A density functional investigation of ethylene adsorption on graphene and VIIIB metal-doped graphene surfaces ## <u>Uraiwan Kamolphop</u>¹, Kanlayanee Treewiset¹, Chanukorn Tabtimsai² and Banchob Wanno³ ¹Department of Chemistry, Faculty of Science, Mahasarakham University, Thailand Email: uraiwan.k@msu.ac.th The ethylene adsorption on graphene and VIIIB metal-doped graphene (Fe-, Ru-, Os, Co-, Rh-, Pd-, Ir-, Ni- and Pt) sheets was investigated by means of density functional theory at the B3LY/LanL2DZ theoretical level. The graphene model composed of 14 benzene rings with the edge carbons terminated by hydrogen atoms (C₄₂H₄₈). For metal-doped graphene model, the carbon atom at the center of the sheet was replaced with metal atom (MC₄₁H₄₈). It is found that all metal-doped graphene sheets can adsorb ethylene molecule via exothermal process. Structural and energetic properties are also reported. The configuration of ethylene adsorbed on metal-doped graphene sheet. ²Department of Chemistry, Faculty of Science and Technology, Rajabhat Maha Sarakham University, Thailand ³Center of Excellence for Innovation in Chemistry and Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University, Thailand