure computation, performed

nowadays overwhelmingly by density functional theory (DFT)1 based methods, as well as

relatively low-order scaling wavefunction based approaches. Of the latter, second order of

Møller-Plesset (MP) perturbation theory (PT) stands out as a veritable workhorse, often

providing optimal cost per performance.2,3 Reliability of Hartree-Fock (HF) based many-

body approaches for weakly correlated systems is a definite advantage over DFT, which often

needs calibration before trustworthy application.4 Lower computational cost, on the other

hand, favors DFT especially for large systems, posing a challenge for many-body methods

to extend their applicability to comparable scales. Many efforts invested in computational

cost reduction came to the benefit of wavefunction methods, e.g. local approximations,5–7

quadrature based and stochastic evaluation strategies,8–11 density fitting12,13 or embedding

approaches.14,15

Redesigning methodology to improve performance is an alternative route of progress. The

MP series has been an especially popular target of inspired modifications along this line.16–20

In PT, an immediate grab for fine-tuning the theory is offered by choosing the partitioning.

Several studies addressed the idea of fixing a partitioning optimal in some sense, mostly with

a HF determinantal starting point.21–29 Recently, Knowles suggested a new partitioning

in the single-determinantal context,30 paralleling Kolmogorov PT31 in that the splitting

of Ĥ is redesigned in course of calculating terms of the series. The Knowles equations

also bear kinship with a partitioning optimization suggested previously in our laboratory.32

From the application point of view, the second order results in Knowles partitioning are

of coupled-cluster (CC) singles and doubles (CCSD) quality, both regarding performance

and the sixth power-scaling computational cost.30,33 Connected nature of the many-body

expressions ensure that size-extensivity is maintained in the Knowles partitioning.

From a purely pragmatical perspective, a CCSD quality outcome at the same quality

investment may appear expected and not particularly noteworthy. This picture changes when
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stepping to the multideterminantal reference scenario, for which CC theory is considerably

more difficult to extend, than PT. In fact, PT is prevalent in applications where the presence

of strong correlation makes an MR approach indispensable.34,35 Lack of straightforward

generalization of HF determinant based PT led to the development of numerous MRPT

methods over time.36–50 A long standing paradigm has been to use a one-body Hamiltonian

at zero-order, due to its simplicity and the success of the MP partitioning in the single

reference context. Early developments and the difficulties around choosing an appropriate

Fockian in the open-shell case were reviewed by Davidson and Jarzȩcki.51

Of MRPT methods widely used today, the complete active space (CAS) based PT of

Roos and coworkers52,53 and the MRMP method of Hirao and coworkers54 feature a one-body

operator at order zero, typically the generalized Fockian built with the spin-summed, one-

particle reduced density matrix (RDM) of the reference function. Including explicit two-body

terms in the zero-order Hamiltonian was first advocated by Dyall,55 pointing out feasibility

when restricting indices of two-body integrals as active. Among the approaches following

in the footsteps of Dyall,50,56–60 the n-electron valence state PT (NEVPT) of Malrieu and

coworkers is used most extensively in our time.61,62

Partitioning is a key factor determining many characteristics of a PT series. Intruder-

free nature of NEVPT is thanks to the two-body term in Ĥ(0), which also makes it more

costly than CASPT, the latter requiring at most three-particle RDM’s of the reference, while

NEVPT needing up to four-particle RMD’s, without any approximations. Size-consistency

violation of CASPT can be traced back to the appearance of Hilbert-space projectors in the

zero-order operator,63,64 which are not used in NEVPT. At the early stage of developments

it has been stressed that CASPT allows for a reference of arbitrary structure,38,65 whereas

the complete active space concept is hard to abandon with NEVPT. Restricted active space

(RAS) reference based extensions led to to successful RASPT applications.66–68 Efficient

evaluation, multi-state versions69–74 as well as gradient computation75,76 are among current

methodological developments of CASPT and/or NEVPT.
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Altering the partitioning has been addressed in CASPT77–79 and MRMP,80 often in the

form of level-shifts with the aim of mitigating the intruder problem. A simpler but well

parametrized zero-order in PT can be be competitive with more convoluted constructions,

as demonstrated by a recent benchmark study, finding that vertical excitation energies by

CASPT with the IPEA shift81 are comparable in performance to NEVPT.82 Partitioning

optimization attempts aiming to exploit this potential in the MR framework mostly worked

with zero-order levels in the Hilbert-space,44,83–86 with rare examples for targeting the full

one-body matrix.87 A Fock-space based approach works with less parameters in general,

than energy-level optimization in the Hilbert-space. At the same time, off-diagonal Fockian

elements bring about a more complex, orbital rotation effect.33

Our previous work aiming for a Knowles partitioning at the MR level considered the

multiconfiguration PT (MCPT)88,89 framework, developed earlier in our laboratory. Per-

forming the extension in the projected version of the theory introduced a pivot dependence

with obvious drawbacks in strongly correlated situations.90 The present study corrects for

this effect, abandoning the concept of a pivotal determinant and showing a way of easy

generalization in any MRPT operating with a one-body operator at zero-order.

We start the presentation by rederiving the Knowles equations in the single-reference case,

starting from a stationary condition, c.f. Section 2.1.1. Extension for the MR case, presented

for CASPT in Section 2.1.2 and for the pivot independent variant of MCPT (frame MCPT,

fMCPT) in Section 2.2, are found closely related. Implementation and testing, performed in

the fMCPT context is reported in Section 3.
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2 Theory

2.1 Knowles equations in many-body PT

2.1.1 Single reference case

Assuming a closed shell HF determinant as reference Φ, the normal-ordered molecular Hamil-

tonian, ĤN = Ĥ − ⟨Φ|Ĥ|Φ⟩ is written in spin-orbital basis as

ĤN =
∑

pq

fpq

{
p+q−}

+
1

4

∑
pqrs

⟨pq||rs⟩
{

p+q+s−r−}
where curly braces refer to normal-ordering of the second quantized operator string,

fpq are Fockian matrix elements and Coulomb-integrals are antisymmetrized as

⟨pq||rs⟩ = ⟨pq|rs⟩ − ⟨pq|sr⟩ .

Many-body PT in MP partitioning starts with

F̂ =
∑

p

εp

{
p+p−}

(1)

as zero-order Hamiltonian, written on the canonical molecular orbital (MO) basis, leading

to the first-order wavefunction

Ψ(1) =
1

4

occ∑
ij

virt∑
ab

{
a+b+j−i−}

|Φ⟩ cij
ab , (2)

with cij
ab = −⟨ij||ab⟩/(εa + εb − εi − εj) obtained by ordinary Rayleigh-Schrödinger theory.

Unless otherwise noted, indices i, j, . . . label occupied, a, b, . . . virtual and p, q, . . . generic

MOs.

Knowles replaces the Fockian of Eq.(1) with a more general one-body zero-order Hamil-

tonian of the form

Λ̂ =
oo ∨ vv∑

pq

Λpq

{
p+q−}

(3)
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with the aim of using it as zero-order operator in many-body PT. Parameters Λpq in Eq.(3)

are set such that Λ̂ should be possibly close to ĤN . This is expressed by the equationÄ
ĤN − Λ̂

ä
|Ψ(1)⟩ = 0 . (4)

To ensure Hermiticity of Λ̂, Λpq = Λ∗
qp is required. Note, that Λ̂ takes Φ as its eigenfunc-

tion, due to the restriction of summation indices in Λ̂ as p, q ∈ occ or p, q ∈ virt. Shorthand

notation "oo ∨ vv" refers to this in Eq.(3).

To generate equations for Λpq, projections of Eq.(4) were taken in Ref.30 Instead of this,

we proceed by minimization of a squared norm, according to

∂

∂Λpq

⟨Ψ(1)|
Ä
ĤN − Λ̂

ä
P̂1

Ä
ĤN − Λ̂

ä
|Ψ(1)⟩ = 0 , (5)

for p ≤ q and both occupied or virtual. In the above, P̂1 projects onto the first-order inter-

acting subspace of the configuration interaction space (FOCI), i.e. the space of functions

contributing to Ψ(1). When Φ is the HF wavefunction, P̂1 is the projector of doubly excited

determinants. Performing the derivation in Eq.(5) leads to

⟨Ψ(1)|
{

p+q− + q+p−}
P̂1

Ä
ĤN − Λ̂

ä
|Ψ(1)⟩ + c.c. = 0 , p < q (6a)

⟨Ψ(1)|
{

p+p−}
P̂1

Ä
ĤN − Λ̂

ä
|Ψ(1)⟩ + c.c. = 0 . (6b)

Substituting Eq.(2) in Eq.(6) and using the generalized Wick’s theorem91 yields the following

many-body formulae, in the real case

0 = ⟨Θ+
de|ĤN − Λ̂|Ψ(1)⟩ , (7a)

0 = ⟨Θ+
kl|ĤN − Λ̂|Ψ(1)⟩ , (7b)
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with

|Θ+
de⟩ =

occ∑
ij

virt∑
a

Ä{
d+a+j−i−}

|Φ⟩ cij
ea +

{
e+a+j−i−}

|Φ⟩ cij
da

ä
, (8a)

|Θ+
kl⟩ = −

occ∑
i

virt∑
ab

({
a+b+i−k−}

|Φ⟩ cli
ab +

{
a+b+i−l−}

|Φ⟩ cki
ab

)
, (8b)

for d < e virtual and k < l occupied and

|Θ+
dd⟩ =

occ∑
ij

virt∑
a

{
d+a+j−i−}

|Φ⟩ cij
da , (9a)

|Θ+
kk⟩ = −

occ∑
i

virt∑
ab

{
a+b+i−k−}

|Φ⟩ cki
ab , (9b)

when outer indices are equal .

Comparison with Ref.30 shows, that Eq.(7) is essentially the system of equations set by

Knowles, differing in trivial numerical factors which do not affect the solution. Introducing

the above theta functions in the ket of Eq.(7) by noting that

P̂1Λ̂|Ψ(1)⟩ =
oo∨vv∑
p≤q

|Θ+
pq⟩Λpq ,

one arrives at the condensed form

oo∨vv∑
r≤s

Tpq,rs Λrs = Ypq (10)

with a symmetric coefficient matrix

Tpq,rs = ⟨Θ+
pq|Θ+

rs⟩ (11)

and the inhomogeneous term

Ypq = ⟨Θ+
pq|ĤN |Ψ(1)⟩ (12)
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for p ≤ q, both being either occupied or virtual. The fact, that T composed with elements

in Eq.(11) is symmetric simplifies the analysis of the underdetermined nature of Eq.(10).

While the original form of the Knowles equations necessitated to rely on singular value

decomposition and to identify the left and right singular vectors corresponding to the zero

singular value,33 one presently arrives at the same conclusion by simply noting that T is an

overlap matrix with one zero eigenvalue, generated by the identity

virt∑
d

Θ+
dd +

occ∑
k

Θ+
kk = 0 ,

following from the definition in Eq.(9)

Recalling that the third order energy can be expressed as ⟨Ψ(1)|ĤN − Λ̂|Ψ(1)⟩, Eq.(6) can

be interpreted as setting terms of the third order energy zero. In fact, when the Knowles

procedure is iterated till self consistency (i.e. Ψ(1) stems from ĤN − Λ̂ as perturbation), the

third-order PT correction vanishes.30,33

2.1.2 Multireference case

A previous attempt90 of extending the partitioning of Knowles for the MR case has been

based on Eq.(7) with the many-body form of theta functions in Eqs.(8)-(9). The occ, virt

categorization of indices in Eqs.(8)-(9) necessitated a Fermi vacuum even in the case where

identification of one determinant as pivotal could not be justified based on the associated

weights in Φ. This resulted a deterioration in the performance in parallel with the increase

in the multireference character of Φ.

A solution to the problem is offered by Eq.(6) since theta functions deducible as

|Θ+
pq⟩ = P̂1

{
p+q− + q+p−}

|Ψ(1)⟩ , p < q (13a)

|Θ+
pp⟩ = P̂1

{
p+p−}

|Ψ(1)⟩ (13b)

are free from occ, virt categorization of the indices. Any restriction on p, q in Eq.(13) stems
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from the expression of Λ̂ in Eq.(3). Such constraints are governed by the nature of the

reference, vide infra, and do not require a Fermi vacuum in the general case. In principle,

indices in Eq.(3) can be completely unconstrained in the MR case, though pilot tests warn

to be cautious in applying the Knowles condition for all index pairs.90

The main message of the present study is that Eqs.(10), (11) and (12) together with

Eq.(13) offer a direct way of adapting the Knowles partitioning in any MRPT framework

operating with an effective one-body Hamiltonian at zero-order. The formulae relevant for

CASPT are outlined below.

The difficulty about extending HF based many-body PT for the single-but-multi scenario

is that several important characteristics of the single-determinantal starting point, e.g.

1. Φ is the eigenfunction of a Fockian,

2. excited determinants are also eigenfunctions of the same Fockian,

3. excited determinants provide an orthonormal basis in the Hilbert-space for constructing

wavefunction corrections,

cease to be valid when Φ is multideterminantal. Wolinsky and Pulay suggested to compose a

zero-order Hamiltonian with the help of projectors in the Hilbert-space, to alleviate problems

1, 2 above.37,92 Taking P̂0 = |Φ⟩⟨Φ| as the projector corresponding to the reference, and

P̂⊥ = 1̂ − P̂0 its orthogonal complement, the most simple form of the Wolinsky-Pulay zero-

order can be cast as

Ĥ
(0)
W P = P̂0F̂ P̂0 + P̂⊥F̂ P̂⊥ . (14)

Addressing problem 3 above, Wolinsky and Pulay applied internally contracted (IC) sin-

gle, double, etc. substitutions of the reference and treated the overlap among excitation

subspaces by successive Gram-Schmidt orthogonalization. Nonorthogonality within a given

excitation level has been handled by various techniques.38,63,66 Roos and coworkers34,52,53

and Werner and coworkers66,93 became significant developers of the theory, giving rise to a

method established in quantum chemical practice under the acronym CASPT.
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The aspect of CASPT, important for our present purpose is operator F̂ in Eq.(14),

which is typically the generalized Fockian, possibly modified by level-shifts for treating the

intruder-problem.81 In the spirit of Knowles, one would rewrite Eq.(14) as

Ĥ
(0)
W P K = P̂0Λ̂P̂0 + P̂⊥Λ̂P̂⊥ , (15)

with

Λ̂ =
∑

pq

′
Λpq

{
p+q−}

, (16)

where {p+q−} = p+q− − ⟨Φ|p+q−|Φ⟩ can be considered a generalized normal-ordered op-

erator string94,95 when Φ is multideterminantal and prime on the sum refers to possible

restriction of the orbital indices. Assuming a complete active space (CAS) reference, Roos

et al. e.g. allowed only the doubly occupied (docc), active (act) and virtual (virt) block

of the generalized Fockian to enter the zero-order in one of their early works.38 They later

extended the approach, admitting the docc-act and act-virt block, and keeping the docc-virt

block zero, in agreement with the generalized Brillouin theorem for a CAS function.65

To set up the equations for parameters Λpq, the first-order CASPT wavefunction

|Ψ(1)⟩ =
FOCI∑

K

|ΦK⟩ cK (17)

is to be computed first, with ΦK standing for orthogonalized IC functions belonging to the

FOCI. First-order coefficients cK are the MR analogue of cij
ab in Eq.(2), arising from

FOCI∑
K

⟨ΦL|F̂ − E(0)|ΦK⟩ cK = − ⟨ΦL|ĤN − Ĥ
(0)
W P |Φ⟩ , (18)

with E(0) = ⟨Φ|F̂ |Φ⟩.
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In the next step, theta functions are composed as

|Θ+
pq⟩ =

FOCI∑
K,L

|ΦL⟩⟨ΦL|
{

p+q− + q+p−}
|ΦK⟩ cK , p < q (19a)

|Θ+
pp⟩ =

FOCI∑
K,L

|ΦL⟩⟨ΦL|
{

p+p−}
|ΦK⟩ cK . (19b)

Using the above, Eqs.(11)-(12) can be evaluated and Eq.(10) solved for parameters Λpq,

p ≤ q restricted in agreement with Eq.(16). The first order CASPT equation can now be

written in the Knowles partitioning as

FOCI∑
K

⟨ΦL|Λ̂ − E(0)|ΦK⟩ cK = − ⟨ΦL|ĤN − Ĥ
(0)
W P K |Φ⟩ , (20)

with E(0) = ⟨Φ|Λ̂|Φ⟩. The CASPT2 energy either in the original or in the Knowles parti-

tioning is obtained as

E(2) =
FOCI∑

K

⟨Φ|ĤN |ΦK⟩ cK . (21)

Calculation of Eq.(12) is the time determining step of solving the Knowles equations in

the single reference setting, featuring sixth power scaling with the number of basis functions.

Calculation of Ypq in the CASPT context is based on

Ypq =
FOCI∑

K,L,M

cK ⟨ΦK |
{

p+q− + q+p−}
|ΦL⟩⟨ΦL|ĤN |ΦM⟩ cM , p < q (22)

and remains the bottleneck of the procedure. Efficient methods worked out within the MRCI

framework for matrix element computation with IC functions,96,97 facilitate an implemen-

tation scaling with the number of IC states but not with the length of the determinantal

expansion of the reference.66 Relying on this approach, the cost of the Knowles equations

in the CASPT framework essentially agrees with that of CASPT3.93,98 Computation of T

in Eq.(11) is less demanding than that of Y, as it involves only one-body couplings in the
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place of ĤN in Eq.(22).

Before stepping on, let us briefly comment on further two MRPT methods, available in

broadly used quantum chemistry program systems. One is the MRMP41 method of Hirao

and coworkers, working with a diagonal zero-order, written in spectral form in the Hilbert-

space with the help of determinants or configuration state functions. The role of the MR

Fockian, the key point in the Knowles partitioning, is somewhat different in MRMP from

what have we considered so far, since it is used to generate zero-order eigenvalues only.

This diagonal assumption on the zero-order is the origin of non-invariance of the method to

unitary transformation of CI space vectors used to build the zero-order. An energy level

optimization strategy, working in the Hilbert-space is therefore more suitable in the context

of MRMP, than the idea of Knowles. This has been designed and tested previously.84,85 The

extension of Granovsky73 stepped in the direction of restoring unitary invariance by assuming

a block-diagonal form of the zero-order Hamiltonian over model and secondary subspaces.

Relying on the full, generalized Fockian within the blocks, Granovsky’s extension provides a

suitable framework for adapting the Knowles partitioning in the multi-state realm of MRPT.

The NEVPT introduced by Malrieu and coworkers45,61 is also amenable to the par-

titioning optimization idea of Knowles. It carries over in a straightforward manner to

the core and virtual orbitals involving term of the Dyall-Hamiltonian used to compose the

zero-order. The active orbitals’ term, involving two-body integrals, calls for an extension

of the Knowles partitioning, which is out of scope of the present study.

2.2 Frame-based Multiconfiguration perturbation theory (fMCPT)

The MCPT family of methods88,89 was devised in our laboratory with the aim of correcting a

wave function of arbitrary structure by PT. In its original formulation, the zero-order MCPT

Hamiltonian is composed in spectral form, relying on projected determinants in the space

complementary to the reference. A characteristic feature of the theory is the treatment of
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the (inverse) overlap of projected determinants in closed form, without the need of invoking

any numerical orthogonalization procedure. Within the MCPT framework, definition of a

specific method requires fixing the partitioning, for which several options have been tested,

e.g. Davidson-Kapuy or Epstein-Nesbet.86 Optimization of the zero-order energy levels has

been also considered both in the Fock-space and in the Hilbert-space.86,99 The latter relates

to the MR generalization of the simplest coupled electron pair approximation, CEPA0.100,101

The present focus being on the use of effective one-body operators at zero-order, we briefly

recapitulate the MP variant of the theory. This abandons the spectral form of the zero-order

and uses projectors to satisfy the zero-order equations, in the spirit of Wolinsky and Pulay.

The MP partitioning of MCPT was first developed with an antisymmetric product of singlet

coupled, strongly orthogonal geminals reference102 and later got extended for the open-shell

case.103 The geminal structure does not affect essential elements of MP-MCPT, its role is

merely to keep the determinantal expansion of the first order wavefunction relatively short

and simplify matrix element calculation. Below we leave the geminal restriction and consider

an arbitrary zero-order function.

Expansion of the reference on the set of orthonormal determinants is written as

|Φ⟩ =
M∑

K=1

|K⟩ dK , (23)

where determinants with nonzero dK are considered to form the M -dimensional model space.

We seek a set of simple functions to compose projector P̂⊥ = 1̂ − P̂0, orthogonal and com-

plementary to P̂0 = |Φ⟩⟨Φ|. For this end, Slater-determinants |K⟩ are orthogonalized to |Φ⟩

as

|K ′⟩ = P̂⊥|K⟩ = |K⟩ − |Φ⟩ dK .

While |K ′⟩ = |K⟩ for dK = 0, we keep using |K ′⟩ for K > M , for notational simplicity.

The overlap matrix

SKL = ⟨K ′|L′⟩
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features a full block corresponding to projected model space determinants and it is diag-

onal otherwise. Due to the Schmidt-orthogonalization, the model space block of S built

with SKL above has a rank of M − 1. This renders S singular, hindering any overlap treat-

ment working with the ordinary inverse, e.g. Löwdin’s symmetrical orthogonalization104 or

biorthogonalization. A workaround applied initially was excluding one element of the model

space, practically the determinant of pivotal role in Φ.86,88,89 The Fermi vacuum dependence,

introduced this way, was overcome in two subsequent studies,105,106 of which the approach

based on the theory of frames, abbreviated as fMCPT is pursued below.

The essence of fMCPT106 is to compose P̂⊥ with the help of the redundant set of functions

|K ′⟩ as

P̂⊥ =
∑
KL

|K ′⟩ RKL ⟨L′|

where matrix R is the inverse of S in the generalized, Moore-Penrose107 sense. Since S is

the representation of a projector, R = S and
∑
L

SKL⟨L′| = ⟨K ′|, leading to

P̂⊥ =
∑

K

|K ′⟩⟨K ′| , (24)

with the sum in Eq.(24) running for all determinants of the Hilbert-space.

The zero-order Hamiltonian of MP-fMCPT is given by Eq.(14) with P⊥ taken from

Eq.(24) and F̂ written as

F̂ =
∑

pq

fpq

{
p+q−}

, (25)

with fpq = hpq +
∑

rs γsr⟨pr||qs⟩ and γsr = ⟨Φ|r+s−|Φ⟩. The spin-summed one-body RDM

appears in a trivial manner for a singlet wavefunction, when rewriting F̂ in terms of spatial

orbitals. In the general case, the spin-averaged fP Q = 0.5(fα
P Q + fβ

P Q) is used to achieve this.

Expansion of the first order wavefunction in MP-fMCPT takes the form analogous to

Eq.(17)

|Ψ(1)⟩ =
FOCI∑

K

|K ′⟩ cK (26)
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with the sum running for projected determinants of the FOCI. The first order equation is

an analogue of Eq.(18) , reading as

FOCI∑
K

⟨L′|F̂ |K ′⟩ cK = − ⟨L′|ĤN − Ĥ
(0)
W P |Φ⟩ , (27)

where E(0) = ⟨Φ|F̂ |Φ⟩ = 0 was utilized, in accordance with Eq.(25).

At this point it is apparent that the MP-fMCPT version presented here basically agrees

with the version of CASPT, where the complementary space term in Eq.(14) is kept as a

full block.63 Representation of the complementary space projector, P⊥ is determinant based

in fMCPT and IC function based in CASPT, which is a formal difference and should have

no effect on the PT terms. A technical difference affecting the first-order equation is that

IC excitation types giving rise to ΦL in Eq.(17) are those, potentially contributing to Ψ(1),

e.g. internal excitations are excluded for a CAS reference. Preparing for a reference of

arbitrary structure, such a selection is not performed when setting up Eq.(26) for fMCPT.

All determinants related by single or double replacement to any determinant of Φ contribute

as ⟨L′| to Eq.(26).

Methods of intruder avoidance, worked out in the context of CASPT79 carry over to

the determinantal based formulation of MP-fMCPT in a trivial manner. The applications

presented in Section 3 are not challenging from this respect as seen by the correct behaviour

of MP partitioning results. For this reason, neither level-shifts, nor regularization techniques

are applied in this study.

Turning to our present interest, adaptation of the Knowles partitioning, Eqs.(15)-(16)

of Section 2.1.2 apply in fMCPT also. Equations (19)-(21) necessary for the Knowles par-

titioning are rewritten for fMCPT as seen above, orthogonalized IC functions |ΦK⟩ getting

substituted for |K ′⟩ and the same for index L.
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3 Assessment

The pilot tests presented in this section were conducted using the determinant-based fMCPT

approach described in Section 2.2. For clarity of terminology, we refer to the methods in gen-

eral with prefix MP- and K- indicating Møller-Plesset and Knowles partitioning, respectively.

The results of the fMCPT-based variants are presented in comparison with the previously

introduced Fermi-vacuum-dependent projected MCPT-based (pMCPT) variants90 taking

Full-CI (FCI) as reference.

Apart from CAS, perfect pairing generalized valence bond (GVB) functions are also inves-

tigated as reference. The latter offers an economic means of accounting for static correlation

and works well at around equilibrium and in single bond breaking processes. If the geminals

are singlet coupled, multiple bond breaking is qualitatively correct only for isolated single

bonds. Breaking multiple bonds or adjacent single bonds calls for an extension of GVB

which is possible e.g. by involving triplet components mixed to singlets at the two-electron

level. This leads to a spin contaminated two-electron function aka. geminal.

An anti-symmetrized product of strongly orthogonal, spin-contaminated geminal (APSG)

wavefunction is a suitable reference when overall spin is just slightly spoiled.108 When spin

is seriously violated by the geminal product, a partial restoration can be of help, achieved

by the so-called half-projection yielding half-projected APSG, HPAPSG.

Previously, we have successfully applied the variationally optimized HPAPSG wavefunc-

tion as reference for describing the lowest singlet and triplet states of biradical systems

both relying on UHF orbitals60,109 as well as those corresponding to the HPAPSG energy

minimum.110 The Dyall-type zero order PT scheme, exploiting the geminal structure of the

reference is here used as benchmark, under acronym SAPT2, referring to symmetry-adapted

PT.111 Of the symmetry adaptation variants discussed in Ref.,60 the so-called weak forc-

ing scheme is adopted. It is stressed that spin is purified both at the level of HPAPSG

and SAPT2. A partial spin adaptation is built in HPAPSG at zero-order, while SAPT2

incorporates the effect perturbatively, in a Dyall-type framework.
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3.1 Bond dissociation curve of LiH

First, the potential curve for a bond dissociation is monitored on a test system of the

heteronuclear diatomic lithium-hydride molecule. The system starts to exhibit correlated

characteristics of medium strength as the weight of the first doubly excited determinant,

lowest in energy, becomes comparable to that of the Hartree-Fock determinant during the

bond dissociation.

In Fig. 1 the influence of the pivot can be observed by comparing pMCPT to fMCPT. It

also serves to demonstrate the performance of the Knowles partitioning relative to its MP

counterpart. Potential energy curves were computed using a CAS(2,2) reference function to

capture static correlation.

Comparing with MP-pMCPT2, the pivot-dependent previous formulation of the Knowles

partitioning (K-pMCPT) had been observed to bring significant improvement, lowering the

6-8 mEh deviations from FCI of MP-pMCPT2 under 1 mEh at around equilibrium distance.90

However, the error curve of K-pMCPT2 is not balanced showing a significant increase during

the dissociation, as the single determinant dominated description deteriorates. By contrast,

the recent pivot-independent variant of the Knowles partitioning (K-fMCPT2) maintains an

error below 1 mEh along the entire potential curve, significantly outperforming the other

methods both regarding mean error and non-parallelity. The slight hump around 3 Å indi-

cates remaining imbalance in the description of static and dynamic correlation. Note that

this is a range of avoided crossing with the first excited singlet state.

Fig. 1 also serves to compare the Knowles partitioning in MCPT with more established

methodologies. The MRMP curve, obtained by the GAMESS program suite112 and shown in

Fig. 1 closely overlaps with MP-fMCPT2, which in turn can be regarded a CASPT2, without

any level-shifts, as discussed below Eq.(27) in Section 2.2. It is apparent in Fig. 1 that both

MRMP2 and CASPT2 exhibit a deficit in dynamical correlation, more at around equilibrium

and somewhat less in the dissociated regime, bringing a significant non-parallelity in addition

to the overall deviation from FCI. Both effects are spectacularly reduced by switching to the
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Figure 1: Second-order energy deviations from Full-CI as a function of interatomic distance
R in LiH in cc-pVTZ basis set. A CAS(2,2) reference function is implied. Prefix K- refers
to the Knowles partitioning. See text for more on labels.

Knowles partitioning, i.e. K-fMCPT, which is essentially a Knowles partitioning in CASPT2.

3.2 Size-consistency test on non-interacting LiH dimer

Extensivity is a key property of many-body methods and warrants careful investigation. Here

we test the related concept of size-consistency, defined as the strict additive separability of

the energy of two non-interacting subsystems. In the single reference case, the Knowles

partitioning was shown to be extensive by construction.30 The MCPT family of methods

was shown to be slightly size-inconsistent.89 This is exemplified on a test system of two

non-interacting LiH molecules in Table 1.

Focusing on MP, the errors are roughly in the 0.01 mEh range for the double zeta (DZ)

quality basis and in the 0.1 mEh range for the correlation consistent polarized DZ basis. The

fMCPT results are more favourable than pMCPT in both basis sets.

Addressing the effect of Knowles partitioning, the error is increased approximately by a

factor of three in pMCPT2, while it is considerably reduced in fMCPT2, dropping to the

level of numerical convergence threshold in the 6-31G basis test. Improvement of K-fMCPT

over K-pMCPT in Table 1 is a clear sign of the superiority of the present, pivot independent

extension over the previous approach.
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Table 1: Size-consistency errors, (Edimer − 2Emonomer), for the LiH dimer in mEh. The
reference state is a CAS(2,2) on the monomer, and their direct product for the dimer. Bond
lengths of the monomer units are 2.00 Å. Core electrons are correlated in calculations in
6-31G basis and are frozen in cc-pVDZ basis.

basis set 6-31G cc-pVDZ
MP-pMCPT2 0.1193 0.5415
K-pMCPT2 0.3178 1.0726
MP-fMCPT2 −0.0561 −0.1512
K-fMCPT2 −0.0003 −0.0853

In line with the observations of Van Dam et al.63 on size-inconsistency getting reduced

with enhancing the block-diagonal structure of the matrix of Ĥ(0) in the Hilbert-space, the

error of K-pMCPT2 is only cca. twice that of MP-pMCPT2 when only double excitations

are allowed to contribute.

3.3 Potential curve of BeH2

A more challenging bond cleavage and formation process to be monitored is provided by

the C2v insertion of a Be atom into a H2 molecule at nine standardized geometry points of

Purvis and Bartlett along a theoretical reaction pathway.113

The reference function is chosen as valence GVB. Natural molecular orbitals of the system

vary significantly along the potential energy curve. They are delocalized in the middle, at

point E, and gradually localize on Be-H bonds towards points D-A, while they correspond

to an H-H bond and a separated Be towards points F-I, in line with chemical intuition.

The strongly correlated characteristics of the system in points D-F stem from the complete

deterioration of the single-determinantal picture as two determinants become equal in weight

then switch dominance of the CI expansion along the path. As a consequence, it can be

observed in Fig. 2 that methods based on projected MCPT yield significantly larger errors

in the D-F range, reaching a maximum deviation from FCI of 20-25 mEh in point E. Knowles

partitioning in pMCPT reduces the error of MP-pMCPT but cannot mitigate the large non-

parallelity of the curve. The MP-fMCPT results are much improved, showing no sudden
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Figure 2: Second-order energy deviations from Full-CI at standardized geometry points of
BeH2.113 Calculations were performed with a GVB reference function in cc-pVDZ basis set.
The lower panel is a zoom into the -1 to 5 mEh energy range.

increase in error at point E. The success of the Knowles partitioning with the fMCPT-based

variant is spectacular in Fig. 2 staying below 2 mEh in all points. The absence of pronounced

error trends and the overall lower deviations indicate that Knowles partitioning in fMCPT

consistently outperforms MP, similarly to the experience in single-reference theory.30

The effect of partitioning optimization on the value of parameters is shown in Fig. 3,

on the example of geometry D, exhibiting matrices F, Λ and their difference as colormaps.

The scale of color codes in panels (a) and (b) focus on a ±1 Eh window around the Fermi-

level, facilitating comparison of offdiagonal and active index involved elements. (Diagonals

of both F and Λ fall in the range of [-4.8,2.4] Eh.) The block structure of matrices in

panel (a) and (b) indicate that the full Fockian was considered in MP-fMCPT while a

block-diagonal assumption was applied on the effective one-body operator of K-fMCPT.

This means that only the diagonal blocks in panel (c) can be regarded as resulting from

parameter optimization. The active-virtual block of panel (c) is simply the negative of panel

(a), shown on a finer scale.

The most significant change in the active block is closing of the gap, as deducible from Fig.

3. Setting the Knowles-condition has a more pronounced effect on offdiagonal elements in

the virtual block, amply scattering it with elements on the order of 0.1 mEh, of both positive
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Figure 3: Matrices of effective one-body operators corresponding to MP-fMCPT (panel a),
K-fMCPT (panel b) and their difference (panel c) on the example of the BeH2 molecule in
cc-pVDZ basis at geometry point D. Dashed lines mark the separation of doubly occupied,
active and virtual orbital sets of the GVB reference.
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and negative sign, and indicating a non-negligible orbital transformation if one wished to

turn to Knowles-optimized virtuals from pseudo-canonicals. These observations are valid all

along the reaction path considered for BeH2. Though plots of Λ − F differ at each geometry,

they exhibit no tendency that would justify to show them all.

3.4 Distortion of H6 from D6h to D3h

A typical example for the breakdown of GVB is the D6h to D3h distortion of H6, with a ring

of adjacent bonds being broken and formed simultaneously. For this system, the HPAPSG

wavefunction is taken as zero order and SAPT2 serves as an example for a Dyall-type dynamic

correlation method.

Full variational optimum corresponds to localized bonds (B) between pairs of atoms.

This introduces an artefactual cusp at the hexagonal symmetry, arising from the crossing

of the two Kekulé-like bonding arrangements as the curve HPAPSG(B) in Fig. 4a shows.

Though higher in energy by cca. 10 to 35 mEh in Fig. 4b HPAPSG(D) based on delocalized

UHF natural orbitals yields significantly reduced error variation along the reaction path and

exhibits zero derivative at the hexagonal structure, α = 60◦.

Comparing the perturbative results obtained with the one-electron and two-electron type

zero-order Hamiltonians, MP-fMCPT2 is observed to have a slight advance over SAPT2

and the remaining space for correlation is, in this case too, well-exploited by the Knowles

partitioning (K-fMCPT2). The order in energy of the two orbital sets is preserved upon

PT, but the energy difference is considerably diminished. With localized orbitals, all PT

methods diminish the cusp of the reference at 60 degrees. Knowles partitioning exhibits the

smallest error, below 10 mEh, and the cusp of K-fMCPT2 is slightly reduced in comparison

with MP-fMCPT2.
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Figure 4: Second-order energy deviations from Full-CI of H6 transition from D6h to D3h

at different central angles, α (between neighbouring H atoms alternating with 120◦ − α).
Calculations were performed with HPAPSG reference functions in minimal H6S3S basis set.

4 Conclusions

Knowles partitioning gets the effect of a one-body zero-order closer to that of the full Hamil-

tonian. The zero-order obtained from the Knowles condition remarkably improves upon MP2

in the single reference framework. Driven by this success we have been seeking an extension

to the MR case, with similar performance.

The stationary condition based reformulation of the Knowles equations, reported in this

work, facilitates adaptation of the theory in the context of MRPT’s, based on a one-body

zero-order Hamiltonian.

In the present, proof of concept study we adapted the theory in frame MCPT. The

equations being closely parallel, MP-fMCPT can be considered a CASPT variant and an

implementation of the Knowles partitioning in CASPT can be expected to give results similar

to K-fMCPT, shown here.

Pilot numerical results are encouraging in showing significant improvement over the MP

partitioning in scenarios including single bond breaking as well as bond rearrangement reac-
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tions exhibiting strong correlation pattern. The Knowles partitioning was found to perform

equally reliably with reference functions ranging from CAS, through GVB till the more intri-

cate spin-mixed and half-projected geminal product, HPAPSG. Size-inconsistency of fMCPT

in the MP partitioning is also shown to get beneficially reduced by the Knowles partitioning.

The results of this study are stimulating for a broader range of numerical tests, including

intruder prone examples as well as energy differences, representing an important field of

application of MRPT. Unfortunately, such calculations are out of the reach of our transparent

but inefficient, pilot implementation. A more extensive test is especially warranted with

a focus on the intruder effect since there is no guarantee from the theoretical side that the

Knowles partitioning would circumvent it. Inclusion of the Knowles equations in gradient

calculation by Lagrange-multipliers as well as extension to multistate theory can be envisaged

as future lines of development.
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(51) Davidson, E. R.; Jarzȩcki, A. A. Recent Advances in Multireference Methods ; World

Scientific, 1999; Chapter 2, pp 31–63.

(52) Roos, B.; Andersson, K.; Fülscher, M.; Malmqvist, P.-Å.; Serrano-Andrés, L.; Pier-

loot, K.; Merchán, M. Multiconfigurational perturbation theory: Applications in elec-

tronic spectroscopy. Advances in Chemical Physics 1996, 93, 219.

(53) Pulay, P. A perspective on the CASPT2 method. International Journal of Quantum

Chemistry 2011, 111, 3273–3279.

(54) Nakajima, T.; Tsuneda, T.; Nakano, H.; Hirao, K. Recent Advances in Electronic

Structure Theory. Journal of Theoretical and Computational Chemistry 2002, 01,

109–136.

(55) Dyall, K. The choice of a zeroth-order Hamiltonian for second-order perturbation

theory with a complete active space self-consistent-field reference function. J. Chem.

Phys. 1995, 102, 4909.

(56) Mahapatra, U. S.; Datta, B.; Mukherjee, D. Development of a size-consistent state-

30



specific multireference perturbation theory with relaxed model-space coefficients.

Chem. Phys. Letters 1999, 299, 42–50.

(57) Lei, Y.; Liu, W.; Hoffmann, M. R. Further development of SDSPT2 for strongly

correlated electrons. Molecular Physics 2017, 115, 2696–2707.

(58) Pathak, S.; Lang, L.; Neese, F. A dynamic correlation dressed complete active space

method: Theory, implementation, and preliminary applications. The Journal of Chem-

ical Physics 2017, 147, 234109.

(59) Rosta, E.; Surján, P. R. Two-body zeroth order Hamiltonians in multireference per-

turbation theory: The APSG reference state. J. Chem. Phys. 2002, 116, 878–890.

(60) Mihálka, Z. É.; Surján, P. R.; Szabados, Á. Symmetry-adapted perturbation with

half-projection for spin unrestricted geminals. J. Chem. Theory Comput. 2021, 17,

4122–4143.

(61) Angeli, C.; Pastore, M.; Cimiraglia, R. New perspectives in multireference perturba-

tion theory: the n-electron valence state approach. Theoretical Chemistry Accounts

2007, 117, 743–754.

(62) Sokolov, A. Y. Multireference Perturbation Theories Based on the Dyall Hamiltonian.

Advances in Quantum Chemistry 2024, 90, 121–155.

(63) van Dam, H. J. J.; van Lenthe, J. H.; Pulay, P. The size consistency of multi-reference

Møller–Plesset perturbation theory. Mol. Phys. 1998, 93, 431–439.

(64) van Dam, H.; van Lenthe, J.; Ruttnik, P. Exact size consistency of multireference

Møller–Plesset perturbation theory. Int. J. Quantum Chem. 1999, 72, 549–558.

(65) Andersson, K.; Malmqvist, P.-Å.; Roos, B. O. Second-order perturbation theory with

a complete active space self-consistent field reference function. J. Chem. Phys. 1992,

96, 1218.

31



(66) Celani, P.; Werner, H. Multireference perturbation theory for large restricted and

selected active space reference wave functions. J. Chem. Phys. 2000, 112, 5546.

(67) Malmqvist, P. Å.; Pierloot, K.; Shahi, A. R. M.; Cramer, C. J.; Gagliardi, L. The

restricted active space followed by second-order perturbation theory method: Theory

and application to the study of CuO2 and Cu2O2 systems. The Journal of Chemical

Physics 2008, 128, 204109.

(68) Sauri, V.; Serrano-Andrés, L.; Shahi, A. R. M.; Gagliardi, L.; Vancoillie, S.; Pier-

loot, K. Multiconfigurational Second-Order Perturbation Theory Restricted Active

Space (RASPT2) Method for Electronic Excited States: A Benchmark Study. Journal

of Chemical Theory and Computation 2011, 7, 153–168.

(69) Guo, S.; Watson, M. A.; Hu, W.; Sun, Q.; Chan, G. K.-L. N-Electron Valence State

Perturbation Theory Based on a Density Matrix Renormalization Group Reference

Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(p-

Phenylenevinylene). Journal of Chemical Theory and Computation 2016, 12, 1583–

1591.

(70) Mahajan, A.; Blunt, N. S.; Sabzevari, I.; Sharma, S. Multireference configuration

interaction and perturbation theory without reduced density matrices. The Journal of

Chemical Physics 2019, 151, 211102.

(71) Anderson, R. J.; Shiozaki, T.; Booth, G. H. Efficient and stochastic multireference per-

turbation theory for large active spaces within a full configuration interaction quantum

Monte Carlo framework. The Journal of Chemical Physics 2020, 152, 054101.

(72) Kollmar, C.; Sivalingam, K.; Guo, Y.; Neese, F. An efficient implementation of the

NEVPT2 and CASPT2 methods avoiding higher-order density matrices. The Journal

of Chemical Physics 2021, 155, 234104.

32



(73) Granovsky, A. A. Extended multi-configuration quasi-degenerate perturbation theory:

The new approach to multi-state multi-reference perturbation theory. The Journal of

Chemical Physics 2011, 134, 214113.

(74) Battaglia, S.; Lindh, R. Extended Dynamically Weighted CASPT2: The Best of Two

Worlds. Journal of Chemical Theory and Computation 2020, 16, 1555–1567.

(75) Shiozaki, T.; Győrffy, W.; Celani, P.; Werner, H.-J. Communication: Extended multi-

state complete active space second-order perturbation theory: Energy and nuclear

gradients. The Journal of Chemical Physics 2011, 135, 081106.

(76) Park, J. W. Analytical nuclear gradient and derivative coupling theories for multiref-

erence perturbation methods. Phys. Chem. Chem. Phys. 2025, 27, 3531–3551.

(77) Roos, B. O.; Andersson, K. Multiconfigurational perturbation theory with level shift

— the Cr2 potential revisited. Chemical Physics Letters 1995, 245, 215–223.

(78) Forsberg, N.; Malmqvist, P.-Å. Multiconfiguration perturbation theory with imaginary

level shift. Chem. Phys. Letters 1997, 274, 196.

(79) Battaglia, S.; Fransén, L.; Fdez. Galván, I.; Lindh, R. Regularized CASPT2: an

Intruder-State-Free Approach. J. Chem. Theory Comput. 2022, 18, 4814–4825.

(80) Witek, H. A.; Choe, Y.-K.; Finley, J. P.; Hirao, K. Intruder state avoidance multirefer-

ence Møller–Plesset perturbation theory. Journal of Computational Chemistry 2002,

23, 957–965.

(81) Ghigo, G.; Roos, B. O.; Åke Malmqvist, P. A modified definition of the zeroth-order

Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chemical Physics

Letters 2004, 396, 142–149.

(82) Sarkar, R.; Loos, P.-F.; Boggio-Pasqua, M.; Jacquemin, D. Assessing the Performances

33



of CASPT2 and NEVPT2 for Vertical Excitation Energies. Journal of Chemical The-

ory and Computation 2022, 18, 2418–2436.

(83) Finley, J. P.; Chaudhuri, R. K.; Freed, K. F. Applications of multireference perturba-

tion theory to potential energy surfaces by optimal partitioning of H: Intruder states

avoidance and convergence enhancement. J. Chem. Phys. 1995, 103, 4990.

(84) Witek, H. A.; Nakano, H.; Hirao, K. Multireference perturbation theory with opti-

mized partitioning. I. Theoretical and computational aspects. J. Chem. Phys. 2003,

118, 8197–8206.

(85) Witek, H. A.; Nakano, H.; Hirao, K. Multireference perturbation theory with opti-

mized partitioning. II. Applications to molecular systems. J. Comput. Chem. 2003,

24, 1390–1400.

(86) Surján, P. R.; Rolik, Z.; Szabados, Á.; Kőhalmi, D. Partitioning in multiconfiguration

perturbation theory. Ann. Phys. (Leipzig) 2004, 13, 223–231.

(87) Kollmar, C.; Sivalingam, K.; Neese, F. An alternative choice of the zeroth-order Hamil-

tonian in CASPT2 theory. The Journal of Chemical Physics 2020, 152, 214110.

(88) Rolik, Z.; Szabados, Á.; Surján, P. R. On the perturbation of multiconfiguration wave

functions. J. Chem. Phys. 2003, 119, 1922.

(89) Szabados, A.; Rolik, Z.; Tóth, G.; Surján, P. R. Multiconfiguration perturbation the-

ory: Size consistency at second order. J. Chem. Phys. 2005, 122, 114104.

(90) Szabados, Á.; Gombás, A.; Surján, P. R. Knowles Partitioning at the Multireference

Level. The Journal of Physical Chemistry A 2024, 128, 9311–9322.

(91) Shavitt, I.; Bartlett, R. J. Many-Body Methods in Chemistry and Physics ; Cambridge

University Press: Cambridge, 2009.

34



(92) Wolinski, K.; Pulay, P. Generalized Mo/ller–Plesset perturbation theory: Second order

results for two-configuration, open-shell excited singlet, and doublet wave functions.

J. Chem. Phys. 1989, 90, 3647.

(93) Werner, H.-J. Third-order multireference perturbation theory The CASPT3 method.

Mol. Phys 1996, 89, 645–661.

(94) Kutzelnigg, W.; Mukherjee, D. Normal order and extended Wick theorem for a mul-

ticonfiguration reference wave function. The Journal of Chemical Physics 1997, 107,

432–449.

(95) Kutzelnigg, W.; Shamasundar, K.; Mukherjee, D. Spinfree formulation of reduced den-

sity matrices, density cumulants and generalised normal ordering. Molecular Physics

2010, 108, 433–451.

(96) Meyer, W. In Methods of Electronic Structure Theory ; Schaefer, H. F., Ed.; Springer

US: Boston, MA, 1977; pp 413–446.

(97) Werner, H.; Knowles, P. J. An efficient internally contracted multiconfigura-

tion–reference configuration interaction method. The Journal of Chemical Physics

1988, 89, 5803–5814.

(98) Boggio-Pasqua, M.; Jacquemin, D.; Loos, P. Benchmarking CASPT3 vertical excita-

tion energies. The Journal of chemical physics 2022, 157, 014103.

(99) Surján, P. R.; Szabados, Á. In Fundamental World of Quantum Chemistry, A Tribute

to the Memory of Per-Olov Löwdin; Brändas, E. J., Kryachko, E. S., Eds.; Kluwer:

Dordrecht, 2004; Vol. III; pp 129–185.

(100) Ahlrichs, R.; Scharf, P. The Coupled Pair Approximation. Adv. Chem. Phys. 1987,

67, 501.

35



(101) Szalay, P. G. In Recent Advances in Coupled-Cluster Methods ; Bartlett, R. J., Ed.;

Recent Advances in Computational Chemistry; World Scientific, 1990; Vol. 3; pp

81–124.

(102) Kobayashi, M.; Szabados, Á.; Nakai, H.; Surján, P. R. Generalized Møller-Plesset

Partitioning in Multiconfiguration Perturbation Theory. J. Chem. Theory Comput.

2010, 6, 2024–2033.

(103) Tarumi, M.; Kobayashi, M.; Nakai, H. Generalized Møller–Plesset Multiconfiguration

Perturbation Theory Applied to an Open-Shell Antisymmetric Product of Strongly Or-

thogonal Geminals Reference Wave Function. Journal of Chemical Theory and Com-

putation 2012, 8, 4330–4335.

(104) Löwdin, P.-O. Some remarks on the resemblance theorems associated with various

orthonormalization procedures. Int. J. Quantum Chem. 1993, 48, 225–232.

(105) Szabados, Á.; Surján, P. R. Progress in Theoretical Chemistry and Physics ; Springer:

Dordrecht, 2009; pp 257–269.

(106) Szabados, Á.; Margócsy, Á.; Surján, P. R. Pivot invariance of multiconfiguration per-

turbation theory via frame vectors. The Journal of Chemical Physics 2022, 157,

174118.

(107) MacAusland, R. The Moore-Penrose inverse and least squares. Math 420: Advanced

Topics in Linear Algebra 2014, 1–10.

(108) Földvári, D.; Tóth, Z.; Surján, P. R.; Szabados, Á. Geminal perturbation theory based

on the unrestricted Hartree-Fock wavefunction. J. Chem. Phys. 2019, 150, 034103.

(109) Mihálka, Z. É.; Szabados, Á.; Surján, P. R. Improving half-projected spin-

contaminated wave functions by multi-configuration perturbation theory. J. Chem.

Phys. 2021, 154, 234110.

36



(110) Ágnes Szabados; Éva Mihálka, Z.; Surján, P. R. Orbital optimisation with spin-

unrestricted and projected geminals reference. Molecular Physics 2025, 0, e2501778.

(111) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Inter-

molecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994,

94, 1887–1930.

(112) M.S.Gordon; M.W.Schmidt in: Theory and Applications of Computational Chemistry:

the first forty years ; Elsevier: Amsterdam, 2005; pp 1167–1189.

(113) Purvis, G.; Shepard, R.; Brown, F.; Bartlett, R. C2V Insertion pathway for BeH2:

A test problem for the coupled-cluster single and double excitation model. Int. J.

Quantum Chem. 1983, 23, 835–845.

37



TOC Graphic

38


