DFT Study of the Stereo-Selectivity of Oxygenated Hetero-cycles from 10 to 12 Links

Hafida Merouani 1,2, Christophe Morell 3, Nadia Ouddai 2, and Henry Chermette 3

1-Faculté de Technologie, Université de M’sila, 28000 M’sila, Algerie.
2 -Laboratoire chimie des matériaux et des vivants: Activité, Réactivité, Université Hadj-Lakhdar Batna, 05000 Batna, Algerie.
3 -Université de Lyon; Université Lyon 1(UCBL) et UMR CNRS 5280 Sciences Analytiques F-69622 Villeurbanne Cedex. France

Optional: Faculté de Technologie, Université de M’sila, M’sila BP166 Ichbilia, M’sila 28000, Algerie, e-mail: merouani_hafida@yahoo.fr

Intra-Molecular Diels-Alder (IMDA) reactions of tethered trienes can furnish two distinct diastereoisomeric products. The cis (i.e. endo) stereoisomer and the trans (i.e. exo) stereoisomer. Experimental evidences shows a quite high cis stereo-selectivity for 10 links compounds (cis/trans = 70:30) while 11 and 12 links exhibit no particular selectivity. DFT (B3LYP/6-31G*)[1,2] computations provide useful insights into the origins of this amazing stereo-selectivity. The cyclization path towards trans stereo-isomer is always thermodynamically favored whatever the size of the system. The high cis stereo-selectivity displayed by the 10 links system is kinetically controlled by a tug of war between ring strain and electronic effects in the transition structure. The dual descriptor[3,4] of chemical reactivity, a conceptual DFT based descriptor designed to delineate electronic effects, has been used to unravel the stabilizing processes that take place at the TSs.

Figure. Δf maps calculated at the B3LYP/6-31G(d) for the TSs and projected on a plan that intersects the carbon involved in the secondary interactions.