Saving Sanderson's Principle?

Order of Magnitude Improvements by Equalizing Mulliken Valence-State Electronegativities χ_{VS} Instead of DFT-Based Chemical Potentials μ

László von Szentpály, Institut für Theoretische Chemie, Universität Stuttgart, Deutschland.

lszentpaly@yahoo.com

Conceptual DFT operationally assumes $\mu = -\frac{1}{2}(I_0 + A_0) = -\chi$, with I_0 and A_0 being the ground-state ionization energy and electron affinity, respectively. However, a recent empirical test of 210 molecules discloses that most molecules seriously disobey Sanderson's electronegativity equalization (ENE) principle and the μ -equalization principle [1]. In more than 150 cases, the molecular μ_{mol} falls outside the range spanned by the μ_{at} of the constituent atoms, min { μ_{at} } $\leq \mu_{mol} \leq max$ { μ_{at} } [1].

I here discuss elementary thermodynamic cycles revealing the conditions for ENE and/or μ equalization in arbitrary diatomic and selected polyatomic molecules. The cycles explain why the DFT-based operational μ is equalized in exceptional cases only, as for the H₂ molecule. A proof is given that the diatomic $\chi(XY)$ and $\mu(XY)$ cannot be generally calculated from atomic data alone, but necessarily require molecular input data, specifically, the bond dissociation energies, D_0 , of molecular ions, e. g., XY^+ and XY^- . Using ground-state I_0 and A_0 frequently violates the Wigner-Witmer correlation rules [2] necessary for proper molecular symmetry. According to the correlation rules Mulliken's valence-state ionization energies, I_{VS} , electron affinities, A_{VS} , and electronegativity, χ_{VS} , [3] have to be employed for molecules and atoms alike. The differences between the molecular $\chi_{VS, mol}$ = $\frac{1}{2}(I_{\rm VS} + A_{\rm VS})$ and $-\mu_{\rm mol}$ and the corresponding averages from atomic values, $\langle \chi |_{\rm VS, at} \rangle$ and $\langle -\mu_{\rm at} \rangle$, are expressed by observed differences in D₀. Such differences frequently cancel and an order of magnitude improvement of accuracy in ENE is achieved by the consistent use of Mulliken's valence-state χ_{VS} as opposed to the commonly used ground-state EN, or µ values. The study shows that the Mulliken electronegativity and the DFT-based chemical potential have to be accepted as two separate and distinct properties characterizing chemical systems. For conceptual DFT a paradigm shift is in order by replacing the dominance of ground-states and emphasising valence-states.

^[1] Datta, D., Shee, N., von Szentpály, L. J. Phys. Chem. A 117, 200-206, 2013.

^[2] Wigner, E., Witmer, E. E. Z. Phys. 51, 859-886, 1928.

^{[3] (}a) Mulliken, R. S. *J. Chem. Phys .2,* 782-793, 1934; (b) Mulliken, R. S. *J. Chem. Phys 3,* 573-585, 1934; (c) Mulliken, R. S. *J. Chim. Phys. (France)* 46, 497-542, 1949. (English version: 1948/49 ONR Report on MO Theory).