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Abstract (i) The coupled-cluster equations being nonlinear, they have to be solved
iteratively. An insight into the convergence properties of this iteration can be ob-
tained by analysing the stability of the converged solutions as fixed points. (ii)
The usual form of coupled-cluster equations represents an example to the method
of moments, with the number of unknown amplitudes being equal to the number of
equations. The method of moments generates nonsymmetric equations loosing the
variational character of the coupled-cluster method, but enabling efficient evalua-
tion of the matrix elements. Taking higher moments into account, one may obtain
more equations than parameters, thus the latter must be determined by minimiz-
ing the sum-of-squares of all moments. This leads to additional effort but improved
coupled-cluster wave functions and/or energies. (iii) Another way of improving
the coupled-cluster method is perturbation theory, which needs special formulations
due to the nonsymmetric nature of the formalism. An efficient way to do this is
offered by multi-configuration perturbation theory.

28.1 Introduction

Most fundamental equations of physics are linear. The basic equation of quantum
mechanics, Schrördinger’s equation, is also linear. Nonlinearity in nature usually
appears as a consequence of complexity, often caused by dissipative forces, cf. the
field equations of condensed matter (fluid mechanics).

Péter R. Surján
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The mathematics of linear equations is relatively simple and well developed.
Standard variational tools and eigenproblems offer the solution in most cases. In
turn, nonlinear equations usually lack standard methods to solve, and dealing with
them one often encounters numerical and conceptual difficulties. Here the varia-
tional methods are often replaced by the method of moments, and one may attain
the solution only via complicated iteration schemes. One easily gets the impression
that whenever the physics of the problem permits, one should rely on linear formu-
lations.

A fundamental approximative method of the many-electron problem, however,
deals with genuinely nonlinear equations. Coupled-cluster (CC) theory involves ex-
ponential wave operators to ensure the extensivity of approximate energies, and
generating nonlinearity at the same time. In this review, we emphasize the follow-
ing issues.

1. The nonlinear nature of the CC equations deserves an analysis of the stability of
the solutions. This will offer an insight into the convergence feature of iterative
solutions.

2. The CC equations emerge as a trivial application of the method of moments. Im-
proved results can be expected when higher moments, neglected in the standard
formulation, are considered.

3. The nonsymmetric nature of the method of moments makes it necessary to de-
velop special perturbation schemes to obtain systematic corrections to a given
level of CC theory.

28.2 Stability analysis of iteration schemes

Owing to the size and the nonlinear nature of the CC equations, one uses, almost ex-
clusively, iterative procedures to locate their solutions representing the fixed points
of the iteration scheme. To ensure and accelerate convergence, one often applies
control parameters or extrapolation techniques such as DIIS[1]. Nonlinearity of the
equations represents a complication not only bacause of iterative solutions, but also
by generating spurious solutions. Analysis in this line has been carried out Jankovski
[2]. Here, we begin this review with a standard tool for analysing convergence fea-
tures of nonlinear iterative schemes.

The theory of stability matrices and Ljapunov exponents is well established[3].
A general iteration procedure for an m-component vector x is given as

x(n+1)
i = fi

(
x(n)

)
, i = 1,2, . . .m. (28.1)

Let vector a be a fixed point of this iteration:

ai = fi (a) , i = 1,2, . . .m. (28.2)

Small deviations around this fixed point are written as
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x(n) = a+ξ (n). (28.3)

Substitution into (28.1) and expanding the m-variable function f into Taylor series
up to the first order gives

ξ (n+1)
i =

m

∑
j=1

Ji jξ
(n)
j +O(2) (28.4)

with the definition of the Jacobian at point a

Ji j =
∂ fi

∂x j

∣∣∣∣
a
. (28.5)

The Jacobi matrix J is, in this context, the stability matrix. Solution of (28.4) can be
looked for in the form

ξ (n) = eλnξ (0) (28.6)

which, after substitution into (28.4) and writing λ = log µ provides the eigenvalue
problem

Jξ (0) = µξ (0) (28.7)

Modes ξ (0) are eigenvectors of the stability matrix while the logarithm of the eigen-
values give parameters λ which are related to the Ljapunov exponents of the prob-
lem1.

Analysis of convergence properties of the iteration process (28.1) can be based
on the value of the Ljapunov exponents λ , or on their exponentials µ . If all µ-s are
positive so all λ -s are real, the procedure converges only if all Ljapunov exponents
are negative, that is, if all eigenvalues of the stability matrix satisfy

0 < µ < 1.

When one or more exponents are positive, i.e., µ > 1, the iteration will diverge along
the corresponding trajectory.

It may happen that one or more eigenvalues of the Ljapunov matrix are negative,
generating complex Ljapunov exponents: λ = λ1 + iλ2. To have a real µ , we require
that

Im eλ = eλ1 sinλ2 = 0,

which is satisfied by λ2 = kπ with any integer k. However, µ = cosλ2 eλ1 is negative
only for odd k values, thus we may choose k = 1. Therefore, the Ljapunov exponent
for real, negative µ can be written as

λ = log |µ|+ iπ

leading to the convergence condition

1 The more common ’dynamical’ definition of Ljapunov exponents works with the limit n → ∞;
we adopt here a ’static’ definition based on the converged solution a
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Re λ = log |µ |< 0,

which requires the moduli of all eigenvalues to be smaller than unity:

|µ|< 1. (28.8)

The iterations in this case are not monotonic, but exhibit oscillatory convergence:

ξ (n) = eλnξ (0) = eiπnen log |µ|. (28.9)

As the Jacobian is not symmetric, its eigenvalues µ may also become complex.
Let us have µ = a+ ib. Then, from eλ = a+ ib we get

eλ1 cosλ2 = a
eλ1 sinλ2 = b

}

resulting
eλ1 =

√
a2 +b2 = |µ|,

which leads again to (28.8).
All above cases can be summarized in the condition of convergence:

|µ|< 1

Violating this condition, the procedure usually diverges, but on the borderline of
convergence and divergence, nonlinear systems may also exhibit chaotic iterations[4].
This is manifested in irregular and stochastic iteration patterns.

28.3 The CC equations

Previously[5], we have applied the above theory to study iteration characteristics of
the Bloch equation[6, 7] and the idempotency-conserving density matrix iteration[8,
9]. Here we apply it to the CCSD equations.

Using the CC Ansatz Ψ = eT Φ , we write the Schrödinger equation as

e−T H eT Φ = EΦ (28.10)

where Φ is the reference state, typically the Hartree-Fock solution. The cluster op-
erator for k-fold excitations Tk is formally written as

Tk =
1
k! ∑

µ

ktµ Êµ , (28.11)

where ktµ are the cluster amplitudes to be determined, and Êµ -s are excitation oper-
ators which, for closed shell systems, can be written as
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Êµ = Eβ
u = ∑

σ
a†

β ,σ au,σ (28.12)

for single and
Êµ = Eβγ

uv = Eβ
u Eγ

v (28.13)

for double excitations. From (28.10), the CC equations for the amplitudes emerge
as

Fν = 〈Φ |Ê†
ν e−T H eT |Φ〉 = 0. (28.14)

Substituting the Hamiltonian, the above forms of the excitation operators and evalu-
ating the matrix elements, this equation can be reduced to its orbital form 1Fβ

u = 0
and 2Fβγ

uv = 0. The resulting formulae for CCSD were originally tabulated in
Ref.[10], and recollected in the Appendix of Ref.[11]. Both 1t and 2t equations
detailed there are of the shape

F(t) = 0,

and there are several ways to recast them into an iterative form t = f (t), e.g. using
the scheme

t = t + kF(t)

where k is a t-independent arbitrary parameter or expression. We consider here the
form of the CCSD equations which uses Møller-Plesset-type denominators:

tβ
u = tβ

u −
1Fβ

u

εβ − εu−η
(28.15)

tβγ
uv = tβγ

uv −
2Fβγ

uv

εβ + εγ − εu− εv−2η
(28.16)

for the 1t and 2t amplitudes, respectively. Parameter η is introduced merely to con-
trol the iteration by damping or accelerating the sequence2. In these equations, ε
denote orbital energies.

28.4 The stability matrix of the CCSD equation

The stability matrix of the CCSD problem can be obtained by taking the derivatives
of the iterative equations with respect to the independent parameters. In our case,
the latter are represented by the cluster amplitudes 1tµ and 2tµ . Since the CCSD
equations for these amplitudes are coupled, the stability matrix will be composed of
four blocks which we denote by 11J, 12J, 21J, 22J, respectively, where mnJ stands for
the derivatives of the m-equations with respect to the nt amplitudes. The four blocks
of the stability matrix are obtained as

2 Negative (positive) values for η will damp (accelerate) the iteration by increasing (decreasing)
the denominators, respectively.
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J11
uβ ,lλ = δulδβλ −

∂ 1Fuβ
∂ tλ

l

εβ − εu−η

J12
uβ ,lmλ µ = −

∂ 1Fuβ

∂ tλ µ
lm

εβ − εu−η

J21
uvβγ ,lλ = −

∂ 2Fuvβγ
∂ tλ

l

εβ + εγ − εu− εv−2η

J22
uvβγ ,lmλ µ = δulδvmδβλ δγµ −

∂ 2Fuvβγ

∂ tλ µ
lm

εβ + εγ − εu− εv−2η
. (28.17)

The explicit results for these derivatives are listed in Ref.[11].
The above equations show that the stability matrix J is in close connection to the

Jacobi matrix J0 of the CCSD equations. The structure of Eqs. (28.17) is

Jab = δab−
J0

ab
∆ab−η

(28.18)

where ∆ab stands for the energy denominator in the iterative equations correspond-
ing to the a→ b excitation. Using Eq.(28.14), we obtain

Jo
ab =

∂Fa

∂ tb
= 〈Φ |Ê†

a e−T [H, Êb] eT |Φ〉

The eigenvalue equation of this matrix is known as the EOM-CC equation for exci-
tation energies[12, 13, 14, 15, 16].

It is important to emphasize the following two features of the above analysis:

• It is valid only if no extrapolation techniques like DIIS are used to govern the
iteration. While the DIIS method is known to be highly efficient in accelerating
convergence, it does not change the nature of the fixed point. If, by a wrongly
chosen value for η , the fixed point of the iteration becomes repellent, neither
DIIS nor any other extrapolation technique can be expected to ensure conver-
gence.

• The Ljapunov exponents as defined above characterize the nature of the fixed
point, rather than the process of the iteration. We always assume that the initial
amplitudes lie in the sufficient proximity of the fixed point.

Numerical illustrations of the above theory published in Ref.[11] seem to sug-
gest that a sufficiently large value of the damping parameter η always ensures con-
vergence. We cannot provide a formal proof for this statement. Even if one finds a
sufficiently large value for η so that all Ljapunov exponents are negative, this means
only that the fixed point of the iteration is attractive. Starting from a set of ampli-
tudes far from the converged ones, the iteration may diverge or may converge to
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another fixed point. However, we have not yet treated any cases in which conver-
gence was impossible to achieve. (Note that a convergent iteration does not mean
that one has reached the desired state.)

In concluding, the nature of the fixed points of the CCSD equations can be
analysed by finding the eigenvalue of the stability matrix which has the largest
absolute value. The logarithm of the modulus of the eigenvalue (admitting
complex solutions) can be regarded as the Ljapunov exponent of the prob-
lem which should be negative to ensure convergence. The nature of the fixed
points can be effectively controlled by denominator shifts which may either
damp or accelerate the iteration. Connection between the stability matrix J
and the Jacobian J0 reveals an interesting relation between excitation energies
(eigenvalues of J0) and the Ljapunov exponents (eigenvalues of J).

28.5 Improving CC results: method of moments

In this section, following an idea by Jankowski et al.[17], we investigate a possibility
to improve the cluster amplitudes. Emphasizing the close connection between CC
theory and the theory of moments, CC amplitudes are determined by minimizing
the sum-of-squares of the moments of the Hamiltonian constructed with the CCSD
trial function. In addition to standard moments with SD excitations, we include all
moments with excitations higher than doubles in an unconstrained minimization.
This procedure is computationally demanding thus it does not lead to any practical
method. To circumvent the computational difficulties of amplitude minimization,
Jankowski et al.[17] substituted the exponential of the cluster operator by the lin-
earized CCD (LCCD) Ansatz, reducing thereby the moment optimization problem
to a solution of a linear system of equations. In this work, keeping the nonlinear eT

Ansatz, we rely on a numerical minimization procedure.
Since the publication of the original work [17], many papers have appeared ex-

ploring higher moments in CC theory[18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35]. A common feature of these works is that they, with a given
CC Ansatz, use the higher moments either to modify the amplitude equations or
derive (noniterative) corrections to the CC energy. For a theoretical comparison of
various CC Ansätze, see [36].

Owing to the recent success of utilizing higher moments in CC theory, it appears
to be interesting to revisit the problem of moment optimization with the simplest,
traditional CCSD Ansatz.
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28.5.1 The method of moments

The method of moments has been introduced in quantum chemistry a long time
ago[37, 38, 39]. It can be summarized as follows. If Ψ is an exact eigenvector of H,
and E is the associated eigenvalue, any quantities of the form

mν = 〈 fν |H−E|Ψ〉 ν = 1,2, . . . p (28.19)

are identically zero for arbitrary well-behaved testing functions fν . Quantities mν
are the moments of the Hamiltonian. If the exact wave function is substituted by an
approximate wave function Φ , the above moments are not necessarily zero. Consid-
ering Φ to depend on the parameter set tµ , µ = 1,2, . . .n, the best trial function Φ
can be determined by minimizing the functional for a given set of testing functions
fν ,

M =
p

∑
ν=1

m2
ν (28.20)

with respect to parameters tµ in Φ . The necessary condition for this minimum is

∂M
∂ tµ

= 2
p

∑
ν=1

mν
∂mν
∂ tµ

= 0 µ = 1,2, . . .n (28.21)

which constitutes an n× n system of equations for the n unknown parameters tµ .
One may show that in the special case where (i) the testing functions fν are obtained
from a common bra generator function depending on the same set of parameters as
the ket function Φ , and (ii) the bra generator and the ket trial function are the same,
then the method of moments reduces to the variational method.

The accuracy of the method of moments depends on (i) the number of parameters
in the trial ket function, n, and (ii) the number of moments considered, p. In general,
p can be much larger than n. The method has a trivial variant when p = n which
corresponds to the standard CCSD equations. In this case the functional M can be
set exactly zero, since the equations

mν = 0

can be solved for all ν . This is, of course, not the exact solution if the set of testing
functions fν -s is restricted.

28.5.2 CC theory and the method of moments

The standard CC method accomplishes the trivial version of the method of moments.
To see this, we introduce the similarity-transformed Hamiltonian

H = e−T HeT ,
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and choose the bra test functions as 〈 fν |= 〈0| T †
ν . Therefore, all moments

mν = 〈0| T †
ν (H−E)|0〉 = 〈0| T †

ν H|0〉 = 0 (28.22)

are required to vanish for ν = 1,2, . . .n. Here we used the orthogonality of the test
functions to the reference state to get rid of the energy.

Having n amplitudes e.g. in a CCSD wave function, we eliminate only the mo-
ments which are projected by single and double substitutions 〈0|T †

ν . However, both
the exponential wave operator eT and the Hamiltonian H, when acting on the ref-
erence state |0〉, generate moments which correspond to triple, quadruple, etc. exci-
tations. These moments are completely neglected in standard amplitude equations,
making CCSD theory nonexact, as many of these moments are nonzero in general.

Stimulated by the theory of moments, one may ask what happens when trying to
achieve a balance between the moments emerging from SD and higher excitations.
That is, what kind of CCSD amplitudes result by minimizing the functional

M =
p

∑
ν=1

m2
ν =

p

∑
ν=1

(〈0| T †
ν H |0〉)2

(28.23)

with respect to the CCSD amplitudes tµ , when

ν = 1,2, . . . p (p > n)

runs over S, D, T, Q, . . . excitations. In the following section a numerical procedure
is outlined that is used to perform an unconstrained minimization of the sum of
squared moments.

28.5.3 Amplitude optimization

Solution of the problem represented by the minimization of functional M in Eq.(28.23)
can be performed in a general way by numerical optimization techniques. To this
end, derivation of the gradients (derivatives of M with respect to the amplitudes) is
highly desirable. Components of the gradient vector g

gλ =
∂M
∂ tλ

were defined in Eq.(28.21). Using the shorthand

〈ν | = 〈0|T †
ν

and the decomposition
T = ∑

µ
tµ Tµ ,
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the derivatives of the individual moments read as

∂mν
∂ tλ

= 〈ν |∂e−T

∂ tλ
H eT |0〉 + 〈ν |e−T H

∂
∂eT tλ

|0〉

= 〈ν |e−T [H,Tλ ]eT |0〉 (28.24)

where the square bracket stands for the commutator.
Evaluation of the matrix elements occurring in (28.24), in principle, can be per-

formed by standard many-body techniques or by applying the more recent auto-
mated implementation philosophy[40, 41, 42, 43, 44, 45]. The only non-usual in-
gredient of these formulae is that state 〈ν | denotes not only an SD, but also higher
excited configurations. Fortunately, 6-fold excitations are the highest which may
contribute[17]. One can also restrict 〈ν | at a selected lower maximal excitation
level, quadruples for example. The need for higher excitations makes the evalua-
tion of matrix elements quite involved, and the string based algorithm[40] discussed
also in the present Volume can offer an enormous help in this.

Having the gradients, one can invoke one of the standard optimization routines
to get optimized amplitudes. We have examined the performance of the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) procedure[46] and the optimally conditioned
(OC) method by Davidon[47]. They were found to perform similarly. As starting
parameters for the optimization, standard CCSD amplitudes are convenient to use
in most cases.

28.5.4 Numerical results

The model studies reported so far[48] were obtained not exactly with the above
formulae, but with the energy-dependent form of the CC equations. Due to the com-
plexity of the problem, small systems in very small basis sets were considered. Two-
electron systems are of course excluded, since for them CCSD is equivalent to full
CI.

Consider first a simple four-electron example, the Be atom. Table 28.1 presents
standard and moment-optimized CCSD energies in comparison with full CI. The
expectation value of the Hamiltonian computed with the actual wave function is
also tabulated. To measure the accuracy of the wave function, we give the norm of
the

|r〉= (H−〈H〉) |Ψ〉
residual vector.

Table 28.1 clearly shows that balancing SD and higher moments, results in a
slight energy loss. However, the residual norm indicates that overall accuracy of the
wave function improves. For Be, this improvement is quite small, it is some 8 % in
the minimal basis, only 1% in the split shell basis, and less than 4 % in the polarized
basis set. Similar experience was gained on other small systems.
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Table 28.1 Effect of moment-optimized amplitudes on the Be atom. E(CCSD) corresponds to the
standard CC energy formula, 〈H〉 is the expectation value of the Hamiltonian computed by the
given wave function,

√
〈r|r〉 is the norm of the residual vector.

basis set level E(CCSD) 〈H〉
√
〈r|r〉

STO-6G
HF -14.503361 0.16097
CCSD -14.556084 -14.556086 0.00510
opt-CCSD -14.556076 -14.556086 0.00472
FCI -14.556089 0.0

6-31G
HF -14.566764 0.17153
CCSD -14.613518 -14.613518 0.01399
opt-CCSD -14.613085 -14.613515 0.01383
FCI -14.613545 0.0

6-31G**
HF -14.566944 0.26110
CCSD -14.616483 -14.616487 0.03588
opt-CCSD -14.614763 -14.616413 0.03462
FCI -14.616635 0.0

The slight improvement shown by the residual norm may become important in
special cases. Dissociation curves computed by breaking more than one bond at a
time were found to constitute such an example. We report here the results for the
nitrogen molecule, where a triple bond rupture is monitored. Figure 1 shows the
case of the N2 molecule in 6-31G** basis, with the four lowest canonical molecular
orbitals (MO) kept frozen. The standard CCSD curve is quite pathologic in this case,
an effect well known from previous studies[19, 25, 27, 30, 49, 50, 51, 52]. When
determining CCSD amplitudes from moment minimization, the erratic behavior of
the curve is greatly improved, and the moment optimized CCSD potential curve gets
much closer to full CI. The curves can be compared to those showing the expectation
value with the CCSD wave function, depicted also in Fig. 1. With standard CCSD
wavefunction the expectation value gives an acceptable estimation till about R ∼ 2
Å. When computing the expectation value with moment-optimized CCSD, one gets
a curve that is the closest to full CI.

It is notable that in all basis sets collected in Table 28.1 we see an increase of
the CCSD energy (often getting away from the exact value). At the same time the
wavefunction improves in the residual norm sense. This fact is tolerable, regarding
the non-variational character of the CC Ansatz. However, it is interesting that not
only the moment-like CC energy, but also the expectation value of the Hamiltonian
may increase (cf. Fig. 1.). This clearly indicates that we are still far form the region
of validity of the Eckart theorem[53] which, for non-degenerate states would require
the simultaneous improvement of the energy and the wave function.

To gain a better insight into the effect of moment optimization, we have col-
lected the moments larger than 0.005 in absolute value for water in Table 28.2. First
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Fig. 28.1 Potential curve of the nitrogen molecule in split-valence polarized basis set. Methods
used are standard and moment-optimized CCSD. Expectation values taken with both wavefunc-
tions are also depicted. For abbreviations see text.

few lines of the Table show various double excitations. The associated moments
are exactly zero in standard CCSD, as they should be. The last three lines corre-
spond to quadruple excitations, among which the 4545 → 6767 frontier excitation
has an enormous moment, almost 0.25. Certainly, in this small basis set appearance
of this huge moment is responsible for the failure of CCSD at this geometry. Upon
minimizing all moments democratically, we find that this large moment is greatly
reduced, at the price of generating small moments in the SD space. Upon minimiza-
tion the other two quadruple moments also diminish by an order of magnitude.

In summarizing, we have investigated the quality of the CCSD wave function
and the associated energy upon performing an unconstrained optimization of
the sum of moment squares with respect to CCSD amplitudes. The numbers
presented above permit us to draw two general conclusions: (i) in each case
studied the CCSD energy raises when computed with moment-optimized am-
plitudes, while (ii) the wave function improves in a residual norm sense, if
compared with standard CCSD. This observation is quite significant, partic-
ularly when CCSD fails due to its non-variational behavior, like the cases of
stretched multiple bonds.
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Table 28.2 Collection of the largest moments for the water molecule at stretched geometry,
ROH=2.5 Å, before and after optimization. Excitations are identified by the serial numbers of the
MOs involved. MOs 4 and 5 are the symmetric and antisymmetric combinations of OH bonding
orbitals, 6 and 7 are their virtual counterparts. MO 2 is the σ lone pair on the oxygen atom.

excitation standard CCSD moment-optimized
CCSD

45 → 67 (α,α) 0.0000 0.0197
45 → 67 (α,β ) 0.0000 -0.0146
55 → 66 0.0000 0.0249
55 → 77 0.0000 -0.0178
44 → 66 0.0000 -0.0179
44 → 77 0.0000 0.0239
4545 → 6767 0.2461 0.0130
2525 → 6767 0.0169 0.0007
2424 → 6767 0.0183 0.0023

28.6 Improving CC results: perturbation theory

The usual formulation of Rayleigh-Schrödinger perturbation theory (PT) relies on
the availability of the full set of right- and left eigenvectors of a zero order Hamil-
tonian. In multi-reference perturbation theory this requirement is relaxed, and per-
turbed wave functions are often expanded in auxiliary bases. In most formulations,
the symmetry between bra and ket vectors is kept, however. In coupled cluster the-
ory, it is appropriate to abandon this latter constraint too, owing to the essentially
non-symmetric (moment-like) nature of the formalism. A general perturbative tool
that can be routinely applied even is such cases is the so-called multi-configuration
perturbation theory (MCPT) [54, 55, 56]. A short review of this formalism as ap-
plied to a coupled cluster wavefunction is presented below.

28.6.1 Nonsymmetric PT formulation

Consider a multiconfigurational reference state |CC〉 in intermediate normalization:

|CC〉 = |HF〉 + ∑
k=1

dk |k〉 ,

where |k〉 denotes determinants obtained by applying single, double etc. excitations
to the Fermi vacuum |HF〉. Determinant |k〉 with k = 0 will be identified as the
Fermi vacuum. Coefficients dk can be obtained by conversion of CC amplitudes to
CI coefficients[57], e.g.

dab
i j = tab

i j + ta
i tb

j − tb
i ta

j

if determinant k is associated with excitation i, j → a,b.
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A skew-projector Ô can be taken down in terms of the coupled-cluster wavefunc-
tion and the Fermi-vacuum in the following form

Ô = |CC〉〈HF| .

It is easily seen that operator Ô is idempotent and leaves |CC〉 and 〈HF| intact. The
projector orthogonal and complementary to Ô can be defined as

P̂ = 1̂− Ô

It is also trivially verified that P̂|CC〉 results zero as well as 〈HF|P̂ while

P̂|k〉 = |k〉

for k ≥ 1. A spectral form of projector P̂ can be constructed, starting from the rep-
resentation of the identity

1̂ = ∑
k=0
|k〉〈k|

and writing
P̂ = 1̂P̂ = ∑

k=1
|k〉〈k|P̂ (28.25)

where k = 0 is omitted from the sum since 〈HF|P̂ = 0. Expression (28.25) is in fact
a biorthogonal spectral resolution of operator P̂ formulated in terms of direct space
vectors |k〉 and reciprocal space vectors

〈k̃| = 〈k|P̂ = 〈k| − dk〈HF| .

It is indeed straightforward to see, that vectors |CC〉 and |k〉 for k ≥ 1 form a
biorthogonal set with vectors 〈HF| and 〈k̃|, satisfying the conditions

〈HF|CC〉= 1 〈HF|l〉= 0
〈k̃|CC〉= 0 〈k̃|l〉= δkl

with k, l ≥ 1. In terms of the above direct and reciprocal space vectors a non-
Hermitean zero-order Hamiltonian can be taken down in the form

Ĥ0 = ECC |CC〉〈HF| + ∑
k=1

Ek |k〉〈k̃| (28.26)

where ECC = 〈HF|Ĥ|CC〉 is the coupled-cluster energy. The excited state energies
Ek are parameters of the theory. They are in principle arbitrary quantities that define
Ĥ0, i.e. the partitioning. The above definition of Ĥ0 possesses the properties

Ĥ0 |CC〉 = ECC |CC〉 (28.27)

and
Ĥ0 |k〉 = Ek |k〉 .
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One can similarly see, that left eigenvectors of operator (28.26) are vectors 〈k̃| and
the principal determinant 〈HF|.

Perturbation theory using a biorthogonal vector set as constructed above dif-
fers from usual Rayleigh-Schrödinger PT only in that reciprocal (biorthogonal)
functions are used in the bra vectors of each matrix element. (For applications of
biorthogonal PT in the theory of chemical bond and intermolecular interactions, see
Refs. [58, 59, 60].) Accordingly, for the first order energy correction of the ground
state ECC we get:

E(1) = 〈HF|Ŵ |CC〉 = 0

having utilized Eq.(28.27). The second order looks

E(2) =−∑
k=1

〈HF|Ŵ |k〉〈k̃|Ŵ |CC〉
Ek−ECC

(28.28)

with Ŵ = Ĥ− Ĥ0. Higher order PT corrections can be put down similarly.
Before discussing the question of partitioning, let us analyse the numerator of the

second order energy (28.28). One readily sees that Ŵ can be substituted for Ĥ in the
matrix elements, regarding that |CC〉 and 〈HF| are eigenvectors to Ĥ0 from the right
and left, respectively. Matrix element 〈HF|Ĥ|k〉 ensures that at most doubly excited
determinants can contribute to the expression, while matrix element

〈k̃|Ĥ|CC〉 = 〈k|Ĥ−ECC|CC〉= 0 (28.29)

sets all the terms zero as a result of the converged CCSD equations. The first nonzero
energy correction of the theory is therefore the third order term

E(3) = ∑
kl

〈HF|Ŵ |k〉〈k̃|Ŵ |l〉〈l̃|Ŵ |CC〉
(Ek−ECC)(El −ECC)

.

Energy corrections obtained by the above theory are tabulated up to order 5 for
the HF molecule in 6-31G* basis set in Table 28.3. Partitioning used in this calcu-
lation is given by e.g.

Ek = ECC + εa + εb− εi− ε j (28.30)

if determinant k arises upon excitation i, j → a,b acting on the Fermi vacuum. One
particle energies εp are Hartree-Fock orbital energies. When willing to describe a
situation where single-reference theories fail, e.g. bond breaking, it is wise to make
a different choice for one particle energies. In this case ionization potentials and
electron affinities have been successfully used instead of Koopmans values[61, 62,
63].

Inspecting data of Table 28.3 one sees that the third order correction repre-
sents a considerable improvement upon the CCSD energy. As the covalent bond
is stretched, the third order energy deteriorates, which is a consequence of the par-
titioning choice. The error increases from about a tenth of a milliHartree around
equilibrium distance to about one milliHartree at twice the equilibrium length. At
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2.0Re the third order approximation is worse than the CCSD(T) result. Regarding
higher orders, it is notable that correction of order 4 does not represent any improve-
ment, and the PT series manifestly oscillates around the exact value.

Table 28.3 PT energy errors E −EFCI [mH] for the H-F molecule in 6-31G* basis set, frozen
core approximation (Re=0.917 Å). Reference function is a CCSD wavefunction. Full CI energies
in Hartree are −100.188421 (Re), −100.108796 (1.5Re), −100.034004 (2.0Re).

geometry

order Re 1.5Re 2.0Re

nonsymmetric theory

0 2.146 4.313 9.474
3 -0.074 0.146 1.386
4 0.312 1.108 3.773
5 -0.080 -0.155 -0.170

symmetric theory

0 1.93 3.939 8.437
2 0.279 0.636 1.553
3 0.160 0.427 1.121

CCSD(T) 0.457 0.840 0.275

28.6.2 Symmetric PT formulation

A somewhat better behaving PT series is obtained if turning to a more symmetri-
cal PT framework. This is however computationally demanding as it starts with a
symmetrical projector of the form

Q̂ =
|CC〉〈CC|
〈CC|CC〉

where the norm of the coupled-cluster wavefunction is not computable for anything
but small model problems. If pursuing the theory even with such computational
limitations in mind, one takes down the orthogonal and complementary projector to
Q̂

R̂ = 1̂ − Q̂ .

To find a spectral form of projector R̂ let us evaluate the product P̂R̂, which leads to

P̂R̂ =
(
1̂ − |CC〉〈HF|)

(
1̂ − |CC〉〈CC|

〈CC|CC〉
)

= 1̂ − |CC〉〈HF| = P̂ ,
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while if multiplying the two projectors in reverse order, one gets

R̂P̂ = R̂ .

Let us then write projector R̂ as

R̂ = R̂1̂P̂ = ∑
k=1

R̂|k〉〈k|P̂ (28.31)

where again the term k = 0 is omitted from the sum, because 〈k|P̂ = 0. Just as in
the previous case, one can observe the right hand side of expression (28.31) being
of the form of a biorthogonal spectral resolution with direct space vectors

|k′〉 = R̂|k〉

and reciprocal vectors
〈k̃′| = 〈k|P̂ .

In fact it can be verified that biorthogonal relations

〈CC|CC〉/〈CC|CC〉= 1 〈CC|l′〉= 0
〈k̃′|CC〉= 0 〈k̃′|l′〉= δkl

indeed hold for k, l ≥ 1.
Zero-order Hamiltonian in terms of these direct and reciprocal space vectors is

now formulated as

Ĥ0 = ECC
|CC〉〈CC|
〈CC|CC〉 + ∑

k=1
Ek |k′〉〈k̃′| (28.32)

with ECC = 〈CC|Ĥ|CC〉/〈CC|CC〉. Using biorthogonal PT the energy terms arising
from this zero-order choice are

E(1) = 〈CC|Ŵ |CC〉/〈CC|CC〉 = 0

E(2) =− 1
〈CC|CC〉 ∑

k=1

〈CC|Ŵ |k′〉〈k̃′|Ŵ |CC〉
Ek−ECC

(28.33)

with Ŵ = Ĥ− Ĥ0. Higher orders can be constructed analogously.
Inspecting second order expression (28.33), one immediately sees, that matrix el-

ement 〈k̃′|Ŵ |CC〉 in the numerator is zero for singly or doubly excited determinants,
for the reason (28.29). However, at difference with the previous PT formulation, the
states contributing to E(2) are not restricted to singles and doubles. In this latter ap-
proach every determinant that may interact with the coupled-cluster function via the
Hamiltonian contributes to the second order correction. This may involve the full
configuration space and therefore it is highly impractical.

Note, that this approach is symmetric only as what concerns projector Q̂. Pro-
jector R̂ is still represented in the form of a biorthogonal spectral resolution, i.e.
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direct and reciprocal vectors are different. When computing the illustrative exam-
ples shown in Table 28.3, we neglected primes and tildes in expression (28.33), and
also in the third order formula. Hence the presented numbers should be considered
only approximate. Second and third order energies shown in the table are obtained
by the partitioning of Eq. (28.30). The results indicate that in the symmetric for-
mulation the errors slowly but systematically decrease with increasing order. Note
however that the first nonvanishing correction is better in the case of the nonsym-
metric theory. The difference between second order by the symmetric theory and
third order by the nonsymmetric approach is diminished as the interatomic distance
is enlarged.

28.6.3 Connected moment expansion

The marked difference between symmetric and moment-like formulation of correc-
tions to the coupled-cluster wavefunction has been observed in a different context
also[64]. In this study the Horn-Weinstein function

f (α) =
〈CC|Ĥe−αĤ |CC〉
〈CC|e−αĤ |CC〉

and its momentum-type analogue

f̃ (α) =
〈HF|Ĥe−αĤeT̂ |HF〉
〈HF|e−αĤeT̂ |HF〉

constitute the basis of the approximations. Both of the above functions tend to the
ground state eigenvalue of Ĥ as α →∞. Derivative of f with respect to α evaluated
at α = 0 are related to the so-called connected moments of the Hamiltonian

f (0) = I1 = 〈Ĥ〉/N

− d f
dα

∣∣∣∣
α=0

= I2 = 〈Ĥ2〉/N − 〈Ĥ〉2/N 2

− d2 f
dα2

∣∣∣∣
α=0

= I3 = 〈Ĥ3〉/N − 3〈Ĥ2〉〈Ĥ〉/N 2 + 2〈Ĥ〉3/N 3

and similarly for higher derivatives. Here, we used 〈CC|Ĥk|CC〉 = 〈Ĥk〉 and the
squared norm of the coupled cluster function is denoted by N . The connected mo-
ments can be used for constructing a successive approximation to the ground state
energy e.g. in the form[65]

E = I1− I2
2/I3− . . . (28.34)
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The analogous treatment of function f̃ leads to another infinite series for the ground
state energy,

E = Ĩ1− Ĩ2
2/Ĩ3− . . . (28.35)

which is considerably cheaper to compute as the coupled-cluster function never
figures in the bra vectors of the modified connected moments

f̃ (0) = Ĩ1 = 〈e−T̂ ĤeT̂ 〉 = 〈H〉

− d f̃
dα

∣∣∣∣
α=0

= Ĩ2 = 〈H2〉 − 〈H〉2

− d2 f
dα2

∣∣∣∣
α=0

= I3 = 〈H3〉 − 3〈H2〉〈H〉 + 2〈H〉3

where we used H = e−T̂ ĤeT̂ and 〈HF|Hk|HF〉= 〈Hk〉. In analogy with the PT for-
mulation, it can be shown that the second connected moment in the nonsymmetric
theory is exactly zero due to the fulfillment of the coupled-cluster equations. As
it was found in Ref.[64], only the impractical symmetric expansion (28.34) offers
good corrections, while the accuracy of the nonsymmetric expansion (28.35) is in-
sufficient.

Regarding the coupled cluster wavefunction as a multiconfigurational refer-
ence, systematic improvement is possible to obtain by the MCPT approach,
either following the symmetric or the nonsymmetric formulation. Nonitera-
tive corrections can be also derived by means of connected moments. Both
schemes show that numbers obtained from a symmetric version are more re-
liable, though these methods can not be used in practice. The third (first non-
vanishing) order of the nonsymmetric MCPT seems to offer a reliable and
practical tool.
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Kucharski, T. Kuś, M. Musiał, Theor. Chem. Acc. 112, 349 (2004)
31. P. Piecuch, M. Włoch, J.R. Gour, A. Kinal, Chem. Phys. Letters 418, 463 (2005)
32. P. Piecuch, M. Włoch, J. Chem. Phys. 123, 224105 (2005)
33. I. Ozkan, A. Kinal, M. Balci, J. Phys. Chem. A 108, 507 (2004)
34. M.J. McGuire, P. Piecuch, J. Am. Chem. Soc. 127, 2608 (2005)
35. C.J. Cramer, M. Włoch, P. Piecuch, C. Puzzarini, L. Gagliardi, J. Phys. Chem. A 110, 1991

(2006)
36. P.G. Szalay, M. Nooijen, R.J. Bartlett, J. Chem. Phys. 103, 281 (1995)
37. E. Szondy, T. Szondy, Acta Phys.Hung. 20, 253 (1966)
38. M. Hegyi, M. Mezei, T. Szondy, Theor. Chim. Acta 21, 168 (1971)
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