Linear- and sublinear-scaling Møller-Plesset (MP2) and symmetry-adapted perturbation theory (SAPT)

Christian Ochsenfeld
Theoretical Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 Munich, Germany

Linear-scaling methods for both energy calculations at the MP2 level and the direct calculation of intermolecular interactions at the SAPT level are presented using a combination of distanceincluding integral estimates, linear-scaling integral contractions, and fully AO-based Laplace techniques that allow to access molecules with more than 1000 atoms [1,2]. The key feature of our linear-scaling correlation methods are distance-including two-electron integral estimates that allow to exploit the $1 / \mathrm{R}^{4}$ or even $1 / \mathrm{R}^{6}$ decay behavior of transformed integrals. Our two-electron integral estimates combine ideas of multipole-expansions and regular Schwarz bounds into so-called QQR integral estimates that are both tight and simple estimates [3] generally applicable in quantumchemical methods. The largest system calculated so far for determining, e.g., SOS-MP2 energies is a DNA-repair complex comprising 2025 atoms and 20371 basis functions accessible on simple workstation clusters [1]. To allow for the use of larger basis sets, we employ a combination of the resolution-of-the-identity (RI) for two-electron integrals and a Cholesky-decomposition of pseudodensity matrices within AO-based formulations (Cholesky-decomposed density MP2: CDD-MP2) [4-5]. Besides energy calculations, we present a reformulation of nuclei-selected NMR chemical shieldings at the MP2 level that opens the way to reduce the conventional MO-based $\mathcal{O}\left(\mathrm{M}^{5}\right)$ scaling to $\mathcal{O}\left(\mathrm{M}^{0}\right)$ [6].
[1] S. A. Maurer, D. S. Lambrecht, J. Kussmann, C. Ochsenfeld; J. Chem. Phys. 138, 014101 (2013)
[2] S. A. Maurer, M. Beer, D. S. Lambrecht, C. Ochsenfeld; submitted (7/2013)
[3] S. A. Maurer, D. S. Lambrecht, D. Flaig, C. Ochsenfeld; J. Chem. Phys. 136, 144107 (2012)
[4] J. Zienau, L. Clin, B. Doser, C. Ochsenfeld; J. Chem. Phys. 1302041122009
[5] S. A. Maurer, L. Clin, C. Ochsenfeld; in preparation
[6] M. Maurer, C. Ochsenfeld; J. Chem. Phys. 138, 174104 (2013)

