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Abstract

The Hartree–Fock density matrix is used to generate occupied and virtual molecular orbitals localized on a selected (active) region
within a molecule. The orbitals are well suited for high level description of electron correlation in the active site. Orbitals outside the
active site are not constructed explicitly, they provide a frozen core for the correlation calculation. Standard correlation methods are
straightforward to apply and result local correlation energies. Transforming to locally canonical orbitals facilitates an iteration-free eval-
uation of local Møller–Plesset(MPn) energies. Selection of active orbitals does not produce dangling bonds since no chemical bonds are
cut at the boundary.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Energetics of chemical reactions affected by long range
interactions can often be well described by simplified quan-
tum chemical models. On the other hand, electron correla-
tion, that is also important to describe most reactions, may
have short radius of action [1,2]. Intention to exploit this
duality are present in several efficient algorithms elaborated
for large molecules [3–6]. In the present study we describe
long range interactions by performing a Hartree–Fock
(HF) calculation for the entire system. This is followed
by constructing a set of orbitals localized on an active site.
The correlation calculation is performed within the selected
set of active localized molecular orbitals (LMOs), leaving
remote LMOs uncorrelated (frozen). We term this philoso-
phy the frozen LMO (FLMO) approach.

Previously, Maynau et al. followed an FLMO type strat-
egy [1,2,7] with a special scheme for orbital optimization
within a local complete active space (CAS) approach. A
closely related method termed effective group potential
0009-2614/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.cplett.2007.11.016

* Corresponding author. Fax: +36 1 372 2592.
E-mail address: surjan@chem.elte.hu (P.R. Surján).
(EGP) was developed by Daudey, Heully, and coworkers
[8–10]. They describe the inactive part of the system by a
suitably chosen pseudo-potential, using the formalism of
core potentials. The divide-and-conquer-type method of
Li et al. [11] works with several overlapping MO regions
which are treated on the same footing. A reduction of their
method to consider just one MO region localized on the
active site would correspond to the FLMO philosophy.
The divide-and-conquer philosophy was also used in com-
bination with the MP2 method [12]. The present FLMO
scheme differs from this in that we do not introduce any
approximation (fragmentation) at the Hartree–Fock level.

The advantages of using local orbitals in the correlation
problem are well known [13–19]. Most local correlation
methods aim to reproduce the correlation energy for the
total system. In contrast to this we shall focus here on
the total HF energy plus the correlation energy of an active
site.

In the present communication we consider the situation
where, having solved the HF equations by some linear scal-
ing algorithm [20–24], individual MOs are lacking, only the
density matrix, P is provided. To compute correlation
effects in such a case, one may either turn to formulae
which give the correlation energy as an explicit functional
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of the density matrix [25,26], or one should develop algo-
rithms to get LMOs from matrix P. An iteration-free algo-
rithm of the latter type is outlined below in combination
with the FLMO approach.
2. Theory

Assume that the HF density matrix P for a large molec-
ular system is known, but coefficients of individual MOs
Cil (i being the MO and l the AO index) are not available.
In local correlation methods, following the suggestion of
Pulay [27], virtual LMOs are routinely constructed by pro-
jecting atomic orbitals out of the occupied space leading to
coefficients

Cil ¼ dil � ðPSÞli

where S is the overlap matrix of AOs. The resulting LMOs
are not orthonormal.

By analogy, occupied LMOs ui can also be obtained by
projecting AOs vi into the occupied space:

juii ¼
X

l

ðPSÞlijvli

This definition yields the occupied LMO coefficients

Cil ¼ ðPSÞli: ð1Þ

In other words, the (nonorthogonal) occupied LMOs are
simply the columns of matrix PS. Since localizability of
the system is reflected in the sparsity of matrix P, coeffi-
cients Cil in Eq. (1) define localized orbitals, taken into ac-
count that the overlap matrix is also considerably sparse.

The advantage of constructing LMOs by Eq. (1) is that
no iterative procedure is needed to maximize a localization
functional. The disadvantage is that the resulting LMOs
are not only overlapping, but also linearly dependent, since
the number of AOs available for projection is much larger
than the number of occupied orbitals.

A natural way of getting rid of linear dependence is
canonical orthogonalization [28], resulting a smaller but
linearly independent set of orthogonal vectors correspond-
ing to nonzero eigenvalues of the overlap matrix. Though
canonical orthogonalization produces delocalized MOs,
this poses no problem in the FLMO approach, since the
MOs become delocalized only within the selected subspace.
In other words, we produce locally delocalized MOs on the
active site.

In the orthonormal LMO basis the effective Hamilto-
nian for the active site can be written as

bH eff ¼
X

ij

heff
ij ayi aj þ

1

2

X
ijkl

½ijjkl�ayi ayjalak; ð2Þ

where ½ijjkl� is a standard two-electron integral in the
[12j12] notation, and the effective core that accounts for
the field of uncorrelated (frozen) orbitals can be given as

heff
ij ¼

X
lm

Cilheff
lm Cim;
with the effective core in the AO basis

heff
lm ¼ hlm þ

1

2

X
kr

P frozen
kr ½lkkmr�;

where hlm is the standard one-electron integral over AOs,
and the double-bar notation is used for the antisymmet-
rized two-electron AO integral. To avoid explicit construc-
tion of frozen LMOs, the frozen core density matrix is
computed as the difference P frozen ¼ P � P active, where the
active part of the density matrix is given by

P active
kr ¼

Xocc

i2active

CikCir:

This leads to the following expression of the effective core

heff
lm ¼ F lm �

1

2

X
kr

P active
kr ½lkjjmr� ð3Þ

where F denotes the entire Fockian in the SCF calculation.
Once the effective Hamiltonian is formed, any of the

standard methods to compute the correlation energy can
be used for the active site. If the method chosen requires
canonical MOs (like a standard MPn calculation with a
diagonal Fockian), diagonalization of the limited-size
active Fockian may be performed to yield a set of locally

canonical MOs. In this manner local MPn correlation ener-
gies can be evaluated without the need of amplitude itera-
tions [13,29] or approximations that change the
partitioning [30–33].

In brief, the steps constituting the proposed FLMO pro-
cedure are the following:

(1) Determine P for the whole system in the HF
approximation.

(2) Select the atoms which form the active site.
(3) Project all AOs of the selected atoms to the occupied

and virtual spaces.
(4) Remove linear dependence of the resulting LMOs by

canonical orthogonalization.
(5) Form the effective Hamiltonian for the active LMOs.
(6) Perform the electron correlation calculation with this

effective Hamiltonian in the subspace of the ortho-
gonalized active LMOs.

The FLMO approach is useful for molecular systems in
which a local contribution of the correlation energy is of
our interest. The approach is ‘infinitely refinable’ by sys-
tematic enlargement of the active site. Selection of active
LMOs does not produce dangling bonds since no chemical
bonds are cut at the site boundary. The approach is size-
consistent and size-extensive if the method used to evaluate
the correlation energy within the active site is such. Systems
with significant charge transfer can also be treated if the
Hartree–Fock description gives a sufficiently accurate
account of the charge distribution. Note that dividing the
whole system into two disjunct pieces and evaluating the
FLMO energy for both of the fragments, the sum of these
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Fig. 2. Energy errors with respect to the MP2 calculation for the full chain
of 16 HF units.
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two will not be the total correlation energy, since the inter-
fragment correlation will still be lacking.

Apart from stressing the usefulness of considering an
active site within a large molecule, the message we wish
to put through presently is the application of density
matrix projected LMOs as defined by Eq. (1) along with
their canonical orthogonalization. This concept is extre-
mely simple and fitted for the FLMO framework.

3. Numerical illustrations

The role of the preliminary calculations reported below
is merely to illustrate the feasibility and accuracy of the
FLMO scheme based on the density-matrix-projected
LMOs.

Sample MP2/6-31G calculations have been performed
for a zig-zag chain built of 16 HF molecules. The geometry
is described by the following parameters: r(HF) = 0.97 Å,
r(FF) = 2.5 Å, \(FHF) = 180�, \(HFH) = 116�. These
data are close to the experimental geometry in a crystalline
structure [34].

Fig. 1. shows potential curves for the process when the
H-F bond length of the terminal HF molecule is varied.
The same process is computed for a single HF molecule,
denoted ‘one HF in vacuo’. For reference, the full MP2
energy was also obtained for the whole chain denoted by
‘exact MP2’. These curves are to be compared to the
FLMO calculation with the elongated HF molecule as
the active site ‘FLMO, one active HF’.

The potential curve for the isolated HF molecule is quite
different from that of the in-chain curve, while the FLMO
method provides a good approximation to the exact result.
The latter predicts practically the same equilibrium bond
length while in the former case the minimum is shifted by
some 0.1 Å.

To get a better view into the accuracy of the FLMO
approach, we plotted energy errors with respect to the full
MP2 calculation in Fig. 2. MP2 results for two terminal
-1
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Fig. 1. Potential curves at around equilibrium for the F . . . H dissociation
in a HF chain. The curves are shifted to a common energy minimum.
HF molecules are also shown (‘two HF in vacuo’). Simi-
larly, the FLMO results with the two terminal HF mole-
cules constituting the active site (‘FLMO – two active
HF’) are also plotted. The Figure shows that the FLMO
approach improves both (i) the error of the isolated mole-
cule treatment, on the mH scale and (ii) the curvature
around equilibrium.

In Table 1 we report dissociation energies corresponding
to the process when the terminal H atom is removed from
the HF chain. Since MP2 is inapplicable to follow this pro-
cess, we used a multi-reference treatment. Lengths of non-
dissociating bonds were relaxed at the Hartree–Fock level,
and a generalized valence bond (GVB) calculation was per-
formed for the active site. To initiate the GVB orbital opti-
mization, the active MOs were subjected to a Boys’
localization procedure. The optimal GVB wave function
was used as the reference function for a subsequent
multi-configuration perturbation theory (MCPT) calcula-
tion [35]. Results are tabulated for one and two isolated
HF molecules, respectively, as well as for the whole chain
with one, two and three HF molecules constituting the
active site. There are two interesting aspect to observe in
the table. One is the apparent convergence of FLMO com-
puted approximations as the size of the active site gets
Table 1
Dissociation energies corresponding to the removal of a terminating
hydrogen atom in a HF chain (kJ/mol)

System Method

GVB MCPT2 MCPT3

One HF molecule in vacuo 478 473 461
HF dimer in vacuo 650 540 522

16 HF molecules, FLMO
(one active HF molecule)

508 508 492

16 HF molecules, FLMO
(two active HF molecules)

417 507 418

16 HF molecules, FLMO
(three active HF molecules)

408 506 421



Table 2
Isomerization in C10H22 with standard geometry RCC ¼ 1:54 Å,
RCH ¼ 1:09 Å. The standard 6-31G basis set is used

Method Etot (a.u.) Difference (kJ/mol)

Decane 2-Methyl nonane

Hartree–Fock �391.336359 �391.276447 157

MP2 FLMO [5]a �391.880686 �391.821979 154
MP3 FLMO [5]a �391.933759 �391.874040 157

MP2 FLMO [6]b �391.973428 �391.918171 145
MP3 FLMO [6]b �392.034979 �391.978668 148

MP2 �392.268134 �392.214923 139
MP3 �392.358575 �392.304835 141

a Active site consists of the first 5 carbon atoms and the hydrogens
attached.

b Active site consists of the first 6 carbon atoms and the hydrogens
attached.
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enlarged: there is less than 10 kJ/mol difference between 2
and 3 HF molecules forming the active site. The false trend
of ‘in vacuo’ calculations with increasing the molecular
fragment is also noteworthy, i.e., dissociation energies
increase upon stepping from one HF unit to two. This is
opposed to the decrease observed for the same step in the
FLMO results.

The above demonstration – a quasi one-dimensional H-
bonded chain – admittedly represents an ‘easy’ case for the
FLMO philosophy. In 3-D structures and if the system is
covalently bound much larger active sites may need to be
selected to achieve similar accuracy. An example is given
by Table 2 where an isomerization energy of an alkane
chain is shown with two active spaces of different sizes.
The FLMO method is quite succesful also in this case, if
a sufficiently large active site is used. Though the isomeri-
zation energy is not yet significantly improved from its
Hartree–Fock value if only a C5H11 unit is selected, it
gives values close to the exact MP2 and MP3 ones if
C6H13 is used as the active site. Note that even for the lar-
ger active space and even for this short chain there is a fac-
tor of 6.8 in favor of FLMO in terms of computational
time for MP3 (the same factor is 4.9 for MP2). For a metal-
lic system the situation is clearly much more difficult, and it
is evident that the FLMO approach is not one’s choice
when describing collective effects.

The goal of the present applications is simply to show
the efficacy of the FLMO approach, utilizing neither any
sophisticated computational techniques nor requiring
extreme computational resources. More voluminous calcu-
lations are in progress and planned to be reported
subsequently.
Acknowledgments

This work was supported by the funds OTKA T-04971-
NI-67702 and OMFB-01445/2006.

References

[1] D. Maynau, S. Evangelisti, N. Guihery, C.J. Calzado, J.-P. Malrieu,
J. Chem. Phys. 116 (2002) 10060.

[2] C. Angeli, S. Evangelisti, R. Cimiraglia, D. Maynau, J. Chem. Phys.
117 (2002) 10525.

[3] F. Bessac, S. Hoyau, D. Maynau, J. Chem. Phys. 123 (2005) 104105.
[4] M. Sironi, A. Genoni, M. Vivera, S. Pieraccini, M. Ghitti, Theor.

Chim. Acta 117 (2007) 685.
[5] T.-S. Lee, W. Yang, Int. J. Quantum Chem. 69 (1998) 397.
[6] T. Nakano, T. Kaminuma, T. Sato, K. Fukuzawa, Y. Akiyama,

M. Uebayasi, K. Kitaura, Chem. Phys. Letters 351 (2002) 475.
[7] S. Borini, D. Maynau, S. Evangelisti, J. Comput. Chem. 26 (2005)

12.
[8] F. Alary, R. Poteau, J.-L. Heully, J.P. Daudey, Theor. Chim. Acta

104 (2000) 174.
[9] R. Poteau, J. Ortega, F. Alary, A.R. Solis, J.-C. Barthelat, J.-P.

Daudey, J. Phys. Chem. A 105 (2001) 198.
[10] R. Poteau, F. Alary, H.A.E. Makrim, J.-L. Heully, J.-C. Barthelat,

J.-P. Daudey, J. Phys. Chem. A 105 (2001) 206.
[11] S. Li, J. Shen, W. Li, Y. Jiang, J. Chem. Phys. 125 (2006) 074109.
[12] M. Kobayashi, T. Akama, H. Nakai, J. Chem. Phys. 125 (2006)

204106.
[13] S. Saebø, P. Pulay, J. Chem. Phys. 86 (1987) 914.
[14] M. Häser, J. Almlöf, J. Chem. Phys. 96 (1992) 489.
[15] P.E. Maslen, M. Head-Gordon, Chem. Phys. Letters 283 (1998) 102.
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