
## Electronic structure of manganese(II) nitrosyl compounds: a bifocal view.

## Kristine Pierloot, Hailiang Zhao

## Laboratory of Computational Coordination Chemistry, Department of Chemistry, University of Leuven, Belgium e-mail:Kristin.Pierloot@chem.kuleuven.be

Manganese nitrosyl systems  $\{MnNO\}^6$  are almost invariably diamagnetic (S=0), containing a (close to) linear Mn–N–O unit, although an intermediate (S=1) may be close-lying[1], and in exceptional cases become the ground state. Linear mononitrosyl compounds are traditionally regarded as containing nitrosyl bound to Mn<sup>1</sup> as NO<sup>+</sup>, although it is generally recognized that the covalent nature of the M–NO interaction precludes the assignment of a formal oxidation state to the metal and NO in nitrosyl complexes. The Enemark-Feltham notation  $\{MnNO\}^6$  in fact stresses the electron delocalization in the MnNO unit, without being committed a certain formal oxidation state on either M or NO. This "noninnocent" character of the NO ligand also complicates the theoretical description of the electronic structure of metal-NO complexes, which is inherently multiconfigurational in nature.

In this work, we present a description of the electronic structure and relative energies of the ground states and the lowest excited states of a number of manganese nitrosyl systems containing an {MnNO}<sup>6</sup> unit in heme and non-heme environments, making use of multiconfigurational ab initio method C(R)ASPT2. Electron delocalization in the Mn-NO bond is manifested both by the strongly mixed character of the bonding and antibonding Mn3d<sub>π</sub>-NOπ<sup>\*</sup> combinations and by the strong multiconfigurational character of the wave function. Such a wave function may, however, be transformed in a straightforward manner into a valence-bond-style description in terms of contributions from Mn<sup>II</sup>-NO<sup>0</sup>, Mn<sup>I</sup>-NO<sup>+</sup>, Mn<sup>III</sup>-NO<sup>-</sup>, by subjecting the appropriate subset of delocalized molecular orbitals in the CASSCF wave function to a (Cholesky) localization procedure. Quite strikingly, such an analysis indicates that the bonding in manganese nitrosyl systems is built from a resonance hybrid of Mn<sup>III</sup>-NO<sup>-</sup> and Mn<sup>II</sup>-NO<sup>0</sup>, with the former as the dominant resonance structure. Little or no Mn<sup>I</sup>-NO<sup>+</sup> character is found in any of the complexes studied.



[1] Kurtikyan, T.S.; Hayrapetyan, V. A., Martirosyan , G. G., Ghazaryan, R. K.; Iretskii, A. V., Zhao. H.; Pierloot, K. Ford, P. C. Chem. Commun. 48, 12088, 2012.

[2] Tangen, E.; Conradie, J.; Franz, K.; Friedle, S.; Telser, J.; Lippard, S. J.; Ghosh, A. Inorg. Chem. 49, 2701, 2010.