Chemical Reactions with two different elementary Transition States Crypto Three-State System. Photo-/ Thermo-chemical aspects and VB rationalization.

Shmuel Zilberg
Chemistry Institute, Hebrew University of Jerusalem, Jerusalem, Israel

It is commonly assumed that the chemical reaction is determined by the unique transition state (TS), and the two-state approach is a basic model for the analysis of the chemical reaction. However, during the last 10 years, various examples of chemical reactions with two different TSs were reported. ${ }^{[1]}$ Lucid VB arguments allow to identify reactions with two different TSs as a crypto three state system, where the Reactant and the Product are defined by the combinations of the three dominant VB structures.

2D domain based on the two minima - the Reactant (R) and the Product (\mathbf{P}), which are connected by two different TSs can include the $\mathrm{S}_{0} / \mathrm{S}_{1}$ conical intersection according to the Longuet-Higgins theorem. ${ }^{[2]}$ This is a situation which constitutes a necessary and sufficient condition for a photochemical reaction bearing a single product. ${ }^{[3]}$
Two different transition states detected (on the CAS level of calculation) for the cis-trans isomerization around polar double bonds, azo-compounds, charge shift in aliphatic radical-cations, conjugated radicals, H atom vs. proton-coupled electron transfer etc.. Symmetry allowed reactions have the $\mathbf{T S}_{+}=(\mathbf{R}+\mathbf{P})$. Symmetry forbidden reactions served by TS_=(R-P) which is a preferable route (lower barrier) in some of studied cases.
The principles of the design of crypto three-state system are represented for both types of systems - with two different and two equivalent TSs. The electronic mechanisms leading to the chemical reaction with two TSs are described.
The reduction in rate due to non-adiabatic recrossing near the conical intersection ${ }^{[4]}$ is discussed in connection with a different types of the reactions with two TSs.
[1]] Zilberg S., Haas Y., JACS, 125:1810, 2003; Zilberg S., Haas Y., Photochem.Photobiol Sci., 2:1256, 2003; De VikoL., Garavelli M., Bernardi F. \& Olivucci M., JACS, 127:2433, 2005; Tishchenko O., Truhlar D., Ceulemans A. \& M-T. Nguen, JACS, 130:7000, 2008; Gozem S, ShapiroI, Ferre N. \& Olivucci, Science, 237: 1225, 2012.
[2] Longuet-Higgins, H. C., Proc Roy Soc London, A, 344:147, 1975.
[3] Haas Y., Cogan S. \& Zilberg S., Int. J. Quantum Chem., 102: 961,2005.
[4] Butler L.J., Annu. Rev. Phys. Chem., 49:125, 1998.

