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Abstract

Properties and some applications of strongly orthogonal geminals (APSG) are reviewed empha-

sizing the motivations for their use and their shortcomings. An overview presents some techniques

capable of improving the APSG function.
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1. INTRODUCTION

A characteristic feature of present-day quantum chemistry is the lack of simple though

reliable models which were capable of describing specific phenomena or particular chemical

processes. On the contrary, contemporary quantum chemistry focuses on ab initio methods,

where the aim is to perform accurate computations without any reference to empirical data

apart from universal constants of nature. While this goal is impressive, the present authors

are convinced that as the size of the studied systems grows, there will be no way and no

reason to compute everything from the very beginning, but appropriate models, based on

previously gained knowledge, will have to be developed.

Forming effective models in chemistry, is not easy, however. This is because the systems

we investigate have too many degrees of freedom to let us treating them by simple techniques,

and too few degrees of freedom to treat them in a statistical manner.

In fact, there exist many qualitative models in chemistry, but these are usually too qual-

itative to form a basis of a reliable treatment. For example, the modeling of a polyatomic

molecule by inner-shell cores and local, two-electron chemical bonds in the valence shell is in-

herently incorporated in the chemical thinking. Nevertheless, the mathematical description

of this model is not at all trivial.

The importance of the model is electron pairs can be underlined by considering the

following fact. Many polyatomic molecules can be meaningfully, albeit approximately, de-

composed to 2-electronic units. From the pure mathematical point of view it appears that

using electron trios or quadruples instead of electron pairs, one may acquire a more exact

description. This is not necessarily the case, however. To give an example, the valence shell

of the methane molecule cannot be viewed as an ensemble of electron quads without loosing

tetrahedral symmetry of the system. The seemingly more approximate description of the

4 electron pairs preserves the spatial symmetry of the molecule, facilitating a more correct

picture.

In the past, several mathematical description of the two-electron chemical bonds have

been proposed. At the Hartree-Fock level, the concept of localized molecular orbitals[1–21]

became very fruitful, but such a description completely neglects the correlation among the

electrons, at least at the zero order. Perturbation theory is then invoked to account for

correlation effects, which has been effectively formulated[22–32] also in terms of localized
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orbitals. Such a treatment, however, necessarily faces the difficulty to treat the correlation

of the two strongly interacting electrons also perturbatively.

Correlation of close-lying electrons within a chemical bond can be included already at

the zero order. This leads to the so-called geminal theories, the name ’geminal’ coming from

the two twin electrons of a bond describing a two-electron function, the geminal.

In this paper we briefly discuss geminal-type wave functions, list their advantages and

shortcomings, and review a few technologies that aim to improve the approximation they

provide.

2. THE NOTION OF GEMINALS

Consider first the Hartree-Fock determinant of a closed-shell system:

ΨHF = φ+
1↑φ

+
1↓︸ ︷︷ ︸

φ+
1

φ+
2↑φ

+
2↓︸ ︷︷ ︸

φ+
2

. . . φ+
N
2
↑φ

+
N
2
↓︸ ︷︷ ︸

φ+
N
2

|vac〉 (1)

Here we arranged each β orbital right after their α counterpart, and indicated that they

may form a Hartree-Fock pair.

A natural generalization of this wave function reads

ΨGEMINAL = ψ+
1 ψ

+
2 . . . ψ

+
N
2

|vac〉 (2)

where

ψ+
i =

Mi∑
q=1

Ci
q φ

i+
q↑φ

i+
q↓ (3)

is a correlated singlet two-electron function, a geminal. Expansion coefficients C connect

geminals to the underlying one-particle functions. Notation φi
q expresses that, when con-

structing geminal i, functions φi
q are selected only from a subspace of basis orbitals associated

to geminal i. These subspaces are mutually exclusive[33], which is equivalent to restricting

the geminals strongly orthogonal (vide infra). Mi is the dimension of the i-th subspace.

The geminal structure specified above is not the most general one, since

(i) the indices q of the α and β functions are kept the same (”natural” geminals”, see

below), and

(ii) each geminal is kept singlet individually. Terms where two triplet geminals are coupled

to form a 4-electron singlet, etc., would also be possible, but we do not discuss them here.
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A more general form of a geminal could be written as

ψ+
i =

Mi∑
p,q=1

Ci
pq φ

i+
p↑φ

i+
q↓ . (4)

Here the coefficient matrix should be symmetric for singlet states, thus a unitary transfor-

mation within the i-th subspace can always be found bringing matrix C to diagonal form.

Accordingly, the special form of Eq.(3), as compared to the more general form Eq.(4), de-

pends merely on the basis set. Deriving the first-order spatial density matrix from geminals

Eq.(4), we obtain:

P i
pq =

∑
σ

〈ψi|φi+
pσφ

i−
qσ |ψi〉 = 2

Mi∑
r=1

Ci
pr C

i
qr, (5)

where σ labels the spin. If, however the density matrix is evaluated from geminals of form

(3), this expression is reduced to

P i
pq = 2 δpq C

i
p C

i
q, (6)

thus the density matrices will also be diagonal. This justifies the term ”natural geminal” if

the form (3) is used.

An essential difference between the constituents of the HF and the APSG wave functions

is manifested in the algebra the corresponding creation operators follow. In the Hartree-Fock

case we have the common fermion anti-commutation relations:

[φ+
iσ, φ

+
kσ′ ]+ = 0

[φ−iσ, φ
−
kσ′ ]+ = 0

[φ+
iσ, φ

−
kσ′ ]+ = δikδσσ′ (7)

which forms a Grassmann-algebra, while the geminal creation/annihilation operators obey

much more complicated algebraic rules:

[ψ+
i , ψ

+
k ]- = 0

[ψ−i , ψ
−
k ]- = 0

[ψ−i , ψ
+
k ]- = Q̂ik (8)

Here operators Q̂ik can be specified as
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Q̂ik = δik −
∑

p

Ci
pC

k
p (φk+

p↑ φ
i−
p↑ + φk+

p↓ φ
i−
p↓ ) (9)

for natural orthogonal geminals satisfying

〈ψi|ψk〉 = δik. (10)

The orthogonality condition (10) (called also as weak orthogonality, see e.g. [34, 35]) can

be expanded in the natural basis (see expansion (3) for the geminals) as

∑
p

Ci
pC

k
p = δik, (11)

whereas in the general basis the same weak orthogonality condition reads:

∑
pq

Ci
pqC

k
pq = δik. (12)

If the geminals are strongly othogonal[36–38], i.e., the are expanded in mutually exclusive

subspaces of orthogonal basis functions[33, 39], this latter condition is simplified to

∑
p

Ci
prC

k
ps = δik for all r and s, (13)

since no common indices of basis functions for geminals i 6= k are possible in this case.

Rule (8) specifies commutation instead of the fermion anticommutation seen in (7). This

is a trivial consequence of the fact that a geminal is composed of two electrons, so it can be

considered as a bosonic system. It is quite important, however, that these bosons are not

elementary, but composite particles, which is reflected by the appearance of Q̂ik which form

a matrix of operators [40–42].

For some other important works dealing with composite particles relevant to quantum

chemistry we refer to the papers[43–50]. Among these, the work by Ehrenfest and Oppen-

heimer [47] in 1931 is perhaps the first which applies the notion of composite particles.

Composite particles are often implicitly dealt with. For example, a successful model in

the current research on ultra-cold atoms is the so-called Bose-Hubbard model, where alkali

atoms are treated as composite particles, without discussing their internal structure[51].

Returning to geminals as two-electron composites, we see that dealing with a complicated

algebra expressed by Eq. (9) is extremely difficult and substantial simplifications have to be

made. This was the motivation behind introducing various orthogonality constraints[34, 35,
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52] the stronger and most widespread being the condition of strong orthogonality[36–38].

Under strong orthogonality, the commutation relation is simplified to[39]

[ψ−i , ψ
+
k ]- = Q̂i δik (14)

with

Q̂i = 1−
∑

m,n,l∈i

Ci
mlC

i
nl(φ

i+
n↑φ

i−
m↑ + φi+

n↓φ
i−
m↓) = 1− 1

2

∑
m,n,∈i

P i
mn(φi+

n↑φ
i−
m↑ + φi+

n↓φ
i−
m↓) (15)

in a general basis, while for natural geminals, using (6), this equation further simplifies to

Q̂i = 1−
∑
m∈i

(
Ci

m

)2
(φi+

m↑φ
i−
m↑ + φi+

m↓φ
i−
m↓). (16)

To express that (14) is a tremendous simplification indeed, we recall that

ψ−i ψ
+
k |vac〉 = δik|vac〉 (17)

where we utilized that

Q̂i|vac〉 = |vac〉.

In words, operators ψ−i can be considered as annihilators to ψ+
k , resulting that Wick’s

theorem remains valid as far as one has a single occurrence of a geminal in the string

studied.

The geminal wave function under the condition of strong orthogonality has been termed

as APSG (antisymmetrized product of strongly orthogonal geminals), and was investigated

by numerous authors[33, 36, 39, 42, 53–61].

3. CONNECTION BETWEEN APSG AND COUPLED CLUSTER

Several authors have pointed out that the APSG wave function (as any separable wave

function satisfying the criterion of size-extensivity) can always be written in an exponential

form[62–65]. The short derivation presented below indicates the generality of this statement.
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First, let us rewrite a single natural geminal in exponential form:

ψ+
i =

Mi∑
q=1

Ci
q φ

i+
q↑φ

i+
q↓

= Ci
1 φ

i+
1↑φ

i+
1↓ +

Mi∑
q=2

C i
q φi+

q↑φ
i+
q↓︸ ︷︷ ︸

φi+
q↑φi+

q↓φi−
1↓φi−

1↑φi+
1↑φi+

1↓

=


C i

1 +

Mi∑
q=2

Ci
q φi+

q↑φ
i+
q↓φ

i−
1↓φ

i−
1↑︸ ︷︷ ︸

t̂q


φi+

1↑φ
i+
1↓

= Ci
1




1 +

Mi∑
q=2

Ci
q

Ci
1

t̂q

︸ ︷︷ ︸
T̂i




︸ ︷︷ ︸
eT̂i

φi+
1↑φ

i+
1↓ ,

where eT̂i was possible to introduce since
(
T̂i

)2

= 0 as well as all of its higher powers.

Summarizing:

ψ+
i = Ci

1 e
T̂i φi+

1↑φ
i+
1↓

The entire APSG wave function can therefore be rewritten as

ΨAPSG = ψ+
1 ψ

+
2 . . . |vac〉

= C1
1C

2
1 . . .︸ ︷︷ ︸

C0

eT̂1eT̂2 . . .︸ ︷︷ ︸
eT̂

φ1+
1↑ φ

1+
1↓ φ

2+
1↑ φ

2+
1↓ . . . |vac〉︸ ︷︷ ︸

|HF〉

= C0 e
T̂ |HF〉, (18)

where the |HF〉 Fermi vacuum is a principal determinant, it coincides with the Hartree-Fock

wavefunction if the φi one-electron functions represent HF SCF orbitals. Coefficient C0

appears here to ensure the normalization of ΨAPSG to unity, and it may be dropped if using

intermediate normalization.

This derivation shows that the APSG Ansatz can be considered as a restricted CC wave

function. Since only doubly excited states are involved in the natural geminal expansion

7



(3), APSG is a restricted CCD. Further, since in APSG theory the underlying one-electron

orbitals are obtained variationally, the elimination of singles in the natural form (3) means

that this wave-function is of Brueckner-type.

This observation is quite interesting, since, as shown in Fig. 1, CCSD method badly

fails in describing triple bond dissociation. The APSG method, although dissociates to an

incorrect spin state, provides a more attractive potential curve. This observation stimulated

several recent studies by Head-Gordon and coworkers[65, 66].

4. ADVANTAGES AND DISADVANTAGES OF THE APSG METHOD

The following points collect the most important pros of using the APSG wave function.

1. The wave function retains the formal simplicity of HF, cf. Eqs.(1)-(2).

2. Since each geminal describes a two-electron subunit, and the geminals tend to be

localized automatically upon variational optimization in most cases, geminals may

adequately represent two-electron chemical bonds1. Thereby, the theory is close to

the chemists’ way of thinking.

3. The mathematical description shows that geminals (chemical bonds) correspond to

composite quasi-bosonic particles with an elegant algebra.

4. Owing to the strong orthogonality condition, geminals are easy to deal with.

5. The exponential cluster operator used by APSG relates it to the coupled cluster wave

function, and ensures size-extensivity of the APSG approach.

6. The method properly describes single-bond dissociation.

7. Finally, the APSG energy is strict upper bound to the true energy.

Of course, the simplifications applied in APSG theory have serious consequences. We list

below the most important ones.

1 Though often observed, localization of optimized geminals is not always the case - this may be system
and basis set dependent.
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1. Strong orthogonality is a too severe restriction, lifting it one may certainly obtain

significantly lower energies[67–69]. At this price, however, the method looses its feasi-

bility.

2. The APSG Ansatz is written in the so-called perfect-pairing approximation: electrons

1,2 form one pair, 3,4 form another one, etc., but no 1,3 pairs (e.g.) are considered.

Therefore, no inter-geminal correlation is described by APSG.

3. The method does not describe properly multiple bond dissociation, since the separated

products are of incorrect spin states.

4. The advantages listed above emerge only for the ground electronic state, while excited

states are difficult to handle.

5. The method is appropriate only for molecules with a well-defined Lewis-structure, and

hardly describes inherently delocalized objects such as benzene. Similarly, no collective

phenomena are described by APSG.

A remedy of the last point is possible by allowing fragments composed of more than two

electrons, in the sense of group function theory. Improving APSG to reduce the previous

pitfalls is possible by several correction techniques. A few of them will be discussed in the

following section.

5. IMPROVING GEMINALS

5.1. Geminal-CI

In the Geminal-CI approach[70], we use the APSG wave function as the reference state:

Ψ =
∑
K

CK ÔK |APSG〉, (19)

where ÔK = p+i−, p+q+i−k−, . . . etc. are the one-electron, two-electron etc. excitation

operators. As discussed above , we can write the APSG reference in the following form:

|APSG〉 = eT̂ |HF〉 (20)
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with the cluster operator

T̂ =
∑

i

M∑
q=2

C i
q

Ci
1

φi+
q↑φ

i+
q↓φ

i−
1↑φ

i−
1↓ ,

where i orbitals belong to the reference determinant:

|HF〉 =

N/2∏
i=1

φi+
1↑φ

i+
1↓ |vac〉

Combining (19) and (20) the Schrödinger equation will be the following:

∑
K

ĤeT̂ ÔK |HF〉CK = E
∑
K

eT̂ ÔK |HF〉CK , (21)

where we utilized the commutation relation
[
eT̂ , ÔK

]
= 0.

Multiplying by Ô†L and projecting by 〈HF| we get the so called APSG-CI equations

∑
K

〈HF|Ô†LĤeT̂ ÔK |HF〉︸ ︷︷ ︸
HLK

CK = E
∑
K

〈HF|Ô†LeT̂ ÔK |HF〉︸ ︷︷ ︸
SLK

CK , (22)

which is a non-Hermitian generalized eigenvalue problem. (Alternatively, we could proceed

from Eq. (21) with the projector 〈HF|Ô†Le−T̂ , which would result in the diagonalization of

the effective Hamiltonian e−T̂ ĤeT̂ usual in Coupled Cluster theories.)

Numerical experience [70] shows that for total energies APSG-CISD energies fall in be-

tween CISD and CCSD in case of simple second-row hydrides, being usually closer to the

latter. Size-consistency tests show that the method is fully size-consistent for processes

when the supramolecular system is decomposed into two-electronic subsystems, e.g., the

dissociation of a cluster of He atoms or hydrogen molecules. Size-consistency errors are

also decreased for other cases (i.e., dissociating to non two-electronic fragments) as well,

compared to the CISD error[70]. The APSG-CI method can also result in better energy

differences. For numerical results on the dissociation of the HF molecule, the torsional ro-

tation of H2O2 and the umbrella inversion of NH3 we refer to [70]. Eq. (22) is analogous

to the EOM-CC equations[71–73], the difference being merely in the cluster operator T̂ .

This might suggest that the APSG-CI method is capable of describing excitation energies.

This expectation was not confirmed by numerical calculations, however (Kállay and Surján,

unpublished).
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5.2. Combining APSG with MP2

An extremely simple combination of the APSG method with standard MP2 calculation

can be done by the following recipe:

1. Perform an APSG calculation, providing EAPSG

2. Perform a standard MP2 with canonical MOs, providing EMP2

3. Perform a localized MP2 but only for intra-bond correlation, providing E intra-bond
MP2

4. Compute the energy as

E = EAPSG + EMP2 − Eintra-bond
MP2

Here item 3. requires a small and straightforward modification of a localized MP2 routine[25,

26], identifying and omitting intra-pair contributions. In spite of a few promising results (see

e.g. Table I), a broader numerical study revealed that this correction scheme is insufficient

in most cases (M. Kobayashi, Á. Szabados and P.R. Surján, unpublished).

5.3. Perturbation corrections to APSG

A more robust correction is obtained if considering the APSG as zero-order approximation

and expanding the exact wave-function as a perturbation series. Among several possibilities

for a zero-order operator behind such an approach, it is most appealing to use a zero-order

containing the intra-geminal two-body terms of the Hamiltonian and a mean-field term

corresponding to inter-geminal interaction. Such a zero-order – first suggested by Dyall[74]

– incorporates all the interactions accounted for by the APSG function and leads to a PT

formalism adapted especially for the geminal wave-function. While the two-body nature of

the zero-order operator presents some computational difficulties, the results of such a theory

are remarkably good already at second order[75].

Another sophisticated perturbation theory to correct geminal wave functions was pro-

posed by Rassolov[76]. Yet another second order correction to the perfect pairing approxi-

mation was done in Ref.[77].

It is also possible to apply a less demanding correction scheme to the APSG function.

This is provided e.g. by multi-configuration perturbation theory[78, 79] (MCPT) which is a
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general PT formulation, applicable to any zero order wave-function. The theory considers

a multiconfigurational wave-function – APSG for instance – and all excited determinants

to provide a basis in the configurational space. At the same time, these functions are

eigenfunctions of the zero-order Hamiltonian, facilitating a simple inversion of the reduced

resolvent. This leads to a transparent formulation and coding of the PT expressions.

One determinant of APSG is regarded as ”ground state” and it is not present among the

functions forming the basis. This is the pivotal determinant, denoted by HF in Eq.(18).

Provided that C0 is nonzero, the basis

|ΨAPSG〉, |K〉, K = 1, . . . (23)

is complete in the CI space, it is however non-orthogonal. To deal with this situation, the

reciprocal set to the functions (23) is constructed, which is formed by the tilded functions

〈Ψ̃APSG|, 〈K̃|, K = 1, . . . .

Remarkably, no numerical procedure is needed to obtain the reciprocal set. Due to the

simple structure of the overlap matrix, the above functions can be given in the closed form

〈Ψ̃APSG| =
1

C0

〈HF|

〈K̃| = 〈K| − CK

C0

〈HF|

With the use of these functions, a non-hermitian zero-order can be written down in the

spectral form

Ĥ0 = E0|ΨAPSG〉〈Ψ̃APSG|+
∑
K=1

EK |K〉〈K̃| . (24)

Here

E0 = 〈Ψ̃APSG|Ĥ|ΨAPSG〉 (25)

is the energy of the reference state. This is not the APSG energy, which would be given by

the symmetrical expression EAPSG = 〈ΨAPSG|Ĥ|ΨAPSG〉. The deviation of E0 from EAPSG

is however typically slight in numerical terms. Values EK in expression (24) of Ĥ0 are

adjustable parameters of the theory.

Since functions |ΨAPSG〉 and |K〉 are eigenfunctions to Ĥ0 from the right, it is most

practical to expand PT corrections to the zero-order function on this basis. Tilded functions
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being eigenfunctions to H0 from the left, the well known sum over states form is valid for

the PT terms. On has e.g.

|Ψ1〉 = −
∑
K=1

|K〉〈K̃|Ŵ |ΨAPSG〉
EK − E0

at first order, with Ŵ = Ĥ − Ĥ0. This gives rise to the second order energy expression

E2 = −
∑
K=1

〈Ψ̃APSG|Ŵ |K〉〈K̃|Ŵ |ΨAPSG〉
EK − E0

Note, that E1 = 0, due to the choice Eq.(25).

Various possible ways of defining zero-order excited state energies, EK lead to various

partitionings within the MCPT framework[78–80]. It is usual to consider the form

EK = E0 + ∆K ,

where ∆K is the energy difference appearing in PT denominators. It may be constructed as

sums and differences of suitable one-particle energies, which are e.g. diagonal elements of

the generalized Fockian present in MCSCF theory. This partitioning was termed Davidson-

Kapuy (DK), being in analogy with early studies of these authors on PT, formulated in terms

of localized orbitals[23, 81]. Alternatively, one-particle energies may be taken as ionization

potentials and electron affinities calculated with ΨAPSG[82]. It is also possible to make the

choice EK = 〈K̃|Ĥ|K〉, giving rise to a generalized Epstein-Nesbet (EN) partitioning[83, 84].

Numerical experience shows that the error of second order energies is somewhat smaller in

EN than in DK partitioning. On the other hand, size-consistency of the second order

expression may be ensured in the latter but not in the former[79]. An account on different

partitionings in MCPT is given in Ref.[80].

As the above discussion indicates, MCPT framework is a collective term, referring to

several different methods, arising e.g. from different partitionings. Apart from the flexibility

of the partitioning, variation of other ingredients of the theory have been also explored. The

original formulation e.g. works with an alternative set of basis function in the CI space[78].

These are obtained by a Schmidt-orthogonalization of excited determinants to ΨAPSG, and

still possess reciprocal vectors expressible in closed form. By another modification of the

formulae, it is possible to consider a non-diagonal zero-order Hamiltonian in the MCPT

framework[85]. This study was motivated by the fact that a proper formulation of the
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Møller-Plesset (MP) partitioning[86] requires to consider the generalized Fockian as zero-

order, which is however a non-diagonal one in the general case. Solution for the first-

order wave-function proceeds by iterating the linear system of equations. For practical

applicability of the approach, it is crucial to keep the expansion of the first order venation

of limited length. Starting from the APSG function, it was found satisfactory to include

determinants at most doubly excited with respect the pivotal one. Numerical experience

obtained on dissociation curves of this MP-MCPT theory shows nice agreement with the

more elaborate PT formulation applying Dyall’s Hamiltonian[85].

5.4. Constant Denominators in Perturbation Theory

The nice properties of the APSG function detailed in Section 4 encourage the testing

of PT treatments less elaborate than those of Section 5.3. Studies with simpler correction

schemes are motivated by the idea that the essential correlation effects of a molecular system

are captured by APSG. Hence, the negligible remainder could be possible to obtain by a

simpler formalism just as well.

In order to arrive at a such an approximation scheme, we start from Löwdin’s exact

implicit energy formula, which for an arbitrary reference function Φ reads as

1 = 〈Φ|Ĥ(E − P̂ Ĥ)−1|Φ〉

In the following, we will substitute the APSG function for Φ. The implicit energy formula can

be obtained by the partitioning technique[87, 88], introducing the projector of the reference

space

Ô = |ΨAPSG〉〈ΨAPSG|

and its orthogonal complement

P̂ = 1− Ô .

We proceed by partitioning the Hamiltonian, and choosing a zero-order operator with a

common, averaged excited state energy, denoted by ν:

Ĥ0 = E0Ô + νP̂ . (26)

This simple form of Ĥ0 was first advocated by Unsøld and the resulting PT expansions were

studied in more detail by Cullen et al.[89, 90]. The zero-order ground state energy, E0 in
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Eq.(26) is in principle arbitrary, we will now assume that it equals the APSG energy

E0 = 〈ΨAPSG|Ĥ|ΨAPSG〉 = 〈Ĥ〉 .

In what follows, expectation values taken with ΨAPSG will be denoted by 〈.〉 for brevity.

Making use of

H = Ĥ0 + V

and Eq.(26), the implicit energy formula can be rewritten as

1 = 〈Ĥ(E − νP̂ − P̂ V̂ )−1〉 ,

where we used the orthogonal character of the projectors (ÔP̂ = 0). The well-known identity

(Â− B̂)−1 = Â−1 + Â−1B̂(Â− B̂)−1 = Â−1 + Â−1B̂Â−1 + Â−1B̂Â−1B̂Â−1 + . . . (27)

with Â = E − νP̂ and B̂ = P̂ V̂ gives

1 = 〈Ĥ(E − νP̂ )−1〉+ 〈Ĥ(E − νP̂ )−1P̂ V̂ (E − νP̂ )−1〉+O(3). (28)

Furthermore, based on expression (27) one has

(E − νP̂ )−1|ΨAPSG〉 =
1

E
|ΨAPSG〉 ,

which converts the implicit expression (28) into the form

E = 〈Ĥ〉+ 〈Ĥ(E − νP̂ )−1P̂ V̂ 〉+O(3)

Expanding now the energy into a Taylor-series and collecting terms of the same order, up

to order two, we see that only E0 can contribute to the second term on the right:

E = E0 + 〈Ĥ(E0 − νP̂ )−1P̂ V̂ 〉+O(3)

The inverse operator appearing in the second-order term can be expressed as

(E0 − νP̂ )−1 = (E0Ô + E0P̂ − νP̂ )−1 =
Ô

E0

+
P̂

E0 − ν
.

leading to the expression

E = E0 +
〈V̂ P̂ V̂ 〉
E0 − ν

+O(3). (29)
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This second order energy bears direct relationship with the original MCPT formulation

discussed previously[78]. In fact, Eq.(29) can be obtained by substituting the energy de-

nominators of this MCPT expression by the common value E0 − ν.

The averaged zero-order excited state energy, ν in Eq.(29) is still unspecified. It can be

considered as a single parameter of the theory, which should be set to optimize the perfor-

mance. Such a condition was suggested by Feenberg[91, 92], who required the vanishing of

the third order of the above expansion, i.e.

〈V̂ P̂ (V̂ − 〈V̂ 〉)P̂ V̂ 〉
(E0 − ν)2 = 0 (30)

Note that the numerator does depend on ν through V̂ = Ĥ − Ĥ0 = Ĥ − E0Ô − νP̂ . Since

〈V̂ P̂ V̂ P̂ V̂ 〉 = 〈ĤP̂ ĤP̂ Ĥ〉 − ν〈ĤP̂ Ĥ〉 = 〈Ĥ3〉c + E0〈Ĥ2〉c − ν〈Ĥ2〉c,

and 〈V̂ 〉 = 0, Feenberg’s condition results

ν = E0 +
〈Ĥ3〉c
〈Ĥ2〉c

(31)

for the averaged excited-state energy, with 〈.〉c referring to connected moments[93] e.g.

〈Ĥ2〉c = 〈Ĥ2〉 − 〈Ĥ〉2 (32)

〈Ĥ3〉c = 〈Ĥ3〉 − 3〈Ĥ〉2〈Ĥ〉 + 2〈Ĥ〉3 (33)

Remarkably, the PT expansion arising from choice (31) agrees completely with the connected

moment expansion (CMX) derived earlier, based on the Horn-Weinstein functional[94]. The

very same, CMX expansion is also recovered, if requiring the stationary condition[88]

d
dν

(
〈V̂ P̂ V̂ 〉
E0 − ν

+
〈V̂ P̂ (V̂ − 〈V̂ 〉)P̂ V̂ 〉

(E0 − ν)2

)
= 0

instead of Feenberg’s condition (30).

An example illustrating the performance of the CMX expansion is presented in Figure 2,

showing the symmetric dissociation of the H2O molecule. As observable in the Figure, the

the CMX corrected curves run roughly in parallel with the reference curve, while getting

gradually closer to the full CI curve. Since the Hartree-Fock wave-function yields too large

force constants, it is less advantageous to apply CMX to this reference function. The APSG

function on the other hand produces a much improved shape for the potential curve. As the
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bottom panel of Fig. 2 reflects, the curve shape is practically conserved but total energies are

significantly improved if adding the CMX corrections computed with this reference function.

Table II. shows the total energies for a Be atom calculated in 6-311G** basis set at

the Hartree-Fock, MP2, APSG and FCI levels in comparison with the CMX2 and CMX3

corrected energies.

6. CONCLUSION

The advantages of the APSG wave function listed in Section 4 make them challenging can-

didates for developing a geminal model chemistry, a point emphasized by Rassolov[76, 95–97].

The disadvantages listed there stimulated developments of several correction schemes. Some

of these have been reviewed in the present paper. Much work has yet to be done, however,

to establish a robust and general geminal-based method facilitating black-box calculations.

On the other hand, the geminal approach is indeed suitable to perform calculations on large

systems where one is focused on locally broken chemical bonds or similar effects needing

high-level account of local correlation. In these cases, the possibility of a specific treatment

may be more important than black-box generality.
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[24] E. Kapuy, Z. Csépes, and C. Kozmutza. Int. J. Quantum Chem., 23:981–990, 1983.

[25] P. Pulay and S. Saebø. Theor. Chim. Acta, 69:357, 1986.

[26] S. Saebø and P. Pulay. J. Chem. Phys., 86:914, 1987.
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Chemical Bond, Z.B.Maksić (ed.), page 205. Springer, Berlin–Heidelberg, 1990.

[43] M. Girardeau. J. Math. Phys, 4:1096, 1963.

[44] M. D. Girardeau. Phys. Rev. Letters, 27:1416, 1971.

[45] M. D. Girardeau. Int. J. Quantum Chem., 17:25, 1980.
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TABLE I: Inversion barrier of the H2O and NH3 molecule, computed in 6-311G** basis set. Ab-

breviation APSG-MP2 refers to the procedure described in Section 5 5.2.

Method Barrier [kJ/mol]

H2O NH3

APSG 163.30 29.47

APSG-MP2 148.54 25.69

MP2 145.85 24.39

CCSD 147.99 25.31

CCSDT 148.89 25.71
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TABLE II: Total energies for the Be atom in 6-311G** basis set in atomic units.

Etot / Eh

HF-SCF -14.57187

MP2 -14.59847

HF + CMX2 -14.58179

HF + CMX3 -14.58789

APSG -14.61734

APSG + CMX2 -14.63210

APSG + CMX3 -14.63323

FCI -14.63338

FIG. 1: Dissociation curve of the N2 molecule obtained in STO-3G basis set by the APSG, CCSD

and full CI methods.
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FIG. 2: Symmetric dissociation of the water molecule obtained by low-order terms of the CMX

expansion, computed with the Hartree-Fock and the APSG function. The basis set is 6-31G,

angle ∠(H,O,H) is fixed at 104.5 oC. Energy error displayed in the bottom panel is computed as

Etotal − EFCI.
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