Geminal-based wavefunction theory and its perturbative improvement

Masato Kobayashi¹, Moto Tarumi², Hiromi Nakai^{2,3,4}

¹Waseda Institute for Advanced Study, Waseda University, Japan ²Department of Chemistry and Biochemistry, Waseda University, Japan ³Research Institute for Science and Engineering, Waseda University, Japan ⁴CREST, Japan Science and Technology Agency, Japan

kobayashi@suou.waseda.jp

Effective treatment of electron correlation, which is missing in mean-field Hartree– Fock (HF) calculations, has been a major topic in quantum chemistry. Electron correlation can be separated into dynamical and static effects. The static electron correlation is essentially important in calculating molecules with near-degenerate states or describing dissociation processes. The antisymmetric product of strongly-orthogonal geminals (APSG) method [1,2] is an effective theory which can account for static electron correlation. The APSG wavefunction is constructed with the two-electron wavefunction, called geminals, and it fully involves the intra-geminal two-electron correlation. To improve the APSG wavefunction by taking the inter-geminal correlation into account, we have applied the Møller–Plesset type multi-configuration perturbation theory (MP-MCPT) to the APSG wavefunction [3,4]. In this presentation, we report the geminal-based wavefunction theories that we have developed recently.

The APSG wavefunction of a closed- or open-shell system is expressed with twoelectron geminals $\{\psi\}$ and one-electron natural orbitals $\{\phi\}$ as follows:

$$\Phi_{\text{APSG}} = \hat{A} \Big[\psi^{1}(x_{1}, x_{2}) \psi^{2}(x_{3}, x_{4}) \cdots \psi^{N_{\text{C}}/2}(x_{N_{\text{C}}-1}, x_{N_{\text{C}}}) \varphi_{1}(x_{N_{\text{C}}+1}) \cdots \varphi_{1}(x_{N_{\text{C}}+N_{\text{O}}}) \Big].$$
(1)

Here, \hat{A} is the antisymmetrization operator, and $N_{\rm C}$ and $N_{\rm O}$ represent the numbers of closed- and open-shell electrons, respectively. We applied the MP-MCPT [3,4] to the reference function of Eq. (1).

Table 1 shows the mean absolute errors of geometrical parameters of 30 open-shell diatomic molecules. The MP-MCPT method improves the results of the equilibrium distance and the dissociation energy and obtains the results as well as the other multireference perturbation method.

Tab	le 1.	Mean absol	lute errors of	the equilibri	um	dista	nces		
$R_{\rm e}$,	the	harmonic	vibrational	frequencies	<i>f</i> ,	and	the		
dissociation energies D_0 from the results of experiments for									
30 c	ppen-	shell diaton	nic molecules	s (6-311G(2d)	.2p)) [4].			

50 open-shen diatonne molecules (0-5110(20,2p)) [4].							
Method	<i>R</i> _e [pm]	$f[\mathrm{cm}^{-1}]$	$D_0 [\mathrm{eV}]$				
UHF	2.7	180	1.95				
UMP2	2.1	196	0.60				
CASSCF	2.3	108	1.14				
MRMP2	1.7	87	0.60				
APSG	2.4	126	1.07				
MP-MCPT(APSG)	1.5	166	0.65				

[1] Surján, P.R. In Correlation and Localization., Springer: Berlin, pp. 63-88, 1999.

- [3] Kobayashi, M., Szabados, Á., Nakai, H., Surján, P.R. J. Chem. Theory Comput., 6:2024–2033, 2010.
- [4] Tarumi, M., Kobayashi, M., Nakai, H. J. Chem. Theory Comput., 8:4330–4335, 2012.

^[2] Tarumi, M., Kobayashi, M., Nakai, H. Int. J. Quantum Chem., 113:239-244, 2013.