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Abstract

Two perturbation (PT) theories are developed starting from a multiconfiguration (MC)

zero-order function. To span the configuration space, the theories employ biorthogonal vec-

tor sets introduced in the MCPT framework. At difference with previous formulations, the

present construction operates with the full Fockian corresponding to a principal determinant,

giving rise to a non-diagonal matrix of the zero-order resolvent. The theories provide a simple,

generalized Møller–Plesset (MP) second-order correction to improve any reference function,

corresponding either to a complete or incomplete model space. Computational demand of the

procedure is determined by the iterative inversion of the Fockian, similarly to single reference
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MP theory calculated in a localized basis. Relation of the theory to existing multi-reference

(MR) PT formalisms is discussed. The performance of the present theories is assessed by

adopting antisymmetric product of strongly orthogonal geminals (APSG) wavefunction as the

reference function.

1 Introduction

Single-reference quantum chemical methods have achieved great success in describing molecular

electronic structure at around equilibrium geometry. However, these methods fail in calculating

systems which have near degeneracy around frontier orbitals, a situation often encountered at ge-

ometries far from equilibrium structures. For treating these latter systems, multi-reference (MR)

variational theories have been proposed, such as multiconfigurational self-consistent field (MC-

SCF),1 complete active space self-consistent field (CASSCF),2 geminal-based theories including

generalized valence bond (GVB)3 or the antisymmetric product of strongly orthogonal geminals

(APSG) theories.4–7 Although these methods can improve the description of degenerate systems

qualitatively, they usually provide an insufficient amount of dynamic correlation energy, unless

the variational space is extended to cover such a large portion of the configuration space which

in turn reduces practical applicability of the approach. To achieve a significant inclusion of dy-

namic and static correlation at the same time it is well established to apply perturbation (PT) or

coupled-cluster (CC) theories based on a multideterminantal wavefunction.

Multireference extension of PT theories has lived a number of alternative formulations, the

developments continuously being carried on. As a guiding rule, MR PT approaches can be catego-

rized being either (i) effective Hamiltonian theories with a model space of dimension higher than

one (“perturb then diagonalize”)8,9 or (ii) theories that apply to a one-dimensional model space

(“diagonalize then perturb”). Focusing on category (ii) there is still a large variety of different

formulations. For its obvious success in the realm of single-determinant dominated systems, the

Møller-Plesset (MP) partitioning of standard Rayleigh-Schrödinger PT (the Fock operator playing

the role of the unperturbed Hamiltonian) was generalized to the MR case in particularly diverse
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ways. A common origin of several of these theories is the general expression of their zero-order

Hamiltonian in the form

Ĥ(0) = E(0)Ô + P̂F̂P̂ (1)

where Ô is the projector corresponding to the one-dimensional space spanned by the reference

function and P̂ = 1− Ô is the projector complementary and orthogonal to Ô. Specific theories

differ in the definition of the Fockian F̂ , the form of projector Ô, the definition of the reference

energy E(0), the functions applied to span space P̂ and the treatment of their incidental overlap. It

is also widespread to apply a decoupled form of Eq. (1) as will be discussed below.

In the present study we devise a novel PT scheme that operates with the general form Eq. (1)

of the zero-order Hamiltonian and can be considered as the extension of the MP partitioning to

the previously introduced multiconfiguration PT (MCPT) framework.10,11 Previous variants of

MCPT employed a diagonal zero-order Hamiltonian with zero-order energies up to choice. In the

present formulation this flexibility is left off by projecting the full Fockian into space P̂ according

to Eq. (1). The zero-order Hamiltonian is non-Hermitian, due to the application of biorthogonal

vector sets specific to MCPT. Two alternatives of handling the overlap between excited determi-

nants and the reference function lead to two MCPT variants with the MP partitioning. One will be

referred to as projected or pMCPT, the other will be called unprojected or uMCPT.

To avoid any confusion, we note that acronym ’u’ in uMCPT is not the shorthand commonly

used for unrestricted orbitals. In the present work we consider restricted orbitals throughout. In

principle the determinant based formalism presented below makes the extension of the theory

straightforward for unrestricted orbitals. Such an extension shows relations with the USSG (unre-

stricted strongly orthogonal singlet-type geminals) based perturbation theory developped by Ras-

solov and coworkers12 and may be achieved without violation of the spin-symmetry.13

In this report we first present the extension of MP partitioning to the MCPT framework in

Section 2. This is followed by a survey of related formulations in Section 4. A separate short

Section 3 is devoted to the question of size-consistency. Finally, in Section 5 we give a numerical

assessment of the new method by applying it to the APSG reference wavefunction and show it
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being superior to the diagonal partitioning applied previously.

2 Theory

We assume that the normalized zero-order wavefunction ψ satisfies the zero-order equation

Ĥ(0) |ψ〉= E(0) |ψ〉 , (2)

and search the improvement to ψ and E(0) in an order-by-order expansion as

Ψ = ψ +ψ(1) + . . .

and

E = E(0) +E(1) +E(2) + . . .

where Ψ and E is an exact eigenstate and eigenenergy of the full Hamiltonian Ĥ partitioned as

Ĥ = Ĥ(0) +Ŵ .

To define a Fermi vacuum, let us distinguish a principal determinant in ψ , denoted by |HF〉1

|ψ〉 = cHF|HF〉+
∑

K∈VR

cK|K〉 ,

and let us assume that cHF is nonzero. Here and further on notation |K〉, |L〉, etc. is used to indicate

determinants excited with respect to |HF〉. Occupied and virtual indices as well as excitation level

of determinants |K〉 will be also identified based on the principal determinant |HF〉. Set VR collects

indices of those excited determinants which have nonzero contribution to the reference function.
1Depending on the molecular orbitals, |HF〉 may or may not be the Hartee-Fock (HF) determinant.
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Provided that cHF is nonzero, function ψ together with excited determinants |K〉 span the con-

figuration space and form an overlapping basis. To construct a representation of the identity oper-

ator in terms of these vectors, we need to handle their overlap. This may be done by invoking any

of the standard orthogonalization procedures which involve a numerical treatment of the overlap

matrix. The overlap can be alternatively handled in an explicit manner if following a bi-orthogonal

approach, due to the fact the overlap matrix is invertible in a closed form. Two possible ways of a

bi-orthogonal treatment are to

a) Schmidt-orthogonalize |K〉’s to ψ as a first step, to obtain vectors

|K′〉 = (1−|ψ〉〈ψ|) |K〉 .

In a second step construct the reciprocal vectors to vectors |K′〉. This version of the theory

is denoted pMCPT.

b) construct the reciprocal vector to the set formed by |ψ〉 and determinants |K〉. This version

is denoted uMCPT.

Alternatives a) and b) lead to a different definition of the projector corresponding to the one di-

mensional model space, namely

a) Ô = |ψ〉〈ψ| is a symmetrical projector if Schmidt-orthogonalization is applied first.

b) Ô = |ψ〉〈ψ̃| is a skew projector if the reciprocal set is constructed right away. A tilde is

used for denoting reciprocal vectors, i.e. 〈L̃|K〉= δLK .

The sum Ô + P̂ is invariant to the choice of basis vectors, hence a difference in the definition of

Ô results in a difference in P̂ as well. This is of importance since projectors Ô and P̂ enter the

definition of the zero-order Hamiltonian (1). Consequently the partitioning and the resulting PT

series become different in the case of a) and b). Before developing the PT treatment in the two

cases let us specify the Fockian, since it is common to both variants.
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The Fockian F̂ enters the zero-order Hamiltonian projected appropriately by Ô and P̂ to ensure

fulfillment of the zero-order Schrödinger-equation (2). We employ here a Fockian of the ordi-

nary single reference form, constructed using the density matrix corresponding to the principal

determinant. In spin-orbital basis

F̂ =
∑

i j

fi j i+ j− =
∑

i j

(
hi j +

occ∑

k

〈ik|| jk〉
)

i+ j−

with 〈ik|| jk〉 standing for antisymmetrized two-electron integrals in the 〈12|12〉 convention. In

accordance with the non-correlated form of the Fockian the zero-order energy of both variants is

defined as

E(0) = 〈HF|F̂ |HF〉

just like in ordinary single-reference MP theory.

Considering computational economy, it is obvious that projection of F̂ into space P̂ as shown in

Eq. (1) is impractical, since the matrix of Ĥ(0) is nondiagonal, with offdiagonal elements coupling

subspaces of different excitation levels. In the actual calculations, the expression of Eq. (1) is

simplified, as detailed in Section 4.

2.1 pMCPT: Schmidt-orthogonalization prior to reciprocal set construction

Schmidt-orthogonalization of determinant |K〉 to ψ produces

|K′〉= |K〉− cK|ψ〉 . (3)

Obviously, |K′〉 = |K〉 for K /∈ VR. Vectors |K′〉 together with ψ form a basis in the configuration

space. This basis is not orthogonal however as projected determinants may exhibit nonzero overlap
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among themselves. Reciprocal vectors to |K′〉 are given by11

〈K̃′| = 〈K|− cK

cHF
〈HF| . (4)

Again, 〈K̃′| = 〈K| if K /∈ VR. Since the bi-orthogonal treatment affects only excited vectors, pro-

jector Ô is symmetrical

Ô = |ψ〉〈ψ| .

The energy up to first order is also given by the symmetrical expression

E(0) +E(1) = 〈ψ|Ĥ|ψ〉 = Eref . (5)

Projector P̂ expressed with excited determinants and their reciprocal counterparts reads as

P̂ =
∑

K

|K′〉〈K̃′| . (6)

Note that in spite of P̂ looking a skew-projector, it is an ordinary Hermitean projector, since P̂ =

1− Ô. Given the expression of E(0), F̂ , Ô and P̂, the zero-order Hamiltonian is now well defined

by Eq. (1).

Imposing intermediate normalization for the wavefunction

〈ψ|Ψ〉 = 1 (7)

implies that the first-order correction satisfies

〈ψ|ψ(1)〉 = 0
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giving rise to the expansion

|ψ(1)〉 =
∑

K∈VI

tK|K′〉 . (8)

Here, VI collects indices of those vectors which interact with |ψ〉 via the Hamiltonian, i.e. 〈K̃′|Ĥ|ψ〉 6=
0. Set VI is of course much larger than VR. It includes HF and elements of VR in the general case

while it may be reduced if introducing approximations. Coefficients tK are determined from the

first-order equation
(

Ĥ(0)−E(0)
)
|ψ(1)〉 =

(
E(1)−Ŵ

)
|ψ〉 (9)

projected by 〈L̃′| ∈VI to get

∑

K∈VI

〈L̃′|F̂−E(0)|K′〉tK = −〈L̃′|Ĥ|ψ〉 . (10)

In obtaining Eq. (10) the zero-order Hamiltonian (1) was substituted on the lhs, the zero-order

equation (2) and 〈L̃′|ψ〉= 0 was applied on the rhs.

In the general case the linear system of equations (10) determines the first-order wavefunction.

Upon substituting Eq. (3) for |K′〉 and Eq. (4) for 〈L̃′| one obtains

∑

K∈VI

〈L|F̂−E(0)|K〉tK−〈L|F̂−E(0)|ψ〉
∑

K∈VI

cKtK

− cL

cHF

∑

K∈VI

〈HF|F̂−E(0)|K〉tK +
cL

cHF
〈HF|F̂−E(0)|ψ〉

∑

K∈VI

cKtK

= −〈L|Ĥ|ψ〉+ cLẼref

(11)

where

Ẽref = 〈HF|Ĥ|ψ〉/cHF .

It is possible to simplify Eq. (11) if restricting ourselves to APSG reference functions, which

include exclusively doubly excited determinants expressed in the natural basis. This structure
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allows to omit the fourth term on the lhs of Eq. (11). Furthermore, we restrict set VI to include only

indices of doubly excited determinants. This approximation eliminates the third term on the lhs of

Eq. (11). Altogether this means that reciprocal vector 〈L̃′| can be substituted by 〈L| on the lhs of

Eq. (10), leading to the equations

2x exc.∑

K

〈L|F̂−E(0)|K〉tK−〈L|F̂−E(0)|ψ〉
2x exc.∑

K

cKtK =−〈L|Ĥ|ψ〉+ cLẼref. (12)

The second-order equation

Ĥ(0)|ψ(2)〉+Ŵ |ψ(1)〉= E(0)|ψ(2)〉+E(1)|ψ(1)〉+E(2)|ψ〉 (13)

projected by 〈ψ| gives the second-order energy

E(2) = 〈ψ|Ĥ|ψ(1)〉 =
2x exc.∑

K

〈ψ | Ĥ− cKEref |K〉 tK (14)

having utilized that 〈ψ| is an eigenfunction of Ĥ(0) from the left, normalization condition (7),

expansion (8), Eqs. (3) and (5). Eqs. (12) and (14) are the working equations of the method MP-

pMCPT(APSG) presented in the applications, where an APSG reference function is adopted.

2.2 uMCPT: reciprocal set construction without Schmidt-orthogonalization

Reciprocal vectors to the set formed by |ψ〉 and |K〉’s can be given by

〈ψ̃| =
1

cHF
〈HF| (15)

and

〈K̃| = 〈K|− cK

cHF
〈HF| .
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With the use of the above vectors one can put down skew-projector Ô in the form

Ô = |ψ〉〈ψ̃| .

The sum of zero and first-order energies is also evaluated based on the non-symmetrical expression

E(0) +E(1) = 〈ψ̃ |Ĥ|ψ〉 = Ẽref

This energy expression is equivalent to the symmetric form Eref of Eq. (5) in the case where co-

efficients in the expansion of ψ are determined from diagonalization of Ĥ in a subspace of the

configuration space. This holds true for an MCSCF wave-functions or functions produced by

single- or multi-reference CI procedures but not for the APSG wavefunction considered in the

present applications. A skew-projector orthogonal and complementary to Ô is written as

P̂ =
∑

K

|K〉〈K̃| . (16)

With the above Ô and P̂ definition and E(0) and F̂ remaining unaltered, the zero order Hamiltonian

of uMCPT is again defined by Eq. (1).

A suitable form of the intermediate normalization condition in this version of the theory is

〈ψ̃|Ψ〉 = 1 (17)

consequently the first-order wavefunction should satisfy

〈ψ̃ |ψ(1)〉 = 0
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hence in terms of vectors |K〉 it can be expanded as

|ψ(1)〉 =
∑

K∈VI

tK|K〉 . (18)

In this formulation HF is missing from VI, due to the normalization (17). Coefficients tK are

determined from the first-order equation (9), projected by 〈L̃| ∈VI to get

∑

K∈VI

〈L̃|F̂−E(0)|K〉tK = −〈L̃|Ĥ|ψ〉 . (19)

In obtaining Eq. (19) the form of the zero-order Hamiltonian (1) was applied, as well as the zero-

order equation (2) and 〈L̃|ψ〉= 0. The general form of the equations determining function ψ(1) in

this variant of the theory is Eq. (19).

Considering the approximation where VI is restricted to doubly excited indices, term

−cL〈HF|F̂ −E(0)|K〉tK/cHF stemming from the overlap of 〈L| with |ψ〉 can be omitted on the lhs

of Eq. (19) leading to

2x exc.∑

K

〈L|F̂−E(0)|K〉tK = −〈L|Ĥ|ψ〉+ cLẼref . (20)

The second-order equation (13) projected by 〈ψ̃| gives the second-order energy

E(2) = 〈ψ̃ |Ĥ|ψ(1)〉 =
1

cHF

2x exc.∑

K

〈HF|Ĥ|K〉tK (21)

having utilized that 〈ψ̃| is an eigenfunction of Ĥ(0) from the left, normalization condition (17),

Eq. (15) and expansion (18). Eqs. (20) and (21) are the working equations of the method denoted

MP-uMCPT(APSG) in the applications, where an APSG reference function is adopted.
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3 Size-consistency

Among previous versions of the theory, where the zero-order Hamiltonian was assumed diagonal,

uMCPT was shown to provide size-consistent correction at second order, if energy denomina-

tors were composed of one-particle indexed quantities.11 We investigate here whether this prop-

erty subsists in MP-uMCPT and find that canonical orbitals in the single-reference sense ensure

a second-order energy well-behaving in this respect. For non-canonical orbitals, deletion of the

occupied-virtual block of the Fockian in the definition of Ĥ(0) is necessary to obtain this behaviour.

By size-consistency we understand the criterion of obtaining the energy as a sum of subsystem

energies in the case where subsystems do not interact. To study this, let us suppose that the refer-

ence function is well behaving, i.e. it is given as a product2 of noninteracting partner’s reference

functions

|ψ〉 = |ψAψB〉 ,

where index A and B label the subsystems. As a consequence, the principal determinant is also

given as the product

|HF〉 = |HFAHFB〉

appearing in the expansion of |ψ〉 with weight cA
HFcB

HF, hence the reciprocal vector 〈ψ̃| reads

〈ψ̃ | = 〈HFAHFB|/(cA
HFcB

HF) .

Since both the total Hamiltonian and the Fockian is given as a sum over non-interacting systems,

the reference energy

Ẽref = ẼA
ref + ẼB

ref

2Antisymmetrization being immaterial for noninteracting subsystems14
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and the the zero-order energy

E(0) = E(0)
A + E(0)

B

separate for terms corresponding to individual subsystems.

Determinants appearing in the expansion of |ψ(1)〉 can be classified as doubly excited on system

A, doubly excited on system B or singly excited both on system A and B, giving rise to the form

|ψ(1)〉=
A∑

K

tAB
KHF|KAHFB〉+

B∑

K

tAB
HFK|HFAKB〉+

A∑

K

B∑

I

tAB
KI |KAIB〉 (22)

with self-explanatory notations. The above expansion substituted into the coefficients’ equation

(20) we have to consider two distinct cases: (i) index L refers to a determinant doubly excited on

one subsystem, say A or (ii) index L belongs to a determinant singly excited on both subsystems.

In case (i) 〈L| can be written as

〈L| = 〈LAHFB|

and by trivial derivation one arrives to the coefficient equation

A∑

K

〈LA|F̂A−E(0)
A |KA〉tAB

KHF +
B∑

I

〈HFB|F̂B|IB〉tAB
LI =−〈LA|ĤA− ẼA

ref|ψA〉cB
HF .

This equation should contain solely quantities belonging to subsystem A, which does not hold

because of the second term on the lhs. (Coefficient cB
HF does not make any harm, in fact it has a

proper role as seen in Eq. (23).) Studying case (ii) 〈L| adopts the form

〈L| = 〈LAJB|
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and the coefficient equation is found to be

〈JB|F̂B|HFB〉tAB
LHF + 〈LA|F̂A|HFA〉tAB

HFJ +
A∑

K

〈LA|F̂A−E(0)
A |KA〉tAB

KJ +
B∑

I

〈JB|F̂B−E(0)
B |IB〉tAB

LI

=−〈LA|ĤA− ẼA
ref|ψA〉cB

J −〈IB|ĤB− ẼB
ref|ψB〉cA

L .

Due to A and B being non-interacting, coefficients of the type tAB
LJ do not contribute to the second-

order energy. The above equation – which corresponds to these rows – is therefore not important

provided it is not coupled to columns corresponding to local excitations, e.g. |LAHFB〉. Unfortu-

nately the first two terms on the lhs are just consistency-spoiling coupling terms. Summarizing the

two cases, the coefficient matrix on the lhs of Eq. (20) can be depicted as shown in Figure 1.

Substituting expansion (22) into the second-order energy formula one obtains

E(2) =
A∑

K

〈ψ̃A|ĤA|KA〉 tAB
KHF

1
cB

HF
+{A↔ B exchanged} (23)

indicating that size-consistency would hold if the equation determining tAB
KHF/cB

HF would be the

same as the equation for tA
K , when computed alone. This is spoiled by the coupling emerging in

the blocks dotted in Figure 1. Nonzero elements of these blocks are solely occupied-virtual matrix

elements of the Fockian, and are zero only if the orbitals are canonical in the single-reference sense.

In general it certainly does not hold for multireference applications. To restore size-consistency in

such a case, one can modify the partitioning by allowing nonzero elements only in the occupied-

occupied and virtual-virtual block of the Fockian.

4 Properties of MP-MCPT and survey of related theories

Several MR extensions of MP theory are related to the MP-MCPT scheme detailed above. A

characteristic feature unique to the MCPT framework is the bi-orthogonal treatment of the overlap

among basis vectors. This is in contrast to the approach introduced by Wolinsky, Sellers, and
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Pulay15,16 where internally contracted excited vectors are considered as basis vectors and Schmidt-

orthogonalization is applied to keep subspaces of different excitation levels orthogonal to each

other. Vectors belonging to the same excited subspace can be orthogonalized either by Löwdin’s

symmetrical17 or canonical scheme18,19 or by the Gramm-Schmidt procedure.20 Diagonalization

of the overlap matrix can become a bottleneck of this approach which induced the application of

partially contracted and partially uncontracted basis.17,21 To avoid the overlap problem, Murphy

and Messmer suggested to use totally uncontracted configuration state functions (CSFs) as basis

vectors in the excited space.22,23 This theory has to cope with an increased dimension of the linear

system of equations to solve in return. Both the approaches of Murphy and Messmer and the

MRMP method introduced by Hirao et al.24,25 assume the existence of a set of multiconfigurational

basis vectors orthogonal and non-interacting through Ĥ with the reference function (e.g. excited

CAS vectors). Explicit construction of these multiconfigurational basis vectors becomes necessary

only beyond third order in energy, which was never investigated with these theories to the best of

our knowledge. Within the MRMP framework McDouall and coworkers have conducted extensive

research in the line of lifting orbital optimization problems as well as reducing the size of the model

space, see Ref. 26 and references therein.

Specific treatment of overlap among excited basis vectors is of course irrelevant as far as the

zero-order Hamiltonian is of the form Eq. (1) and E(0) and Ô are defined alike. Most methods

however do not apply the zero-order operator (1) as it is. In their pioneering paper Wolinsky et

al.15 suggested decoupling interactions at the zero order using the Hamiltonian

Ĥ(0) = E(0)Ô + P̂SF̂P̂S + P̂DF̂P̂D + . . . (24)

to break down the dimension of the inversion problem for smaller sub-blocks. Here P̂S, P̂D, etc.

refer to singly, doubly, etc. excited subspaces. With such a zero-order Hamiltonian, definition of

P̂S, P̂D, etc. clearly becomes of importance and affects the behaviour of the PT series. Several

different decoupling schemes have been investigated over time18,20 while Werner reported second-
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order energies with the non-decoupled zero order of Eq. (1).21 It was also shown that increasing

the block-diagonal character of H̃(0) reduces the size-consistency error of individual energy cor-

rections.20,27

The MP-MCPT framework avoids the overlap problems present in internally contracted the-

ories by adopting a determinant based description and a bi-orthogonal treatment. At the same

time, the dimension of the linear system of equations is kept at a manageable size by a decoupling

of the type Eq. (24). In fact, restricting expansion of the first-order function to doubly excited

determinants means that the zero-order Hamiltonian of MP-MCPT reads

Ĥ(0) = E(0)Ô + P̂DF̂P̂D (25)

where P̂D is either of the form Eq. (6) or Eq. (16), summation index K restricted to doubly excited

determinants. This zero-order Hamiltonian is of course unfitted for calculating energies beyond

third order. Even third-order results are omitted from the present study where we intentionally

aim to capture a significant portion of the dynamical correlation energy at the lowest order of

a simple perturbation scheme. The error committed by decoupling of Eq. (25) as compared to

Eq. (1) is expected to be negligible at order 2. At the same time decoupling (25) means that the

coefficient matrix on the lhs of Eq. (19) is of exactly the same form as the matrix appearing in

single-reference MP calculations performed on a localized basis.28–30 The inversion of this matrix

is the rate determining step of MP-MCPT. Since the Fockian is a one-body operator, the structure of

the coefficient matrix of the linear system of equations is comfortably sparse and easily invertible

by iterative algorithms.31,32 In the MP-pMCPT variant of the theory a correction term on the lhs

of Eq. (10) makes a difference with the coefficient matrix of single-reference MP theory. This

correction affects those columns which correspond to the determinants present in the expansion of

ψ but does not alter the size of the matrix.

The definition of the Fockian as well as the zero-order energy E(0) is an important question in

MR MP theories, related to the sensitivity to intruder states. Most MP extensions use the gener-
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alized Fockian33 built with the correlated one-body density matrix of the reference function and

define the zero-order reference energy as the expectation value 〈ψ|F̂ |ψ〉. At difference with these,

the density matrix of the principal determinant is used to construct the Fockian in MP-MCPT and

we take 〈HF|F̂ |HF〉 as zero-order energy, both being the same constructions as in single-reference

MP. Our choice is motivated partly by computational simplicity and partly by previous numerical

experiences11 indicating a negligible difference in second-order results between using the uncor-

related or generalized Fockian. In fact a generalized Fockian fits better to a multiconfiguration

framework and it is preferred particularly if orbital invariance of the theory is desirable. In our

approach however a principal determinant is pinpointed at the stage of defining reciprocal vec-

tors. This inhibits invariance to any orbital rotations and enhances the single-reference character

of the theory, making it rather pointless to apply a generalized Fockian. Defining the ground state

zero-order energy as in single-reference MP theory appears particularly dangerous due to the well

known quasi-degeneracy problem upon bond-dissociation. This fear however is just slightly jus-

tified according to the numerical experiences presented in Section 5. On the other hand, working

with a spectral representation of the Fockian built with CASSCF orbitals and orbital energies has

been found to give a poor description of multireference problems if the reference function is a

single configuration state function.34

As already alluded to, MP-MCPT is not invariant to orbital rotations that may leave the ref-

erence function unaffected. This is undesirable, but not unique among MR MP theories, e.g.

assumption of a diagonal form of Ĥ(0) destroys the invariance.8,10,11,35 In the case of MP-MCPT

orbital non-invariance stems from the bi-orthogonal treatment and has the further consequence

that MP-MCPT is not invariant to the choice of principal determinant neither. This suggests that

MP-MCPT is safely applicable only in the case where one of the determinants stands out in the ex-

pansion of the reference function, in terms of coefficient squared. The dissociation of the nitrogen

molecule, where several determinants become equally weighted at the end of the process, is one

test of this feature. As shown in Section 5 performance of MP-MCPT is surprisingly acceptable

in this example apart from the slight breakdown of the curve. In contrast to the nitrogen dissocia-
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tion example, serious qualitative failure is in fact observed when the principal role is handed over

from one determinant to another during the process studied. These are cases where MP-MCPT

definitely should not be applied as it is. Averaging over principal determinants has been shown to

be a possible cure to this problem.36

Choosing a suitable two-body zero-order Hamiltonian satisfying Eq. (2) instead of definition

(1) is certainly superior to any MP extension discussed here and such theories were shown to

produce excellent results,37–40 at the price of coping with a more tedious task when obtaining the

first-order coefficients. The present theory – being an uncomplicated version even among MP theo-

ries assuming a one-body zero-order Hamiltonian – obviously can not compete with these methods

neither in accuracy nor in desirable properties like size-consistency or orbital-invariance. On the

other hand we do observe an improvement in the numerical performance as compared to consider-

ing a diagonal zero-order Hamiltonian within the MCPT framework, suggested previously,10,11,41

although in some cases the improvement in total energies may be rather small.

5 Assessments

We assessed the present MP-MCPT methods by adopting APSG wavefunction expressed in the

natural orbital basis as a reference. The APSG function can be written as the products of ground

and pair-excited geminal functions as follows:

|ψ〉 ≡
∣∣ψAPSG〉

= cHF

geminal∏

i


1+

∑

a∈S(i)

ca
i

cHF
T̂

aα aβ
iα iβ


 |HF〉

where S(i) is the set of the unoccupied orbitals of the geminal subset which has an occupied orbital

i. We restricted the expansion of the first-order wavefunction within doubly-excited determinants

from |HF〉, as discussed previously.

We selected the H2O (water), HF (hydrogen fluoride), N2 (nitrogen), and F2 (fluorine) molecules

as test systems and obtained potential energy curves for the bond dissociations. As comparison we
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present APSG, MP2, multi-reference MP2 (MRMP2), and a PT by designed for the APSG wave-

function by Rosta and Surján (APSG-PT).40,42 In addition, we also computed the equilibrium

geometries of the diatomic molecules and calculated vibrational frequencies by finite difference

method. During the latter we first determined equilibrium distances Re up to the order of 0.1 pm,

and evaluated the frequencies from three points, namely Re and Re± 0.5 pm structures. All cal-

culations were performed with 6-311G** basis set.43 The APSG geminal subsets were defined

to give 6 orbitals for each bonding geminal and 3 orbitals for each lone-pair geminal, around the

equilibrium structure.

5.1 Dissociation curves

We first calculated potential energy curves for two types of bond-breaking processes of the H2O

molecule: i) a heterogeneous one-bond dissociation, with the other bond distance fixed to 95 pm;

ii) a homogeneous two-bond dissociation. In both processes the bond angle was fixed to 104.5◦.

The reference function underlying the MRMP2 calculation was a CASSCF wavefunction with four

active electrons on four active orbitals, CASSCF(4,4) shortly.

Figure 2 shows the potential energy curves for one-bond dissociation of H2O. The APSG curve

is much worse in absolute energy than MRMP2. However, APSG can produce a qualitatively nice

dissociation curve: non-parallelity error (NPE) with respect to MRMP2 is 0.0160 hartree. Single-

reference perturbation approach (MP2) starts to diverge at about the 300 pm structure. Around

equilibrium distance, both MP-pMCPT and MP-uMCPT are much improved from APSG in ab-

solute energy, due to the consideration of dynamical correlation. As the bond length gets large,

however, the two curves behave differently. The curve by MP-pMCPT becomes similar to MP2

one up to 250 pm and levels out, hence the dissociation energy is overestimated compared to

MRMP2. On the other hand, MP-uMCPT reproduces the shape by MRMP2 or APSG-PT up to the

dissociation limit. This may be attributed to the quasi size-consistency of MP-uMCPT.

Figure 3 shows the potential energy curves for two-bond homogeneous dissociation of the

H2O molecule. Although this sort of dissociation requires at least four-electron four-orbital active
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space, APSG still gives a qualitatively nice curve. APSG-PT cannot produce a correct dissociation

curve shape in this case. On the other hand, MP-pMCPT and MP-uMCPT nicely level out with

increasing bond length. The MP-pMCPT curve again follows MP2 up to 200 pm and overestimates

the dissociation energy as compared to the MRMP2 result. The MP-uMCPT produces a potential

curve similar to MRMP2 even for this multiple bond dissociation example.

Next, we assessed the dissociation potential energy surface for the bond-breaking process of

the HF molecule, shown in Figure 4. In this system the full-configuration interaction (FCI) results

were obtained around equilibrium and dissociated structures by utilizing the sparse FCI algorithm

of Rolik et al.44 The behavior of the curves resemble to that of Figure 2. In particular, MP-uMCPT

reproduces the MRMP2 curve well while MP-pMCPT follows the MP2 curve up to 250 pm. Since

the energy errors of MRMP2 with respect to FCI are comparable (0.0071 and 0.0075 hartree at

90 and 500 pm bond length, respectively), energy difference from MRMP2 is a good indicator

to assess the accuracy of the methods. These data are shown in Figure 5. Around equilibrium

distance, the APSG energy error is larger than at the end of the process, due to the lack of dy-

namical correlation. The errors of MP-pMCPT and MP-uMCPT around equilibrium geometry are

improved to less than 0.01 hartree by taking dynamical correlation into account. While the error

of MP-pMCPT becomes large as the bond is stretched, MP-uMCPT remains fairly constant: NPEs

of MP-pMCPT and MP-uMCPT are 0.0671 and 0.0102 hartree. The latter is comparable to the

0.0079 hartree error of APSG-PT.

Further, we assessed potential energy curves for the triple-bond-breaking process of the N2

molecule, shown in Figure 6. The MRMP2 calculation for N2 molecule were based on a CASSCF(6,6)

wavefunction as reference. In this example APSG-PT as well as MP2 diverge, as expected. The

MP-pMCPT and MP-uMCPT methods give qualitatively good dissociation profiles even for this

triple-bond breaking, although slight bumps can be seen between the equilibrum and dissociated

structures. It is to be noted here, that the APSG reference wavefunction underlying MP-MCPTs, is

poorer than CASSCF(6,6) used for MRMP2, since sixtuply excited deteminants appear as products

of two-electron excitations in APSG. The imperfection of APSG to describle triple bond breaking
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as compared with CASSCF may be credited for the breakdown of MP-MCPT dissociation curves.

5.2 Parameters at equilibrium geometry

Next we calculated parameters at an equilibrium geometry of diatomic molecules, i.e., equilibrium

bond length (Re), harmonic frequencies ( f ), and dissociation energies (De). Dissociation energy is

evaluated as the energy difference between the equilibrium and 500 pm structures.

In Table 1, we summarize the parameters of the HF molecule. Equilibrium bond disstance

as calculated by either of the present MP-MCPTs agree with FCI within 0.3 pm. This is better

than the Re obtained by either MRMP2 or APSG-PT. The MP-pMCPT frequency is larger than

f calculated by MP-uMCPT or MRMP2, which relates to the overestimation of the dissociation

energy in MP-pMCPT. Both Re and f is remarkably well estimated by APSG in this system.

The situation becomes different in the F2 molecule, which has much shallower potential than

HF. Table 2 shows the parameters of F2. For comparison, experimental data from Ref. 45 is also

indicated. Compared to experimental values, APSG overestimates Re by more than 10 pm and

underestimates De by 70 %, which is also reflected in the underestimation of f . As contrast to

this, MP-pMCPT underestimates Re by about 5 pm, overestimates De by more than 200 %, and

consequently also overestimates the harmonic frequency. On the other hand MP-uMCPT gives

reasonable results: De is much improved from APSG, and Re and f agree with those by APSG-PT

or MRMP2 tolerably.

Finally the parameters of N2 are summarized in Table 3 and compared to experimental data

from Ref. 45. The equilibrium bond length and the harmonic frequency are well reproduced within

2 pm and 150 cm−1 except for HF and MP2. Overestimation of Re and slight underestimation

of f is given by MP-uMCPT, showing resemblance to MRMP2 results. However, MP-uMCPT

overestimates De, which is contrary to MRMP2. The overshooting of De is larger by MP-pMCPT,

about 150 %.
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6 Concluding remarks

Two simple extensions of single-reference MP theory to the multi-reference case were presented at

the second order. The theories are strongly reminiscent of the single-reference MP2 procedure, par-

ticularly as what concerns the coefficient matrix of the linear system of equations determining the

first-order wavefunction. Considering this equation, the present MR extensions practically affect

only the inhomogeneous term, i.e. the rhs of the first-order equation. Numerical implementation

of the theories is straightforward based on an existing single-reference code adapted to localized

basis. Computational requirements of the approaches agree with single-reference MP2 calculation

on a localized basis.

Among previous multireference MP theories, MP-MCPT shows most similarity with multifer-

ence PT methods which apply a Fockian appropriately multiplied by Hilbert-space projectors to

define the zero-order Hamiltonian. The novelty of the present scheme lies in the bi-orthogonal

treatment of the overlap among basis vectors in the configuration space.

Simplicity of MP-MCPT methods is counter weighted by their failure to show desirable prop-

erties like orbital or principal determinant invariance. Size-consistency is achievable only in MP-

uMCPT, if assuming a block-diagonal form of the Fockian. Numerical assessment shows that in

spite of their simplicity, the range of applicability does cover problems of significant multirefer-

ence character, like the bond breaking process. Properties of equilibrium structures are also well

estimated by MP-uMCPT.
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Table 1: Calculated equilibrium distances (Re), harmonic vibrational frequencies ( f ), and dissoci-
ation energies (De) of the HF molecule adopting 6-311G** basis set.

Method Re [pm] f [cm−1] De [eV]
HF 89.6 4496 22.14
APSG 91.0 4223 4.997
MP2 91.2 4247 -
MRMP2(CASSCF(2,2)) 91.9 4143 5.696
APSG-PT 91.8 4038 5.842
MP-pMCPT(APSG) 91.0 4280 7.368
MP-uMCPT(APSG) 91.6 4160 5.789
Full CI 91.3 4213 5.679
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Table 2: Calculated equilibrium distances (Re), harmonic vibrational frequencies ( f ), and dissoci-
ation energies (De) of the F2 molecule adopting 6-311G** basis set.

Method Re [pm] f [cm−1] De [eV]
HF 133.1 1209 9.347
APSG 153.2 521 0.475
MP2 141.1 914 -
MRMP2(CASSCF(2,2)) 144.8 759 1.233
APSG-PT 146.1 711 1.068
MP-pMCPT(APSG) 136.8 1087 4.089
MP-uMCPT(APSG) 148.0 678 1.538
Exptl.a 141.2 917 1.602

a Ref. 45.
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Table 3: Calculated equilibrium distances (Re), harmonic vibrational frequencies ( f ), and dissoci-
ation energies (De) of the N2 molecule adopting 6-311G** basis set.

Method Re [pm] f [cm−1] De [eV]
HF 107.0 2732 30.91
APSG 109.3 2455 10.11
MP2 111.9 2178 -
CASSCF(6,6) 110.7 2349 8.646
MRMP2(CASSCF(6,6)) 111.1 2295 8.597
MP-pMCPT(APSG) 109.3 2507 14.78
MP-uMCPT(APSG) 111.7 2231 10.53
Exptl.a 109.8 2359 9.759

a Ref. 45.
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FIGURE CAPTIONS

Fig. 1 Block structure of the coefficient matrix of the first-order equation for non-interacting

systems A and B.

Fig. 2 Potential energy curves for the heterogeneous one-bond dissociation of the H2O molecule.

The other O-H bond-length is fixed to 95 pm and the bond-angle is fixed to 104.5◦.

Fig. 3 Potential energy curves for the homogeneous two-bond dissociation of the H2O molecule.

The bond-angle is fixed to 104.5◦.

Fig. 4 Potential energy curves for the dissociation of the HF molecule.

Fig. 5 Energy difference from the MRMP2 results for the dissociation of the HF molecule.

Fig. 6 Potential energy curves for the dissociation of the N2 molecule.
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Figure 1: Block structure of the coefficient matrix of the first-order equation for non-interacting
systems A and B.
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Figure 2: Potential energy curves for the heterogeneous one-bond dissociation of the H2O
molecule. The other O-H bond-length is fixed to 95 pm and the bond-angle is fixed to 104.5◦.
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Figure 3: Potential energy curves for the homogeneous two-bond dissociation of the H2O
molecule. The bond-angle is fixed to 104.5◦.
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Figure 4: Potential energy curves for the dissociation of the HF molecule.
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Figure 5: Energy difference from the MRMP2 results for the dissociation of the HF molecule.
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Figure 6: Potential energy curves for the dissociation of the N2 molecule.
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