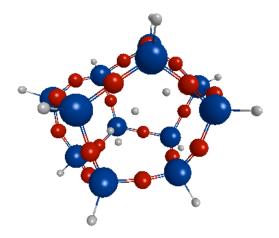
Ab Initio Molecular Dynamics Simulations of H₂ Formation inside POSS Compounds


Takako Kudo¹, Tetsuya Taketsugu² and Mark S. Gordon³

¹Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan

²Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan ³Department of Chemistry, Iowa State University, Ames, Iowa 50011-2030, U.S.A.

Polyhedral oligomeric silsesquioxanes (POSS), $[RSiO_{1.5}]_n$ (n = 4, 6, 8, 10, 12, ...), referred to as T_n , have been the focus of considerable experimental and theoretical interest because of their wide variety of practical uses for many years. Especially, making use of the cage cavities for encapsulation of atoms and ions is one of the very exciting research areas of POSS compounds. The present study applies the ab initio molecular dynamics (AIMD) method to examine the mechanism and dynamics for H_2 formation process inside some POSS compounds in various situations.

Three types of H₂ formation were considered here : (I) H + H@T_n \rightarrow H₂@T_n[1], (II) H + H₂@T_n \rightarrow (H + H₂)@T_n, and (III) H + (H + H₂) \rightarrow 2H₂@T_n; n=8 and 12. The host molecules are T₈ with a cubic structure and the larger T₁₂. The various reactions, such as H₂ formation (H + H \rightarrow H₂), H-H exchange (H + H₂ \rightarrow H₂ + H) and escaping of a H or H₂ from the cage, take place depending on the initial condition.

The state of two hydrogen atoms and one hydrogen molecule moving inside T_{12} at a time of the AIMD trajectory for the reaction of $H + (H + H_2)@T_{12} \rightarrow 2H_2@T_{12}$

[1] Kudo, T., Taketsugu, T. and Gordon, M.S. J. Phys. Chem. A, 2011, 115, 2679.