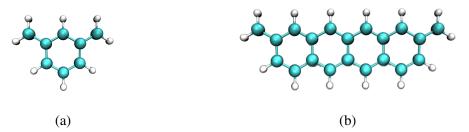
A Quantum Monte Carlo and CIPSI case study: Magnetic Coupling of a meta-xylylene diradical.

Benjamin Sanchez Lengeling¹, Emmanuel Giner², Anthony Scemama², Michel Caffarel²


¹ Institute for Molecular Sciences, University of Valencia, Spain
² Laboratoire de Chimie et Physique Quantiques, Université Paul Sabatier, France

benmasan@alumni.uv.es

Calculating accurate magnetic couplings has been, and is, a difficult and challenging endeavor [1]. Even so, successful strategies for calculating diradical conjugated hydrocarbons have been devised in previous works using CASSCF level calculations [2].

Our work intends to conceive such a strategy for a meta-xylylene diradical (*Fig. a*) under a Quantum Monte Carlo framework, and eventually to be able to treat bigger and more general magnetic systems (*Fig. b*). Due to the intrinsic multiconfigurational character of the wavefunction and the weakness of the magnetic coupling magnitude, good correlation energy is paramount to provide a precise account of this phenomena.

Starting from Hartree Fock we build a multiconfigurational wavefunction by selecting configuration interactions according to a perturbative criteria. This is done with the CIPSI algorithm [3]. Many parameter were explored to devise the best approach: Number of Determinants, stoping criteria, use of Dressed CI [4]) and type of orbitals (fock, natural, localized), among others. The resulting wavefunction is then treated with Fixed-Node Diffusion Monte Carlo with the QMC=CHEM [5] software. As a result we have designed a perturbation based stoping criteria that provides accurate results for this system.

- [1] Francesc Illas, Ibério P. R. and Moreira, et Al. *Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)*, 265–272, 2000.
- [2] Nicolas Suaud and Renaud Ruamps. Journal of Chemical Theory, 1-26, 2012.
- [3] Emmanuel Giner, Anthony Scemama, Michel Caffarel. Canadian Journal of Chemistry, 1-26, 2013.
- [4] Nathalie Guihery, Jean-Paul Malrieu, Daniel Maynau et Al. *Molecular Physics*, 94:209-16, 1998.
- [5] Anthony Scemama, Michel Caffarel Oseret, William Jalby. *Journal of Computational Chemistry*, 34:938-51, 2013.