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Abstract

With the aim of developing linear-scaling methods, we discuss perturbative approaches designed

to avoid diagonalization of large matrices. Approximate molecular orbitals can be corrected by

perturbation theory, in course of which the Laplace transformation technique proposed originally

by Almløf facilitates linear scaling. The first order density matrix P corresponding to a one-electron

problem can be obtained from an iterative formula which preserves the trace and the idempotency

of P so that no purification procedures are needed. For systems where P is sparse, the procedure

leads to a linear scaling method. The algorithm is useful in course of geometry optimization or

self-consistent procedures, since matrix P of the previous step can be used to initialize the density

matrix iteration at the next step. Electron correlation methods based on the Hartree-Fock density

matrix, without making reference to molecular orbitals are commented on.
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1. INTRODUCTION

Computational effort required by diagonalization of matrices scales cubicly with the ma-

trix dimension. In quantum chemistry, one often meets problems for which the dimension is

so large that explicit diagonalization, even with the aid of modern computers, is prohibitive.

In electron correlation calculations, if configuration interaction (CI) is used, the dimension

of the Hamiltonian matrix shows a factorial dependence on the system size (number of

electrons/basis functions). This area was therefore the first where Lanczos-type iterative

methods were applied, where one or more eigenvectors of the matrix are sought by acting

with the matrix on a trial vector repeatedly. A disadvantage is that it may be difficult to

obtain eigenvectors more than a few. Quantum chemical applications to the CI problem

became revolutionized when the action of the Hamiltonian on the trial vector was directly

formulated, so that the huge Hamiltonian matrix was never explicitly constructed (”direct

CI” see ref.[1]), and when the iterative procedure was accelerated by diagonalizing the small

matrices of the Hamiltonian in the iterative subspace (Davidson’s technique[2].

In standard one-electron theories the diagonalization of a one-electron Hamiltonian (Fock-

ian, Kohn-Sham matrix or a simple Hückel Hamiltonian) is required. Albeit these have much

smaller size as compared to CI matrices (their dimension being simply the basis set size),

large molecular systems or nanostructures may induce serious computational difficulties

making it necessary to avoid explicit matrix diagonalization.

In this paper, we shall review two approximation approaches which avoid the explicit

diagonalization of large one-electron Hamiltonians. The Hamiltonian may either be a one-

electron operator by construction (Hückel, tight-binding) or may emerge from theories that

start with the many-electron Hamiltonian and arrive to an effective one-electron operator

(Hartree-Fock, Kohn-Sham) via appropriate approximation steps. The formulae we are

going to discuss are applicable in both cases.

The literature of density matrix calculation without making reference to molecular

orbitals is huge. We mention Green-function techniques[3, 4], numerical minimization

procedures[5–9], divide and conquer algorithms[10–12], renormalization group techniques[13,

14], using the sign matrix of the Hamiltonian[15]. Reviews Refs.[16, 17] may also be con-

sulted for getting an orientation in the field. Here, we do not aim to review all the above

methods. Rather, we detail two perturbative schemes developed in our laboratory, discussing
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only the closely related approaches. We shall also elaborate procedures that step beyond

the one-electron model and aim the calculation of electron correlation based on the density

matrix obtained at the one-electron level.

2. PERTURBATIVE ENERGY ESTIMATION USING LAPLACE TRANSFORM

Let us assume that we have a large molecular system, defined over a basis set of atomic

orbitals (AOs) {χµ}, and an approximate set of molecular orbitals (MOs) {φi}. On approx-

imate MOs we mean a set of occupied and virtual orbitals selected by chemical intuition,

which do not exactly obey the Brillouin theorem. An example is, for a system of two or

more interacting nanosystems, the ensemble of the MOs of the isolated subsystems. If the

interaction is not too strong, it can be conveniently handled by perturbation theory (PT),

leading to the second order formula

E(2) = −
occ∑

i

virt∑

k

WikWki

εk − εi

, (1)

with i, k being MO indices and ε are the respective zero-order one-particle energies. If the

number of MOs is very large, computation of the above formula, especially evaluation of the

effective matrix elements Wik, is time consuming. The main difficulty is that matrix W in

the approximate one-particle MO set is usually not sparse. Expanding the MOs ϕ as linear

combinations of AOs χ:

ϕi =
∑
µ

iCmu χµ, (2)

one might attempt to transform Eq.(1) to the original basis of site-centered AOs. However,

substituting (2) into (1) alone is not useful from the computational point of view, since

the energy denominator prevents one to perform the summation over MO indices k and i

independently.

An ingenious idea for factorizing the energy denominator in PT was proposed by Almlöf

[18, 19], who applied the identity

1

εk − εi

=

∞∫

0

e−sεkesεi ds, (3)

which is the formula for the inverse Laplace transformation of (1/x), with x standing for the

energy denominator. The integral is convergent if the energy gap between the occupied and
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virtual states, εk − εi, is positive. This idea has been applied to the evaluation of electron

correlation energy with considerable success[19–21].

Substituting identity (3) into (1) and using that Wik = 〈ϕi|W |ϕk〉, we get the expression

E(2) =

∞∫

0

e(s) ds (4)

with

e(s) =
∑

µνλσ

tµν f p
νλ(s) tλσ fh

σµ(s), (5)

where tµν = 〈χµ|W |χν〉 is the effective hopping interaction between localized sites, and we

have introduced the notations for the s-dependent energy-weighted density matrices

f p
νλ(s) =

virt∑

k

e−sεk Ck
ν Ck

λ

fh
σµ(s) =

occ∑

i

e sεi Ci
µC

i
σ. (6)

Since matrix t, in contrast to W , is extremely sparse in several applications, a very fast

evaluation of Eq.(5) is possible at the price of a quadrature (4). This obviously facilitates an

O(n) treatment for large systems if the number of nonzero t and f matrix elements grows

linearly with the system size.

As an illustration of the sparseness, we present elements of the Hückel density matrix of

carbon nanotubes in Fig. 1 as a function of the distance between sites µ and ν. Apparently

there is an exponential decay in the case of a semiconducting tube (note the logarithmic

scale). Obviously, the same behaviour is inherited by energy weighted density matrices f p(s)

and fh(s). For these systems calculation of the interaction energy may bring a considerable

time gain if exploiting sparsity when multiplying matrices according to Eq.(5). Gap-less

systems, like the case of a metallic tube shown if Fig. 1 show a different behaviour. For these

systems density matrix elements hardly decay with the distance, hence matrix multiplication

in Eq.(5) remains formally proportional to N3.

The appealing feature of Eq.(5) is that only the site-site interaction matrix t depends on

the relative position of the interacting partners, while the energy-weighted density matrices

are solely characteristic to the zero-order (noninteracting) subsystems. These, therefore,

should be evaluated just once when scanning the interaction energy surface. In addition, if

the subsystems happen to be identical (cf. a molecular crystal), one can make use of the fact
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that their matrices fp and fh are the same. All of this may result in orders-of-magnitudes

saving in computational time, if the second order energy E(2) is to be evaluated at many

points in configuration space, provided that the structure of interacting partners is kept

rigid.

We illustrate this idea on the example of interacting carbon nanoclusters treated at the

Hückel-level. Each carbon atom is considered as a site, and an effective one-electron-per-site

model is used with the Hamiltonian

Ĥ =
∑

A

ĤA +
∑

A<B

∑

µ∈A

∑

ν∈B

tµν (a†µaν + h.c.). (7)

Here A runs over the subsystems (in Table I e.g. A=1 is the C60 molecule, A=2 is the

(10,10) nanotube), ĤA is the Hamiltonian of the isolated subsystem A, while tµν are the

inter-system hopping matrix elements for which we take tµν = −t0Sµν with the overlap

integral Sµν between Slater type carbon 2pz orbitals with an exponent of ζ=2.895 Å−1

oriented normally to the molecular surface. (Intermolecular Hückel Model, IMH)[22]. The

spirit of the model is the similar to that of Stafström’s [23–25]. Similar models were also

applied recently to DWNTs [26, 27].

Solution of the model involves the following steps: (i) the in vacuo Hamiltonians HA are

diagonalized separately for both monomers and the energy-weighted density matrices fh and

fp of Eq.(6) are saved; (ii) the inter-system hopping interaction is computed in second order

via (4) and (5); (iii) to describe non-hopping effects, a van der Waals type 6-12 site-site

potential is added to the interaction energy with A6=25.667 eV and A12=154447.9 eV. (The

above values of parameters t0, ζ, A6 and A12 were obtained by fitting to results of ab initio

calculations on small systems.)

The time requirement for calculating the interaction energy of a pair of aligned pieces of

semiconducting carbon nanotubes is presented in Fig. 2. For about 1500 sites the calcula-

tion time of second order PT are similar by ordinary means – Eq.(1) – and by the Laplace

transformed expression – Eq.(4). However Eq.(1) shows a more drastic increase in computa-

tion time with system enlargement if compared with the application of Laplace-transformed

denominators in Eq.(4).

Formula (4) has been applied successfully for the exploration of interaction energy surfaces

of weakly interacting nanoclusters like bundles of tubes[28] and double wall nanotubes[29].

Here we present the characteristics of the interaction energy hypersurface of a fullerene
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molecule encapsulated within a (10,10) nanotube. Relative position of the fullerene and

the tube was varied by fixing the tube and pulling and rotating the C60 molecule till a

grid of all non-equivalent geometry points were produced. A 2 dimensional cross-section

of the interaction surface is plotted in Fig 3 for illustration. Here the energy is given as a

function of the position of the fullerene and the angle of its rotation around the tube axis. To

characterize the hypersurface in numerical terms, energy minima and maxima are collected

in Table I for three specific orientations of the C60 molecule, i.e. when it shows either a

6-membered ring, a 5-membered ring or an apex atom towards the tube end. Based on Fig.

3 and Table I we may state that the energetic barriers to overcome when dragging a fullerene

molecule encapsulated in a nanotube along the tube axis range from a few hundredth to

a few tenth of an electronvolt. If following the minimum energy path, the molecule would

rotate when advancing in the tube.

In concluding, factorization of energy denominators of second order perturbation theory

in combination with the application of effective Hamiltonians may result in several orders

of magnitude saving of computational work. The key idea is that if one describes the

interaction between two or more subsystems with an effective Hamiltonian at many points

in the configuration space, the most demanding part of the computations (namely, the

construction of the energy weighted density matrices (6)) should be performed only once.

The condition under which this drastic simplification is possible is that the interaction should

be small enough to justify a perturbative treatment with rigid monomers. This also involves

that the effective Hamiltonian should be constructed in a way that any overlap between

monomers is neglected at the zero order. Since these conditions are quite general, we hope

that the idea will induce widespread applications in many areas.

3. ITERATIVE SEARCH FOR THE DENSITY MATRIX

Several procedures have been proposed which attempt to find the one-electron density

matrix (P ) directly, instead of constructing it from the occupied eigenvectors. A direct search

of the density matrix, has to take care of the N -representability conditions[30], which are,

at the one-electron level, the hermiticity, the idempotency and the correct trace of P . While

hermiticity and Tr(P ) = N can usually easily be ensured, idempotency is often violated. To

restore idempotency P is usually subjected to purification algorithms[6, 9, 31–33].
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We review below a simple iterative formula for P , having the essential feature of idempo-

tency conservation. That is, if one starts with an idempotent initial guess, the idempotency

of P is exactly preserved during the iteration so that no purification is needed. The trace of

the initial density matrix is also conserved. At convergence, matrix P is fully N -representable

and provides the exact energy corresponding to one of the exact wave functions of the model

Hamiltonian.

Consider an effective one-electron Hamiltonian matrix H, which is the Hückel Hamilto-

nian in a noninteracting model or the Fockian in a self-consistent procedure. The exact

density P , as represented in an orthogonal basis satisfies the equation[6]

[H,P ] = 0,

which, upon multiplying by P from the right, can be recast to a Bloch-type equation

HP − PHP = 0

or

QHP = 0

where Q = 1 − P is the hole density matrix. This equation is essentially equivalent to the

Brillouin theorem, and can also be derived from the contracted Schrödinger equation[34].

The latter equation suggests the iterative formula

P
′
= P + η (QHP ) (8)

where η is an arbitrary parameter a proper value of which can be selected to facilitate the

convergence of the iteration.

It is easy to see that, at any values for η, both the idempotency (P 2 = P ) and the correct

trace (Tr P = N) conditions are preserved upon iterating Eq.(8). As to the former property:

(P
′
)2 = P 2 + ηPQHP + ηQHPP + η2QHPQHP = P + ηQHP = P

′

where we have used that P 2 = P and PQ = 0. The trace is conserved since

Tr P
′
= Tr P + ηTr QHP = Tr P.

The latter equation holds as Tr QHP = Tr PQH = 0.
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Apart from idempotency and correct trace, P has to fulfill one further requirement: it

has to be self adjoint. Based on this, one can prove that Eq. (8) cannot converge to the

exact density matrix. The proof is as follows. Assume that starting from an approximate,

hermitian one-matrix P0 and the associated hole-matrix Q0, we have arrived at the exact

matrix P by iterating Eq. (8). One may realize, that every new term appearing in course

of this iteration bears a leftmost Q0 and a rightmost P0. Thus the exact one-matrix can be

written as

P = P0 + Q0heffP0 (9)

where an effective Hamiltonian heff is introduced. Now let us multiply Eq. (9) by P0 first

from the left, then from the right, to obtain P0P = P0 and PP0 = P . Taking the adjoint

of this latter equation and utilizing hermiticity of both P and P0, we get P0P = P which,

together with the first of the above two equations involves that P = P0. Therefore, for an

approximate, hermitian P0 we have a contradiction.

The source of the contradiction is clearly that P
′
, as defined by Eq. (8), is not hermitian

and this property is conserved upon iteration. One may correct for this, realizing that the

iteration formula

P
′
= P + η (PHQ)

has also the same trace- and idempotency conserving properties as Eq. (8). It, therefore,

facilitates the following double-iteration sequence:

P
′

= P + η (QHP )

P
′′

= P
′
+ η (P

′
HQ

′
) (10)

with Q
′
= 1− P

′
. The above two steps can be combined into one to yield

P
′′

= P + η QHP + η (P + ηQHP )H(Q− ηQHP ). (11)

Since both steps of Eq.(10) conserve the trace and the idempotency, P
′′

has the correct

properties, just like P
′
. Moreover, upon convergence, conditions QHP = 0 and PHQ = 0

are satisfied to a given accuracy, which involves that matrix P commutes with H. From

this, hermiticity of the converged matrix P automatically follows.
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Simple perturbational arguments indicate that hermiticity violation diminishes upon it-

eration by Eq.(11). If one writes H = h(0) +V where V is small, and one starts the iteration

with some P (0) which is exact with respect to h(0), one can order the terms coming from the

iteration in increasing powers of V . Expanding (11) we can write

P
′′

= P (0) + η
[
Q(0)V P (0) + P (0)V Q(0)

]

+ η2
[
Q(0)V P (0)V Q(0) − P (0)V Q(0)V P (0)

]

− η3
[
Q(0)V P (0)V Q(0)V P (0)

]
.

Assuming that the initial density matrix P (0) is hermitian, the two terms in the first square

bracket are adjoints of each other, while the two terms proportional to η2 are themselves

hermitian. The only violation of hermiticity may come from the last term, which is of order 3,

and expected to be very small. Further iteration shifts the violation of hermiticity to higher

orders, indicating that non-hermitian terms are gradually eliminated during iteration.

Mazziotti applied an alternative way of correcting for the hermiticity violation of Eq.(8):

he took the hermitian part of QHP [34]. This way however the idempotency-conserving

feature of Eqs.(8) or (10) is lost and one has to apply a purification procedure at each

iteration step.

We tested Eq.(10) against a similar, iterative algorithm used by Németh and Scuseria

[15] which aims to get the sign matrix of the Fockian. Though the latter often converges

much faster, Eq.(10) was found to work better for low-gap systems and metals. In addition,

Eq.(10) has the advantage over sign matrix iterations that (i) it does not need an a priori

estimation of the chemical potential; (ii) its intermediate results, being idempotent and

having the correct trace, give physically meaningful approximations; (iii) iterations can be

started from any good guess, e.g. from the P matrix of a previous SCF cycle or, in course

of a geometry optimization procedure, from the converged P matrix of a nearby geometry

point.

Numerical experience shows that in SCF or geometry optimization procedures, the sign-

matrix iteration is better used at the beginning, while as the density matrix P gets converged,

its refinement is more advantageous by Eq.(10).

The proper choice of parameter η is crucial[35]: chaotic behavior of the iteration scheme

can be expected for a wrongly selected value, since the mapping shown by Eq.(8) is closely

related to the logistic mapping which is a prototype for chaotic solutions[36]. The sign of η
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can be determined from the condition that the energy should decrease. Looking at the first

equation in (10), we can write E ′ = E + ηTr(QHPH), which tells that the energy change is

proportional to η. Thus the appropriate sign of η can always arrange the energy to decrease

in an elementary step. This, if the initial P is properly chosen, will ensure that we converge

to the ground state.

In Refs.[37, 38] illustrative applications were presented at the Hückel level as well as

for Hartree-Fock calculations. To determine the magnitude of η, the following strategy was

applied. For a physically related small system the best η was found by numerical experience.

As we observed a great universality in the value η when changing the system size, the same

value could be used effectively for the calculation of the larger system. Using sparse matrix

technology, one may easily perform each individual iteration in a linear scaling manner. we

applied a ”flexible” technology, storing only the nonzero elements of all matrices along with

two linear arrays for row and column indices. Standard matrix manipulation routines for

this technology are available [39]. The effectiveness of this approach clearly depends on the

extent of sparsity of the matrices.

In summarizing, we proposed a new iterative solution of the Bloch-type equation for the

first order density matrix of a one-electron model. If the number of electrons is known, no

prior knowledge of the chemical potential is required, and no purification transformations

are needed since the iteration preserves both the trace and the idempotency properties of

the one-matrix.

4. ELECTRON CORRELATION

4.1. E2[P] functional

Having obtained the density matrix by a linear-scaling procedure directly we do not have

a set of molecular orbitals (MOs) in our possession. Standard methods of electron correlation

like usual second order Møller-Plesset (MP2) or coupled clusters singles doubles rely on a

set of occupied and virtual MOs, hence they are not directly applicable. However, there

exists schemes that provide correlation energy merely from the P matrix.

The origin of such an approach may be the observation that the MP2 energy is a functional

of the Hartree-Fock density matrix [40]. This functional can be explicitly constructed by
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the Laplace-transformed version of the MP2 energy formula. Resolving the MP2 energy in

a way analogous to Eq.(4), the s-dependent energy can be given as[40]

e[2](s) = (12)

−1

2

∑

µνλσ

∑
ρτηκ

Xµρ(s)Yντ (s)Xλη(s)Yσκ(s) (ρτ |ηκ) [(µν|λσ)− (µσ|λν)]

in terms of atomic spin orbitals. In this equation X(s) and Y (s) are energy-weighted particle

and hole density matrices (EWDMs) defined by matrix P as

X(s) = esPF P. (13)

and

Y (s) = e−sQF Q. (14)

where Q = S−1 − P is the hole density matrix.

If both matrices F and P are sparse, the exponential of their product can be clearly

obtained through the Taylor expansion in a linear scaling manner. The expansion is expected

to be rapidly convergent for small s, while for large s values one may obtain matrices X, Y

by using

ejsPF =
[
esPF

]j

for integer j, which limits merely the choice of quadrature points in course of the numerical

integration over s.

It is interesting to note that not only the MP2 energy can be considered as a functional

of the HF density matrix. In fact, applying a double resolution, the third order energy is

recast as

E[3] =

∞∫

0

∞∫

0

e[3](s, s′)ds ds′, (15)

while the evaluation of the MP4 formula would require a triple integration

E[4] =

∞∫

0

∞∫

0

∞∫

0

e[4](s, s′, s′′)ds ds′ds′′ (16)

with an obvious increase of numerical difficulty throughout the quadrature. Numerical

realization of the procedure at order two was performed by Nakai et al.[41, 42].
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4.2. The FLMO approach

Even if the full density matrix is not constructed from a set of MOs, there are several

ways to construct orbitals based on matrix P . In the frozen localized molecular orbital

(FLMO) approach[43], one obtains localized MOs by projecting atomic orbitals |χ〉 into the

occupied space:

|ϕocc
i 〉 =

∑
µ

(PS)µi |χµ〉.

Similarly, virtuals emerge by projecting AOs with matrix QS. In the FLMO philosophy,

AOs of an active site of a large molecule are used for projection, thus the resulting MOs will

be, to a great extent, localized on that site. These active LMOs may be used to compute the

correlation energy of the fragment. LMOs falling out of the active site are never explicitly

constructed, the serve as a frozen core for the active part of the correlation energy.

In concluding, we have mentioned two alternatives of calculating electron correlation

based on the Hartree-Fock P matrix. One may either express the desired correlation energy

formula in terms of the density matrix, or utilize P to define a set of molecular orbitals.

By the latter approach the number of orbitals, and consequently the calculation time of

the correlation energy can be kept under control. Moreover the orbitals are localized on a

preselected region of the molecule. These features represent an advantageous starting point

for future developments towards efficient calculation of local correlation energies.

Acknowledgments

This work has been supported by the Hungarian National Research Fund (OTKA), grant

numbers NI-67702, K-81588 and K-81590.

[1] B.O. Roos and P.E.M. Siegbahn. In H.F. Schaefer, editor, Modern Theoretical Chemistry,

volume 3, chapter 7. Plenum, New York, 1977.

[2] E. R. Davidson. J. Comp. Phys., 17:87, 1975.

[3] I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, B. Johansson, A. V. Ruban, and H. L.

Skriver. Phys. Rev. Letters, 76:4203, 1996.

[4] Roland Reidinger and Marc Benard. J. Chem. Phys., 94:1222, 1991.

12
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Figure legends

Fig. 1 Elements of the density matrix obtained at the Hückel level, for finite size carbon

nanotubes. A (11,9) tube is taken as a prototype for a ”semiconducting tube”, a

(10,10) tube was computed to illustrate a ”metallic tube”.

Fig. 2 Calculation time spent on computing the interaction energy by the intermolecular

Hückel model for aligned pairs of finite size carbon nanotubes.

Fig. 3 Interaction energy of a C60 molecule and a piece of a (10,10) nanotube, as a function

of the relative orientation of the interacting partners. The fullerene is encapsulated

within the tube. Position of C60 within the tube is measured on axis x, rotation angle

of C60 around the tube axis is varied on axis y. The nanotube is kept fixed.

Table caption

Table I Maxima and minima on the interaction energy surface of a C60 molecule advancing

and rotating within a piece of a (10,10) carbon nanotube. The face of the C60 as seen

looking from the tube end is indicated as table heading. Rotation of C60 is performed

around the C10 axis of the nanotube. Axes x and y span 2.5 Å and 72 o respectively

while the vertical axis z spans 0.28 eV.
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TABLE I:

maxima [eV] -9.05 -9.12 -9.12

minima [eV] -9.33 -9.23 -9.17

largest barrier [eV] 0.28 0.12 0.05
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FIG. 2:
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FIG. 3:
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