Jahn–Teller, pseudo-Jahn–Teller, and spin-orbit coupling effects in cerium trihalide molecules

V.G. Solomonik, O.A. Vasiliev

Ivanovo State University of Chemistry and Technology, Russia

sol@isuct.ru

Low-lying spin-orbit states of cerium trihalide molecules CeX₃ (X = F, Cl, Br, I) are studied using single-reference CCSD(T) and multireference MRCI and MRPT2 methods with the basis sets of quadruple- ζ quality. Scalar relativistic effects are incorporated in all-electron calculations using Douglas–Kroll–Hess Hamiltonian. Spin–orbit coupling is treated either with the Breit–Pauli spin-orbit operator \hat{H}_{SO} or with spin–orbit pseudopotentials. The spin-orbit eigenstates are obtained by diagonalizing $\hat{H}_{el} + \hat{H}_{SO}$ in a basis of eigenfunctions of \hat{H}_{el} .

The originally degenerate 4f-orbitals of Ce^{3+} split into a''_2 , e', e'', a'_1 , a'_2 orbitals in the ligand field of D_{3h} symmetry. The energy difference of the highest and lowest CeX_3 electronic states corresponding to different f electron occupation of these orbitals amounts to 2200, 1400, 1300, and 1100 cm⁻¹ for X = F, Cl, Br, I, respectively, with the first excited state ${}^2E'$ lying above the ground state ${}^2A''_2$ by 100, 40, 20, 10 cm⁻¹. An accounting for spin-orbit coupling of the states changes this pattern dramatically. The energy splitting grows to 4000, 3400, 3200, and 3100 cm⁻¹. The relative energy of the first excited spin-orbit state ${}^2E_{3/2}$ with respect to the ground state ${}^2E_{5/2}$ amounts to 370 – 470 cm⁻¹.

The Jahn–Teller (JT) and pseudo-Jahn–Teller (PJT) effects are studied in detail for CeF₃. The JT distortion ($D_{3h} \rightarrow C_{2v}$) in the ²E' state yields the Y-shaped structure with α_e (F-Ce-F) = 115° and the JT stabilization energy $E_{JT} = 75 \text{ cm}^{-1}$. The JT effect in the ²E'' state is very weak: α_e (F-Ce-F) = 119.5°, $E_{JT} = 2 \text{ cm}^{-1}$. The PJT coupling $(A_2'' + E'') \otimes e'$ results in strongly anharmonic adiabatic potential energy surface (APES) in the ²A_2'' ground state. The SO coupling enhances the anharmonic character of APESs due to both SO-quenching of JT distortions and the ²A_2'' state mixing in spin-coupled states. In all of the spin-orbit states the CeF₃ molecule is non-planar (C_{3v}) with the $C_{3v} \rightarrow D_{3h} \rightarrow C_{3v}$ inversion barrier height $h = 90-330 \text{ cm}^{-1}$.

The vibronic model Hamiltonian $(A_2'' + E' + E'' + A_1' + A_2') \otimes (a_1' + e' + e' + a_2'')$ is constructed and parametrized for CeF₃. The JT and PJT coupling constants are determined by a fitting of the calculated APESs. To describe the complicated vibronic coupling of the electronic states by the out-of-plane bending mode a_2'' , the relevant coupling constants are evaluated via the fitting of quasidiabatic MRCI potential energy surfaces generated by an approximate diabatization procedure. To include SO coupling of the $A_2'' + E' + E'' + A_1' + A_2'$ electronic multiplet in the model Hamiltonian, the zeroth-order SO coupling constants are evaluated.

The eigenstates of the spin-vibronic Hamiltonian are calculated variationally and compared with the published infrared absorption spectrum of CeF_3 . The assignments of the observed spectral features are suggested.

The authors acknowledge support from the Russian Foundation for Basic Research, Grant No. 13-03-01051.