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Although the chemical bond is usually considered to be a very well established concept,
its origin and nature are still subject to much discussion '*. It is well known that the minimum
in the potential energy surface (PES) responsible for the bond in a stable system is followed by
a decrease of potential energy, and a rise of kinetic energy, as required by the virial theorem.
However, this analysis does not provide a model for explaining bond formation. Since total
kinetic and potential energies are a direct consequence of the form of the total electronic
density, the question of why the electronic density of a bonded molecule changes in such a way
that results in an energy drop is unanswered by these quantities'™. This can be understood
through an alternative energy partitioning, derived from a density partitioning in quasi-classical
and interference contributions >, by recognizing that the quantum mechanical interference
effect changes the electron density in a way as to reduce the energy and promote the formation
of chemical bonds. The results obtained for a variety of diatomic and polyatomic molecules
based on this energy partitioning attest that quantum interference plays a definite role in the
formation of chemical bonds, irrespective of being classified as covalent, polar or even “ionic”
¥ Moreover, the developed approach provides a unique way of obtaining the total interference
energy of a molecule in terms of bond contributions. Besides that, it can be shown that bond
interference energies have characteristic values for a given pair of atoms in similar chemical
environments °. In conclusion, the analysis of the chemical bond from the quantum interference
perspective provides a unified description of chemical bonding (CNPq, FAPER]J).
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